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Introduction
Autoimmune liver disease (AILD) is a unique 
type of chronic liver disease caused by immune 
dysfunction, which consists of three different 
types: autoimmune hepatitis (AIH), primary bil-
iary cholangitis (PBC), and primary sclerosing 
cholangitis (PSC). These three forms of AILD 
share some common clinical features such as 
fatigue, loss of appetite, liver discomfort, and 
icteric sclera, and result in abnormal levels of liver 
function indicators in a blood test.1 Moreover, in 
line with the most prominent feature of autoim-
mune diseases, AILD patients produce autoanti-
bodies. However, the pathogenesis of AILD 
remains poorly understood. Multiple types of 
immune cells are recruited into the liver in 

response to the production of self-antigens, lead-
ing to an inflammatory immune reaction.2 Long-
term chronic inflammation in the liver leads to 
liver fibrosis, which can ultimately progress to 
end-stage liver diseases such as liver cirrhosis and 
liver failure. Moreover, patients with PBC and 
AIH are more prone to hepatocellular carcinoma 
(HCC), whereas patients with PSC have a signifi-
cantly increased risk of developing cholangiocar-
cinoma (CCA).3

Although AILD is not very prevalent, if left 
untreated, the risk of mortality and morbidity 
increases. Last decades have witnessed the pro-
gress in the treatment of AILD which aims to 
improve clinical symptoms and halt disease 
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progression. For patients with AIH, steroids are 
used for remission induction and azathioprine 
(AZA) is often used for remission maintenance. 
Other available drugs of second- and third-line 
therapy for AIH such as mycophenolate mofetil 
and tacrolimus are options for AIH patients with 
insufficient response or intolerance to the stand-
ard therapy. However, these immunosuppressive 
drugs are associated with many side effects, 
including Cushingoid features, infections, osteo-
porosis, and gastrointestinal issues.4 Although 
treatment with ursodeoxycholic acid (UDCA) is 
generally considered to be effective in improving 
biliary function, 25–50% of patients with PBC 
fail to achieve a complete biochemical response 
from UDCA treatment.5 An innovative registered 
drug, farnesoid X receptor (FXR) agonist obet-
icholic acid (OCA), is a choice for PBC patients 
with an incomplete response to UDCA therapy. 
However, OCA always leads to pruritus and is 
not recommended for patients with decompen-
sated PBC.6 As for patients with PSC, there are 
no effective treatments at present.7 Liver trans-
plantation is a choice for AILD patients with end-
stage liver disease, HCC or CCA, under strict 
criteria. However, several factors, including the 
age of transplant recipients, comorbidities, and 
extrahepatic neoplasms must be taken into con-
sideration when deciding whether offering or not 
a graft to such patients.8 Besides, the risk of recur-
rent disease at 10 years is about 20% after liver 
transplantation.9 Thus, there is an unmet need 
for treating patients with AILD, and a new ther-
apy is urgently required.

Recent studies have emphasized the broad poten-
tial of the clinical application of cell therapy; in 
particular, mesenchymal stem-cell (MSC) ther-
apy has emerged as a promising treatment owing 
to its several advantages and has received sub-
stantial research attention. MSCs are fibroblast-
like plastic-adherent cells with self-renewal and 
differentiation ability.10 MSCs can be isolated 
from multiple tissues and expanded massively in 
vitro, which is a convenient characteristic for 
clinical use.11 Particularly, the anti-fibrosis, 
immunoregulation, and hepatocyte differentia-
tion properties make MSCs a promising candi-
date for AILD treatment.12 In this review, we 
first focus on recent research highlighting the 
prospects and underlying mechanisms of MSC 
therapy in AILD, and address the challenges 
toward developing this novel treatment for clini-
cal application.

Overview of MSCs
MSCs were first isolated from bone marrow by 
Friedenstein et al.10 in 1968; later studies found 
MSCs could derive from many other tissues such 
as adipose tissue, umbilical cord, dental pulp, 
amniotic fluid, and placenta.13–17 MSCs have the 
capacity for self-renewal, proliferation and tri-
lineage differentiation towards mesoderm cells, 
including osteoblasts, adipocytes, and chondro-
blasts, as well as ectoderm and endoderm cells 
such as hepatocytes, neurons, and pancreatic 
islet-β cells, under specific conditions.11,18–20 In 
addition, accumulating evidence indicates that 
MSCs can also function by secreting exosomes 
through which proteins and ribonucleic acids 
(RNAs) could be delivered to recipient cells and 
exert specific effects.21

Although MSCs of various origins express identi-
cal markers and present the same functions, they 
have different levels of immunoregulation and dif-
ferentiation.22 For example, Mattar and Bieback23 
summarized that umbilical-cord-derived MSCs 
(UC-MSCs) have stronger capability to induce 
regulatory T cells (Tregs) and reduce the endo-
cytic ability of dendritic cells (DCs) than bone-
marrow-derived MSCs (BM-MSCs). Another 
study found that UC-MSCs have a higher rate of 
proliferation and osteogenic differentiation than 
BM-MSCs.24

