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INTRODUCTION

As the typical species of the genus Serratia, Serratia marcescens is a rod-shaped, facultatively
anaerobic, Gram-negative bacterium of the family Enterobacteriaceae (Hejazi and Falkiner, 1997;
Matsushita et al., 2009; Gaultier et al., 2018). It has been reported as an opportunistic human
pathogen that may cause the hospital-acquired infections (Ferreira et al., 2020). Remarkably, S.
marcescens has the ability to produce a series of valuable products, including prodigiosin, chitinase,
protease, lipase, nuclease, bacteriocin, surfactant, and wetting agent. The prodigiosin is a bioactive
secondary metabolite with many pharmaceutical values such as antimicrobial, algicidal, anticancer,
antimalarial, anti-inflammatory, anti-diabetic, and immunomodulatory effects (Atsushi et al., 2014;
Darshan and Manonmani, 2015; Arivizhivendhan et al., 2018). Although it could be produced by
several bacterial species from the genera Serratia, Pseudoalteromonas, Vibrio, and so on (Lee et al.,
2011; Elkenawy et al., 2017), the genus Serratia is well-known as the main prodigiosin producing
strains (Li et al., 2015).

Considering the potential applications, S. marcescens has attracted great attentions from
many researchers Due to advances in high-throughput sequencing technologies, more and more
sequencing projects have been set up and researchers could better understand the function,
environmental adaptation and potential application of bacteria. There have been 682 genomes of S.
marcescens reported in NCBI (https://www.ncbi.nlm.nih.gov/genome/?term=Serratiamarcescens).
However, most of these strains were isolated from the intestines and ecological niches, such as air,
soil, water, plants and animals. Here, we firstly isolated strain ZPG19 from the compost generated
by aerobic composting of Flammulina velutipes residue collected in Dezhou, Shandong Province,
China (37.45◦N, 116.37◦E). We sequenced and characterized its complete genomes in order to
provide a promising resource to conduct the biosynthesis analysis and the molecular investigations
of genus Serratia.
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MATERIALS AND METHODS

Genomic DNA Isolation
Strain ZPG19 of S. marcescens was cultured for 24 h in LB
media (Tryptone 10 g/L, Yeast extract 5 g/L, NaCl10 g/L). Then
genomic DNA was extracted with TIANamp Bacteria DNA
Kit (TIANGEN Biotech Co., Ltd, Beijing, China) following the
manufacturer’s instructions. The quality and quantity of purified
genomic DNA were determined by NanoDrop 2000 (Thermo
Scientific, MA, USA).

Genome Sequencing, Assembly, and
Annotation
The genome of the strain ZPG19 was sequenced at Personal
(Shanghai Personal Biotechnology Co., Ltd, China) using two
different technologies: Illumina NovaSeq with 400 bp library
and the PacBio Sequel with a 20-kb library. The adapters of the
3’ end were removed using AdapterRemoval (Schubert et al.,
2016). Raw reads were quality filtered and error corrected with
SOAPEC (kmer = 17) (Luo et al., 2012). De novo assembly of
the read sequences was carried out using the hierarchical genome
assembly process workflow (Chin et al., 2016). The annotation
of the sequences was carried out using a modified version of the
Prokka annotation pipeline, which incorporated Prodigal 2.60,
Aragorn, and RNAmmer 1.2 for the prediction of open reading
frames, tRNAs, and rRNAs, respectively (Seemann, 2014; Yabe
and Fukushima, 2020). The prediction of other ncRNAs was
mainly obtained by comparing with Rfam database (Kalfari et al.,
2018).

Genome Comparison
We selected the whole sequenced genomes of five S. marcescens
strains isolated from different habitats for comparative genomic
analysis. Chromosomal genome comparison among strain
ZPG19 and these five fully sequenced genomes was carried out by
using progressive Mauve genome aligner with Geneious software
at the default settings (Kearse et al., 2012).

TABLE 1 | Detailed information of Chromosomal genomes from S. marcescens Strain ZPG19 and five reported S. marcescens strains.