Many studies have demonstrated the safety and 
feasibility of MSC therapy for different diseases, 
including graft-versus-host disease (GVHD), car-
diovascular disease, cancer, osteoarthritis, diabe-
tes, and liver cirrhosis.25–29 In treating liver 
diseases, MSCs could migrate to the liver and dif-
ferentiate into hepatocytes to replace injured cells 
and restore liver function.30 Moreover, MSCs 
may inhibit inflammation through their immu-
noregulatory function to promote hepatocyte sur-
vival.31 In addition, MSCs have the ability to 
attenuate liver fibrosis and slow liver disease pro-
gression (Figure 1).32

MSC function and underlying treatment 
targets

Roles of MSCs in immunoregulation
Accumulating evidence has highlighted the role 
of MSCs in immunoregulation. MSCs can inter-
act with immune cells in the liver through several 
means, including direct cell-to-cell contact or 
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through the secretion of cytokines and other 
substances.

T cells. The interaction between MSCs and T 
cells has been intensively investigated. MSCs can 
inhibit T-cell proliferation through secreting a 
series of anti-inflammatory molecules, such as 
nitric oxide, indoleamine 2,3-dioxygenase (IDO), 
prostaglandin E2 (PGE2), interleukin-10 (IL-
10), programmed cell-death 1 ligand 1 (PD-L1), 
transforming growth factor-β1 (TGF-β1), IL-6, 
heme oxygenase-1 (HO-1), hepatocyte growth 
factor (HGF), and galectins.33–38 MSC could 
inhibit the activation and cytotoxicity capacity of 
CD8+T cells, as well.39,40 In addition, the sup-
pressive function of MSCs on T cells has been 
demonstrated in many diseases, including sys-
temic lupus erythematosus (SLE), rheumatoid 
arthritis (RA), GVHD, and liver diseases.41–44 
MSCs express high levels of IDO when stimu-
lated by interferon gamma (IFN-γ) and promote 
the degradation of tryptophan into kynurenine, 
which could in turn inhibit the proliferation of 
activated T cells.45 Besides, MSCs can promote 
T-cell apoptosis via the Fas/FasL pathway.46 
MSCs were also known to exert an effect on the 
differentiation of CD4+ T cells. Specifically, 
MSCs can inhibit naïve CD4+ T cells from dif-
ferentiating towards T-helper 1 (Th1) and 
T-helper 17 (Th17) cells, but can promote the 

differentiation of CD4+CD25+FOXP3+ (fork-
head box P3) regulatory T cell (Treg) and IL-10+ 
Treg cells.47,48 MSC could secrete TGF-β and 
activating Smad2 (SMAD family member 2) sig-
naling, which is important for Treg regulation, 
thus promoting the process of Treg differentia-
tion.49 Evidence showed that MSC therapy in  
an experimental autoimmune encephalomyelitis 
model led to an increase in the Treg population 
and a decrease in the Th17 population, which 
ultimately resulted in amelioration of the 
disease.48

B cells. MSCs can also affect B-cell immune 
responses. Early studies suggested that MSCs 
could inhibit the proliferation of B cells by arrest-
ing the cell cycle at the G0/G1 phase and by 
engaging programmed cell-death protein 1 (PD-
1)/PD-L1 pathway via direct contact.50,51 More-
over, MSCs could suppress the production of 
immunoglobulin G1 (IgG1) and IgM during 
B-cell terminal differentiation in mice.52 The 
underlying mechanisms associated with these 
effects have also been explored. MSCs could 
secrete CCL2 (C-C motif chemokine ligand 2), 
which inhibits signal transducer and activator of 
transcription 3 (STAT3) activation and promotes 
paired box 5 (PAX5) expression in plasma cells, 
thereby suppressing Ig production in B cells.53 
IL-1 receptor antagonist (IL-1RA) and olfactory 

Figure 1. Mechanisms of MSC-based treatment in autoimmune liver diseases.
AIH, autoimmune hepatitis; Breg, regulatory B cell; DC, dendritic cell; HSC, hepatic stellate cell; IFN-γ, interferon-γ; IL-10, 
interleukin-10; MSC, mesenchymal stem cell; NK cell, natural killer cell; PBC, primary biliary cholangitis; PSC, primary 
sclerosing cholangitis; Th, helper T cell; Treg, regulatory T cell.
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1/early B-cell factor-associated zinc-finger protein 
(OAZ) are also important molecules in this 
immunoregulation process.54,55 Schena et  al.56 
found that MSCs could inhibit B-cell receptor 
(BCR)-activated B-cell proliferation and that 
MSC treatment in SLE mice significantly 
improved the renal histopathology scores. On the 
other hand, MSC could induce IL-10-producing 
CD19+CD24highCD38high regulatory B cells 
(Breg) in human.57 In line with these findings, 
Chao et  al.58 reported that MSCs ameliorated 
experimental colitis by strikingly increasing the 
number of IL-10-producing CD5+ Bregs. Simi-
larly, co-culturing with MSCs could enhance the 
immunosuppressive activity of B cells by inducing 
unconventional IL-10-producing CD23+CD43+ 
Bregs in the same disease mouse model.59

Macrophages. Macrophages specific to the liver 
are known as Kupffer cells (KCs), which can be 
classified into two types: the pro-inflammatory 
type (M1), which undergoes classical activation; 
and anti-inflammatory type (M2), which under-
goes alternative activation. M2 macrophages usu-
ally secrete high levels of IL-10 and low levels of 
IL-6, IL-12, IL-1β and tumor necrosis factor-α 
(TNF-α), along with higher ability of phagocyto-
sis to exert a negative effect on inflammation.60 
Many studies have suggested that MSCs play an 
important role in the process of macrophage 
polarization and could promote the differentia-
tion toward the M2 phenotype both in vitro and in 
vivo. MSC-educated macrophages (MEMs) 
express more inhibitory molecules such as PD-1/
PD-L1 and have a quite different gene profile 
from that of normal macrophages, which include 
genes that are positively correlated with anti-
inflammatory effects and tissue repair. MEMs 
were shown to be superior to MSCs in promoting 
the survival of a GVHD and radiation injury 
mouse model in vivo.61 These effects of MSCs 
have also been observed in several other diseases 
such as RA, wound healing, and acute liver 
injury.62–64 MSCs can secrete TNF-α-stimulated 
gene 6 protein (TSG6) to interact with CD44 on 
the macrophages, and can decrease the TLR2-
mediated NF-κB (nuclear factor kappa light 
chain enhancer of activated B cells) activation of 
macrophages in a zymosan-induced peritonitis 
mouse model.65 Moreover, MSCs could mitigate 
colitis through the upregulation of TGF-β1 
expression by recruiting macrophages to the 
inflammation site.66 In addition, MSC-secreted 

exosomes could promote a shift in balance to a 
predominant M2 type by decreasing IL-6 levels 
and increasing the levels of IL-10 and monocyte 
chemo-attractant protein-1 (MCP-1), which is a 
key molecule in macrophage recruitment and 
activation.67

Other immune cells. Natural killer (NK) cells are 
key effector immune cells of the innate immune 
response. MSCs can suppress the proliferation 
and cytotoxicity of NK cells.68 This effect has 
been investigated in a liver injury model in which 
MSC therapy could inhibit the activation of NK 
cells and improve the liver condition.69 As for 
dendritic cells (DCs), the most potent antigen-
presenting cell (APC), MSCs have been shown to 
inhibit their maturation, activation, and migra-
tion.70,71 MSCs could also induce regulatory DCs 
to ameliorate disease progression in a fulminant 
hepatic failure model.44

Summary. MSCs have a great impact on all kinds 
of immune cells and this property gives them the 
potential to treat many diseases with an abnormal 
immune regulation. Notably, the immunosup-
pressive ability of MSCs is dependent on the 
strengths and types of inflammatory signals they 
receive. MSC pre-treating with pro-inflammatory 
cytokines like IFN-γ and IL-1β can gain a stron-
ger anti-inflammatory ability.72,73 Therefore, this 
special characteristic should be taken into account 
when applying MSCs for treatment.

Anti-fibrosis effects of MSCs
Liver fibrosis is a condition characterized by loss 
of hepatocytes and accumulation of extracellular 
matrix (ECM), which could result from chronic 
injury of any etiology. In response to liver injury, 
many pro-inflammatory cytokines, including 
TGF-β, IL-4, IL-13, are secreted by infiltrating 
and resident immune cells. Hepatic inflammation 
further activates hepatic stellate cells (HSCs) to 
develop into myofibroblasts, which are the major 
source of ECM and other matrix proteins respon-
sible for scar formation.74,75 MSC-based treat-
ment in vivo has exhibited therapeutic effects in 
several liver fibrosis animal models induced by 
carbon tetrachloride (CCL4) or thioacetamide 
(TAA), and in several clinical trials.

Inflammation is a strong pathogenic factor in 
liver fibrosis. Since MSCs have a considerable 
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impact on the immune system, the interaction 
between MSCs and immune cells has been widely 
investigated in liver fibrosis. Macrophages can 
activate fibrogenic myofibroblasts by secreting 
TGF-β1 and play a pathogenic role in liver fibro-
sis. Co-culturing MSCs with colony-stimulating 
factor-1-induced macrophages could induce 
macrophage development toward the anti-inflam-
matory M2 phenotype with higher phagocytic 
activity conferred through elevated expression of 
PGE2 and TSG-6. Combining MSCs with mac-
rophages was shown to reduce the degree of liver 
fibrosis more efficiently than MSC monother-
apy, and also resulted in higher levels of antifi-
brotic factors such as matrix metalloproteinases 
(MMPs) and pro-regenerative factors such as 
vascular endothelial growth factor.76 MSCs 
could also induce M2-type macrophages via 
increasing IL-4 and IL-10 levels, by promoting 
the mobilization of macrophages both in vitro 
and in vivo, ultimately alleviating liver fibrosis 
in rats.77 MSC treatment was also found to 
potentially promote Treg expansion and to sig-
nificantly suppress the proliferation of Th17 
cells in the liver of CCL4-treated mice via the 
production of IDO, leading to attenuation of 
liver fibrosis.78