Features ZPG19 SM39 Sma274 SGAir0764 Db11 FS14

Site of isolation Compost Blood lab Stock Air Drosophila Plant

No. of chromosome 1 1 1 1 1 1

No. of plasmid 0 2 1 1 0 0

Size (bp) 5,269,270 5,225,577 5,148,533 5,142,714 5,113,802 5,249,875

G + C (%) 59.49 59.82 59.53 59.54 59.51 59.47

Total genes 5,169 5,095 4,895 4,981 4,850 4,873

CDS 4,934 4,975 4,758 4,856 4,724 4,761

tRNA 95 88 95 91 88 91

rRNA 22 22 22 22 22 21

Other ncRNA 118 10 20 12 16 10

Reference This work Atsushi et al., 2014 Yabe and Fukushima, 2020 Gaultier et al., 2018 Li et al., 2015 Li et al., 2015

Direct Link to Deposited Data and
Information to Users
The BioProject designations for S. marcescens strain
ZPG19 are PRJNA665610. And the raw sequences
have been deposited in GenBank under the accession
numbers SRR12714697 in September 2020. Strain ZPG19
of S. marcescens is available from the China Center
for Type Culture Collection (CTCC) under accession
numbers M2019645.

INTERPRETATION OF DATA SET

General Genome Features
We obtained 8,126,164 raw reads covering a total of
1,212,079,667 bp with 230× genome coverage for strain ZPG19.
The complete chromosome contained a circular molecule of
5,269,270 bp with 59.49% G+C content. A total of 5,169 genes
were predicted including 4,934 coding DNA sequences (CDSs),
95 tRNA genes, 22 rRNA genes and 118 other non-coding RNA
genes. In this work, no plasmid was found. The detailed genomic
information of ZPG19 and five S. marcescens strains was list in
Table 1.

Genome Comparison
The whole-genome sizes, GC contents and gene contents
of the six Serratia strains were comparable with a slight
difference (Table 1). At the same time, the number of genes
increased with the enlargement of genome size. The number
of plasmids varied in six Serratia strains. SM39 carried
two plasmids, Sma274 and SGAir0764 carried one plasmid,
respectively. While the other three Serratia strains analyzed had
no plasmid.

A global alignment of genome sequences from six Serratia
strains was performed using Mauve software and the results
showed that the synteny between S. marcescens was not very
conserved (Figure 1). Gene rearrangements were commonly
observed along the whole stretch of the six chromosomal
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FIGURE 1 | Global multiplealignments of chromosomes from six Serratia strains using progressive MAUVE with default parameters. Colored blocks indicated the

genome sequences that aligned to part of another genome and was possibly homologous and internally free from genomic rearrangement (locally collinear blocks).

White regions represented sequences that did not aligned and probably contained sequences specific to a particular genome. Blocks below the center line showed

regions that aligned in the reverse orientation. The names of the strains were listed at the bottom of the blocks.

FIGURE 2 | The pig cluster of prodigiosin biosynthesis in strain ZPG19. Genes were symbolized by arrows. The white arrows denoted genes involving in condensing

enzymes; black arrows represented genes encoding proteins required for the biosynthesis of the monopyrroles; gray arrows genes encoding proteins required for the

biosynthesis of 4-methoxy-2,2-bipyrrole-5-carboxyaldehyde; vertical striped arrows denoted flanking genes cueR and copA; The numbers in small blue arrows

indicated the start positions and end positions of each gene.

genomes which was consistent with previous reports (Li et al.,
2015).

Prodigiosin-Producing Enzymes
We have confirmed that the strain ZPG19 could produce
prodigiosin via HPLC-MS method. Here, the prodigiosin-
producing inventory of ZPG19 was identified including genes
for 3-oxoacyl-[acyl-carrier protein] reductase (fabG), [acyl-
carrier-protein] S-malonyltransferase (fabD) and pig cluster.
The pig cluster contained 14 candidate genes which arranged
pigA through to pigN flanked by cueR and copA (Figure 2).
We have putatively assigned the products of one gene to
the condensing enzymes. Ten genes that encoded proteins
required for the biosynthesis of the monopyrroles. Three genes

encoding proteins required for the biosynthesis of 4-methoxy-
2,2-bipyrrole-5-carboxyaldehyde. This observation is congruent
with S. marcescens strain FS14 and S. plymuthica strain AS13
in earlier studies (Li et al., 2015). The order of the genes was
conserved among these Serratia species and the corresponding
14 predicted proteins were similar in size and share significant
amino acid.

In conclusion, the complete genome of S. marcescens
strain ZPG19 was sequenced and assembled into one
chromosome. Comparative genome and sequence
analyses showed that rearrangements occurred in six
Serratia strains. Genes fabG, fabD, and pig cluster
responsible for prodigiosin production were detected in
this work.
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