HSCs play a vital role in the pathogenesis of liver 
fibrosis. MSCs have been shown to suppress the 
expression of Delta-like 1 (Dlk1), which is an 
HSC activator and promotes liver fibrogenesis, 
thereby ameliorating liver fibrosis.79 Besides, 
Meier et al.80 showed that conditioned medium 
from human BM-MSCs could inactivate HSCs 
in vitro. Furthermore, co-culturing BM-MSCs 
with HSCs could induce apoptosis and inhibit 
the proliferation of HSCs.81 Other mechanisms 
of MSC inhibition on liver fibrosis have also 
been uncovered. In a TAA-induced cirrhotic  
rat model, MSC administration significantly 
decreased the expression of TGF-β1, collagen-1, 
and α-smooth muscle actin (α-SMA) expression 
and inhibited Smad3 phosphorylation, which is 
a downstream effector of the TGF-β1 signaling 
pathway.82 Another study found that MSCs 
express high levels of bone morphogenic protein 
7 (BMP7) and could mitigate cirrhosis in a 
CCL4-induced mouse model of liver disease and 
depletion of BMP7 in MSCs completely abol-
ished their protective effect.83 MSC treatment 
was also found to reduce the level of collagen 
deposition by upregulating MMP-13 expression 

and downregulating TIMP-1 (tissue inhibitor of 
metalloproteinase-1) expression; overexpression 
of MMP1 in MSCs further enhanced their anti-
fibrotic ability.84

Overall, these studies show that MSCs could 
ameliorate liver fibrosis via their anti-inflamma-
tory effects, indirectly, and inactivation of HSCs, 
directly.

Roles of MSCs in hepatocyte differentiation
The immunoregulation and anti-fibrosis properties 
of MSCs are critical for hepatocyte survival. MSC 
therapy has been shown to protect the acutely 
injured liver by directly inhibiting hepatocellular 
apoptosis and stimulating tissue regeneration.85 
Moreover, MSC can repair liver tissue damage by 
differentiating into hepatocytes and replacing 
injured cells, thereby restoring liver function.30

Schwartz et  al.86 reported that culturing MSCs 
with fibroblast growth factor-4 (FGF-4) and 
HGF helped MSCs differentiate into hepatocyte-
like cells based on the expression of hepatocyte 
markers, including nuclear factor-3b (HNF-3b), 
GATA-binding protein 4 (GATA4), cytokeratin 
19 (CK19), transthyretin, a-fetoprotein, CK18, 
hepatocyte nuclear-factor 4 (HNF-4), HNF-1a, 
and albumin. Lee et al.20 subsequently designed a 
novel two-step protocol using HGF and oncosta-
tin M protein to induce the hepatic differentiation 
of MSCs. Moreover, MSCs can differentiate into 
hepatocyte-like cells when co-cultured with liver 
cells or grown in pellet culture.87,88 Based on 
these in vitro studies, the ability of MSCs to dif-
ferentiate into hepatocytes has also been investi-
gated in vivo. Studies involving the transfer of 
human MSCs to liver injury models of rats, mice, 
and sheep all demonstrated that MSCs consist-
ently differentiated to hepatocyte-like cells.89–93 
Moreover, the site of MSC injection is an impor-
tant consideration, because MSCs preferably  
distribute at the periportal regions following 
intraperitoneal injection and can generate hepat-
ocytes more efficiently by intrahepatic injection in 
sheep.94 These observations provide evidence 
that MSC treatment for liver disease is feasible 
owing to their differentiation function; however, 
this possibility requires obtaining deeper insight 
into whether MSC-differentiated hepatocytes 
could provide sufficient metabolic and trophic 
support in the liver.
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MSC-based therapy for AILD

AIH
AIH is a chronic liver disease that affects people 
of all ages but is more often seen in women and 
elderly people.95 The prevalence of AIH is 17.44 
per 100,000 people worldwide according to a 
meta-analysis based on 22 studies, and the inci-
dence seemed to double from 1997 to 2015 in an 
English cohort.96,97 Patients with AIH often man-
ifest elevated serum alanine aminotransferase 
(ALT), IgG, presence of autoantibodies, and 
interface hepatitis. AIH can be classified into two 
types: patients with AIH type 1 (AIH-1) account 
for 95% of all AIH patients, characterized by pos-
itive anti-nuclear antibodies and anti-SMA. Type 
2 AIH (AIH-2) is characterized by the presence 
of anti-liver kidney microsomal type 1 antibodies 
(anti-LKM1) and/or anti-liver cytosol type 1 
(anti-LC1). Most AIH patients require lifelong 
immunosuppressive treatment; steroids are often 
used for remission induction, whereas AZA is 
used for maintenance. However, some patients 
insufficiently respond to standard therapy or can-
not tolerate it.98 Moreover, a study from the 
Netherlands showed that low doses of corticoster-
oids could still lead to substantial adverse events 
such as bone fractures, which contradicted the 
assumption that administering low doses of corti-
costeroids could prevent adverse events.99 Thus, 
AIH patients need to seek alternatives to tradi-
tional treatment.

Chen et al.100 established an experimental auto-
immune hepatitis (EAH) mouse model induced 
by liver antigen S100 and treated the EAH mice 
with 1 × 105 MSCs via the tail vein one to three 
times on days 21, 28, and 35 according to the dif-
ferent group settings.

One group of EAH mice was administered pred-
nisolone and AZA as a positive control. The EAH 
mice that received MSCs had attenuated ALT 
and AST (aspartate aminotransferase) levels, and 
improved liver histological scores. They also 
found that the levels of PD-L1 in the liver and 
serum of EAH mice were higher than those in the 
normal control mice, and the level of PD-L1 
gradually increased with increasing duration of 
MSC treatment. It is generally believed that an 
elevated level of PD-L1 plays an anti-inflamma-
tory role in inflammatory diseases, thus, this 
result indicated that MSCs could increase the 
PD-L1 level to inhibit inflammation.101 In 

contrast, the level of the pro-inflammatory 
cytokine IL-17 in EAH model mice was higher 
than that in normal control mice, and the use of 
drugs and MSC treatment reduced IL-17 levels 
significantly, especially in mice that received mul-
tiple doses of MSCs. The role of IL-23 in AIH 
remains controversial. Some studies suggested 
that IL-23 can protect against AIH given evidence 
that IL-23-deficient mice were more susceptible 
to concanavalin A (ConA)-induced hepatitis.102 
In this study, the level of IL-23 in the EAH mouse 
model decreased but increased after treatment 
with drugs and MSCs. Therefore, this study sup-
ports the MSC treatment efficiency in EAH, and 
suggested the possible mechanism by which 
MSCs could ameliorate EAH by upregulating 
PD-L1 and inhibiting IL-17.

Recently, studies suggest that MSCs can mediate 
their therapeutic functions in a paracrine rather 
than a cellular manner, thus, a novel cell-free ther-
apy using MSC-secreted exosomes holds promise 
for treating many diseases.103 Several studies 
focused on AIH also investigated the role of MSC-
secreted exosomes. Chen et  al.104 infected 
BM-MSCs with pre-miR-223, miR-223 inhibitor, 
or empty vector, and isolated exosomes from the 
culture medium that were then intraperitoneally 
injected into EAH mice. The results showed that 
both BMSCs-exomiR-223(+) and BMSCs-exomiR-

223(null) treatment significantly lowered the levels of 
ALT and AST, and inflammatory cytokines such 
as IL-17, TNF-α and IL-1β, and these observa-
tions were more obvious in BMSCs-exomiR-223(+) 
mice. In contrast, mice that received BMSCs-
exomiR-223(–) exhibited a more severe condition. 
The mechanism underlying this effect was consid-
ered related to the ability of BMSCs-exomiR-223(+) 
and BMSCs-exomiR-223(null) to inhibit the down-
stream NLRP3 [NLR (nucleotide-binding oli-
gomerization domain-like receptors) family pyrin 
domain containing 3]-caspase-1 pathway through 
binding between miR-223 and the 3'-untranslated 
region of NLRP3, which is highly activated in the 
hepatocytes of EAH mice. Lu et  al.105 further 
revealed a new role of MSC-derived exosomes in 
EAH mice. Mice treated with MSC-exosomes 
and MSC-exosomes miR-223-3p(+) showed increased 
serum IL-10 levels and had normal or even higher 
Treg/Th17 ratios. Reduction of the expression of 
STAT3 and p-STAT3 by MSC-exosomes and 
MSC-exosomes miR-223-3p(+) may explain this effect. 
Moreover, this effect was validated in a mac-
rophage cell line, in which treatment with both 
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MSC-exosomes and MSC-exosomes miR-223-3p(+) 
inhibited LPS (lipopolysaccharide)-induced mac-
rophage inflammation, as shown by reduced levels 
of IL-1β, IL-6, STAT3, and p-STAT3. This 
study emphasized that MSC-derived exosomes 
could effectively deliver miR-223-3p to regulate 
the inflammatory and anti-inflammatory cytokines 
and upregulate the Treg/Th17 ratio by inhibiting 
the activation of STAT3. These data indicate that 
MSC-secreted exosome therapy is effective in 
treating EAH mice. However, there are some 
issues with this method for clinical translation. 
First, exosomes should be modified to target the 
liver or specific organs. Second, the components 
of exosomes remain to be identified.

Wang et  al.106 modified adipose-tissue-derived 
MSCs with IL-35 lentivirus and intravenously 
injected IL-35-MSC or MSC or PBS (phosphate-
buffered saline) into ConA-induced AIH mice. 
Mice in the IL-35-MSC group showed the long-
est survival and had less liver necrosis. Apoptosis 
markers such as FasL, and pro-inflammatory 
cytokines like IFN-γ and IL-17 of liver mononu-
clear cells (MNCs) in IL-35-MSC mice greatly 
decreased. Tracing of transplanted IL-35-MSCs 
suggested that the cells specifically migrated to 
the injured liver rather than to other organs. In 
addition, IL-35-MSC treatment enhanced the 
Janus kinase 1 (JAK1)-STAT1/STAT4 signaling 
pathway. IL-35 is known as an anti-inflammatory 
cytokine that is highly expressed by human and 
mouse Tregs.107 This study demonstrated that 
introduction of the IL-35 gene into MSCs could 
help to deliver the anti-inflammatory effect of 
IL-35 through the homing of MSCs to injury sites 
to achieve targeted therapy. Overall, this study 
highlighted that gene-modified MSCs could 
function better than pure MSCs and exert a 
stronger impact in treating EAH.

In summary, although some AIH animal studies of 
MSC therapy have achieved encouraging results, 
there have been no clinical studies based on MSC 
therapy conducted to date. Therefore, it is still 
unknown whether MSCs could have a clinically 
beneficial effect to improve AIH, and to solve this 
problem requires further basic and clinical studies.

PBC
PBC is a typical autoimmune disease character-
ized by non-suppurative inflammation in the 
small interlobular bile ducts. PBC mainly affects 

middle-aged women, with a prevalence of 39.2 
per 100,000 people.108 Approximately 90% of 
PBC patients are positive for diagnostic-specific 
antimitochondrial antibody (AMA), which tar-
gets PDC-E2 (the epitope of the E2 subunit of 
the pyruvate dehydrogenase complex).109 UDCA 
monotherapy is typically the first-line treatment 
upon a diagnosis of PBC. However, UDCA can 
only delay the progression of hepatic fibrosis in 
the early stage and is not effective in cases of 
advanced disease.5,110 Besides, 25–50% of PBC 
patients do not respond to UDCA and are there-
fore at a higher risk for disease progression. These 
patients are indicated for second-line drugs such 
as FXR agonist OCA; however, OCA has some 
side effects such as dose-dependent pruritus, 
which occurs in up to 10% of patients and is a 
major cause of therapy discontinuation.111 Thus, 
many new therapies for PBC are currently under 
exploration.

Wang et  al.112 first examined the effect of 
BM-MSC treatment in a PBC mouse model 
induced by polyinosinic-polycytidylic acid sodium 
(Poly I:C). Mice were administered 1 × 106 
BM-MSCs intravenously and the same volume of 
PBS was provided to the control group. After 
6 weeks of treatment, serum alkaline phosphatase 
(ALP) levels and AMA titers in the treatment 
group had decreased markedly. In addition, lym-
phocytes infiltrating the liver bile duct epithelium 
also significantly reduced, suggesting that MSCs 
may inhibit the proliferation and infiltration of 
immune cells in the liver. Mice in the BM-MSC-
treated group also showed attenuated serum lev-
els of inflammatory cytokines such as IFN-γ, 
which indicates that MSCs may inhibit the Th1 
immune response that mediates liver injury. Of 
note, mice receiving MSC therapy showed 
increased Tregs in the peripheral blood and 
lymph nodes, and higher serum levels of TGF-β, 
which is a cytokine that promotes Treg differen-
tiation. Overall, this study provided the first evi-
dence that MSCs are effective in treating Poly 
I:C-induced PBC mouse model possibly by 
involving the interplay between TGF-β and 
Tregs.

These encouraging results of MSC treatment in 
PBC animal models herald the prospects and 
provide biological evidence for clinical research. 
To date, several clinical studies have explored 
the efficacy and safety of MSC therapy in PBC 
patients. A study conducted in China enrolled 
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seven PBC patients with an abnormal ALP level 
after a minimum of 6 months of adequate UDCA 
dosage treatment.113 UC-MSCs were infused 
intravenously into the patients at a concentra-
tion of 0.5 × 106 cells/kg body weight once every 
4 weeks on three occasions in combination with 
standard UDCA therapy. None of the patients 
showed symptoms of short-term adverse effects 
or long-term complications. Follow-up results 
showed that serum ALP and gamma-glutamyl 
transferase (GGT) levels significantly decreased 
in patients by 48 weeks after receiving UC-MSC 
treatment. Common clinical symptoms of PBC 
patients such as fatigue, pruritus, and hypogas-
tric ascites volumes, also improved. This study 
indicated that UC-MSC transfusion through a 
peripheral vein is safe and feasible in PBC 
patients. However, the study was limited by its 
small sample size and lack of data on liver histo-
logical changes. A subsequent study conducted 
by our group included 10 PBC patients who had 
an incomplete biochemical response to UDCA 
for more than 1 year and received 3–5 × 105 
cells/kg body weight BM-MSCs by intravenous 
infusion.114 All patients tolerated the MSC treat-
ment well, and their responses to the PBC-40 
questionnaire suggested that they had an 
improved life quality, especially with respect to 
the itching, fatigue, and emotional function 
domains. Blood tests showed that ALT, GGT, 
and direct bilirubin (DBIL) decreased at 3 and 
6 months compared with baseline. The percent-
age of Tregs in the peripheral blood mononu-
clear cells of patients significantly increased at 
6 months, but total CD4+ T-cell and CD19+ 
B-cell percentages were not changed. The serum 
levels of the anti-inflammatory cytokine IL-10 
also increased but there was no increase in the 
level of TGF-β. We also collected two liver biop-
sies before, and 12 months after, BM-MSC 
treatment for comparison. Interestingly, no his-
tological progress was observed and there were 
no significant differences in the frequencies of 
CD8+ T cells and Tregs, which are important 
for PBC pathogenesis. This lack of difference 
may be because of the relatively late time of liver 
biopsy since our results indicated the therapeu-
tic effect of BM-MSCs reached the peak from 3 
to 6 months after MSC infusion.

In summary, both animal experiments and clini-
cal studies have confirmed the safety of MSCs 
and uncovered their potential for PBC treatment. 

Nevertheless, it should be noted that both the 
clinical trials performed to date recruited a small 
number of patients. Therefore, larger-scale stud-
ies with a randomized design are required to offer 
more strong evidence of the therapeutic use for 
MSC in PBC.

PSC
PSC is a rare disease with a prevalence of 6–16 
per 100,000 people in the general population, 
and is characterized by damage of the large intra- 
and extrahepatic bile ducts which leads to stric-
turing and dilation of the biliary tree, ultimately 
resulting in finally biliary cirrhosis and portal 
hypertension.115,116 About 70–80% of patients 
with PSC have inflammatory bowel disease 
(IBD), especially ulcerative colitis (UC).117 PSC 
patients are at a higher risk for several cancers 
such as CCA and gallbladder adenocarcinoma. 
PSC patients with IBD are also prone to develop-
ing colorectal cancer.3 Previous studies have 
explored the potential of UDCA in the treatment 
of PSC given the associated damage of the biliary 
ducts as in PBC, and these results suggested that 
although long-term use of UDCA could improve 
serum liver indicators, it could not improve sur-
vival and led to a series of serious adverse 
events.118 Clinical trials using other immunosup-
pressive drugs, including corticosteroids, AZA, 
and cyclosporin, failed to achieve satisfactory 
results. Biological drugs such as anti-TNF-α-like 
etanercept are also found to be ineffective for 
PSC.119 Therefore, there are currently no effec-
tive treatments for PSC.7 The estimated median 
survival of PSC patients from diagnosis to liver 
transplantation or death ranges from 10 to 
21 years, and up to 40% of patients require liver 
transplantation eventually.115,120 A follow-up 
study of PSC patients showed that the recurrence 
rate of PSC at 1, 5, and 10 years after transplanta-
tion was 2%, 12%, and 20%, respectively; and 
the 1-, 5-, and 10-year recurrence-free survival 
rates were 91%, 76%, and 61%, respectively.121 
Thus, PSC patients have a poor prognosis and 
there is an urgent need for new treatment options 
for PSC patients.

A major challenge in identifying an effective 
treatment for PSC is that the pathogenesis of 
PSC remains poorly understood. Both genetic 
factors, such as human leukocyte antigen, and 
environmental factors, such as infection, are 
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suggested to be contributors to the pathogenesis 
of PSC.122 In addition to traditional etiologies, 
recent studies have shown that immune dysregu-
lation plays a pathogenic role in PSC. A higher 
IFN-γ level in PSC mouse models was associated 
with stronger cytotoxicity of CD8+ T cells and 
NK cells, and the absence of IFN-γ could 
decrease the rate of liver cell death, reduce the 
frequencies of inflammatory macrophages in the 
liver, and attenuate liver fibrosis.123 High number 
of M1-type macrophages were found to be 
recruited by cholangiocytes to the peribiliary 
region via the CCR2/CCL2 axis in PSC patients 
and animal models, and depletion of CCR2 
could prevent biliary injury and fibrosis.124

To date, only one study has explored the possi-
bility of MSC therapy in a PSC animal model. 
Sugiura et  al.125 induced the development of 
sclerosing cholangitis in rat using alpha-naphth-
ylisothiocyanate (ANIT), which targets the 
intrahepatic bile ducts.125 They intravenously 
injected human amnion-derived MSCs (hAM-
SCs), conditioned medium (CM) obtained from 
hAMSCs, or PBS to the rats through the penile 
vein. Injection of hAMSCs and CM significantly 
ameliorated biliary hyperplasia, with downregu-
lated CK19 expression and fewer necrotic lesions 
caused by ANIT; however, fibroblast prolifera-
tion was not attenuated. In addition, hAMSCs 
and CM therapy tended to decrease the levels of 
peribiliary fibrosis markers such as α-SMA, 
TGF-β, type I collagen, MMP-2, MMP-9, and 
TIMP-1. The infiltration of CD68+ KCs in the 
Glisson’s sheath was found to decrease after 
hAMSCs and CM therapy. Therefore, this study 
first demonstrated that hAMSC transplantation 
and CM administration ameliorated biliary 
hyperplasia, peribiliary fibrosis, and inflamma-
tion in a rat model of PSC. However, the immu-
noregulatory function of MSCs has not been 
further explored.

Overall, the therapeutic potential of MSCs in 
PSC is not well established. The low prevalence 
of PSC and a lack of well-characterized PSC ani-
mal models may delay this investigation process. 
PSC is mainly characterized by over-activation of 
the immune system, suggesting that MSCs may 
exert an immunoregulatory effect. This interac-
tion warrants further investigation to provide 
more evidence on the safety and efficacy of MSC 
therapy in PSC.

Summary
The results from several animal and clinical stud-
ies are promising and may provide evidence of  
the efficacy of safety of MSC therapy in AILD 
(Table 1). However, these results should be inter-
preted with caution due to a small sample size in 
each study and a limited number of clinical trials. 
There are also some ongoing clinical trials of MSC 
treatment in AILD registered on the Clinical Trial 
Registry (https://clinicaltrials.gov/): one in PSC 
[ClinicalTrials.gov identifier: NCT03516006]; 
one in AIH [ClinicalTrials.gov identifier: 
NCT01661842], and one in PBC [ClinicalTrials.
gov identifier: NCT03668145]. Overall, more 
data from clinical trials are required.

Challenges of MSC-based treatment in 
clinical practice
Although, MSC-based therapy has achieved 
favorable results in animal and clinical studies in 
AILD, there are still challenges to overcome for 
the application of this novel treatment (Figure 2).

First, MSC therapy is associated with a few safety 
concerns such as the potential for tumorigenesis, 
emboli formation, and immune response.127 
However, a meta-analysis based on 36 clinical 
studies found an association between autologous 
and allogeneic MSC therapy and transient fever, 
but no relationship with acute infusion toxicity, 
organ complications, infection, and malig-
nancy.128 More studies with a long follow-up 
period are required to determine the precise long-
term impact on patients.

Second, the heterogeneity of different MSC pop-
ulations must be taken into consideration for 
clinical use. MSCs must be expanded through in 
vitro culture to yield sufficient cell numbers, and 
culture over several passages can cause the cells 
to transform and lose their function.129,130 
Although this phenomenon is rare in human 
MSCs, it is vital to analyze the gene components 
of MSCs and maintain homogeneous MSCs 
among different infusions for patients. The  
origin of MSCs is also important. Previous inves-
tigations have suggested that tremendous varia-
bility exists among MSCs derived from different 
tissues and different donors.22 And results from a 
limited number of studies showed that adipose 
tissue-derived MSCs (AT-MSCs) have similar 
potential while UC-MSCs are more potent in 
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hepatogenic differentiation when compared with 
BM-MSCs.131–133 More data are required to illus-
trate the question that MSCs from which source 
have the strongest hepatogenic differentiation 
ability. In addition, the delivery approach, dos-
ages, and frequencies of MSC treatment for 
AILD patients should be standardized and writ-
ten into an operation procedure, which would 
facilitate comparisons of the effectiveness of MSC 
therapy among studies.

Third, since MSCs showed great potential in 
treating many diseases, it is important to enhance 
the therapeutic benefit and make the best use of 
these cells, which can be achieved through sev-
eral factors. Evidence suggests that priming 
MSCs with specific cytokines before infusion 
into patients is feasible and could enhance the 
effectiveness of treatment. Exposure to inflam-
matory cytokines could help MSCs gain immu-
nomodulatory function, whereas they may show 
a pro-inflammatory phenotype in a quiescent 
environment. Duijvestein et  al.72 showed that 
pretreatment of MSCs with IFN-γ enhanced 
their anti-inflammatory ability and resulted  
in better amelioration of experimental colitis  
compared with pure MSCs. Moreover, gene- 
modified MSCs could exert a more powerful 
therapeutic impact. For example, overexpression 
of CXCR4 in MSCs by gene editing resulted in 
greater cell migration and colonization and con-
ferred protection to the damaged liver.134

Conclusions and prospects
Treatment for AILD patients is currently limited, 
and there is an urgent need for a new therapeutic 
approach. MSC therapy holds great promise  
owing to the advantageous properties of the cells, 
including multipotential for differentiation, anti- 
fibrosis features, and immunomodulatory func-
tions. Several clinical and animal studies have 
proven the safety and effectiveness of MSC treat-
ment in AILD; however, there are some issues to 
be clarified and resolved; in particular, MSC treat-
ment may increase the risk of tumor formation and 
viral infection; therefore, short-term and long-term 
adverse events must be monitored closely and dealt 
with in time. Besides, the standard of clinical use of 
MSCs should be established. Since modified MSCs 
appear to have stronger therapeutic efficacy, it is 
vital to prime or modify MSCs before treatment to 
facilitate their treatment ability. Only by addressing 
these concerns will we be able to apply MSC treat-
ment in clinical practice as a mainstream approach, 
ultimately enhancing the quality of life and improv-
ing survival of patients with AILD.
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