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Abstract

Inositol 1,4,5-triphosphate–mediated calcium (IP3-Ca
2+) signal cascade is an essential process in sweet, bitter, and umami taste

signal transduction. Although the main components of this cascade have been identified, the candidate regulators of them in
taste tissues are still unclear. In an effort to identify genes involved in taste signal transduction, we found that a gene encoding
lymphoid-restricted membrane protein (Lrmp/Jaw1) was expressed in mouse taste tissues. Here we report that Lrmp/Jaw1 is
specifically expressed in sweet, bitter, and umami taste receptor–expressing cells of mouse circumvallate, foliate, and fungiform
papillae. In addition to this specific expression patterns, we found that Lrmp/Jaw1 is associated with type III IP3 receptor (IP3R3)
via its coiled-coil domain in the COS7 heterologous expression system. These results raise the possibility that Lrmp/Jaw1
interacts with IP3R3 in taste cells and suggest an important role for Lrmp/Jaw1 in the IP3-Ca

2+ signal cascade in sweet, bitter,
and umami taste signal transduction.
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Introduction

Taste bud is a peripheral sensory system that receives chem-

ical information on food and drink. In the mammalian

tongue epithelium, taste cells occur in taste buds of 3 distinct

types in taste papillae (circumvallate, CV; foliate, FL; and

fungiform, FF) and respond to sweet, bitter, sour, salty,

and umami taste substances.
In this decade, notable progress has been made in under-

standing the molecular mechanisms of taste signal transduc-

tion. Two families of G protein–coupled receptors, taste

receptor family 1 and 2 (T1rs and T2rs), have been identified

as sweet/umami and bitter taste receptors, respectively (Hoon

et al. 1999; Adler et al. 2000; Matsunami et al. 2000; Kitagawa

et al. 2001; Max et al. 2001; Sainz et al. 2001; Zhao et al. 2003;

Mueller et al. 2005; Chandrashekar et al. 2006). The taste cells
expressing T1rs and T2rs also express a number of signaling

molecules such as G protein b subunit 3 (Gb3), G protein

c subunit 13 (Gc13), phospholipase C b2 (PLCb2), type III

inositol 1,4,5-triphosphate receptor (IP3R3), and transient re-

ceptor potential cation channel, subfamily M, member 5

(Trpm5) (Huang et al. 1999; Clapp et al. 2001; Miyoshi

et al. 2001; Pérez et al. 2002). It is known that Gbc subunits

activate PLCb2 to produce IP3, which induces calcium (Ca2+)

release through IP3R3 located on the membrane of endoplas-
mic reticulum (ER). This IP3-mediated calcium (IP3-Ca2+)

signal cascade is an essential process in taste signal transduc-

tion because mice lacking PLCb2 or IP3R3 show a major

deficiency in their ability to detect sweet, bitter, and umami

taste substances (Zhang et al. 2003; Hisatsune et al. 2007).

The IP3-Ca2+ signal cascade also plays important roles in

other tissues in development, proliferation, and neural func-

tion processes (Kume et al. 1997; Takei et al. 1998; Itoh et al.
2001). Because IP3Rs are known as targets of protein–protein

interaction, the cascade is involved in complex regulation. For

instance, IP3R-binding protein released with IP3 and IP3
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agonistically bind to IP3Rs and determine the threshold of

Ca2+ release in cerebellar neurons (Ando et al. 2003), and

IP3R-associated cyclic guanonsine monophosphate kinase

substrate (IRAG) binds to IP3Rs via its coiled-coil domain

and regulates IP3-mediated Ca2+ release in smooth muscle
cells (Schlossmann et al. 2000; Geiselhöringer et al. 2004).

In taste cells, calmyrin/CIB1 has been suggested to interact

with T1r2 and modulates IP3-evoked calcium release, recently

(Hennigs et al. 2008). However, little is known about the

candidate regulators of the IP3-Ca2+ signal cascade.

In our study, we found that Lrmp/Jaw1, a gene encoding

lymphoid-restricted membrane protein (Behrens et al. 1994;

Hoon and Ryba 1997), was coexpressed with molecules in
the IP3-Ca2+ signal cascade in taste cells. Lrmp/Jaw1 was

originally identified in lymphoid B and T cell lineages and

characterized as an ER resident, type II membrane protein

containing a coiled-coil domain (Behrens et al. 1994, 1996).

In taste tissues, however, no information regarding the ex-

pression patterns and roles exists. In this paper, we describe

the selective expression patterns in taste tissues and the novel

molecular properties of Lrmp/Jaw1 and discuss its possible
role as a candidate regulator of IP3-Ca2+ signal cascade in

sweet, bitter, and umami taste signal transduction.

Materials and methods

Construction of a subtracted full-length cDNA library

Eight- to 20-week-old male C57BL/6NCrj mice were trea-

ted in accordance with the basic guidelines of the Ministry
of Agriculture, Forestry, and Fisheries for laboratory an-

imal study. Mouse tongues were removed, dissected, and

placed in Ringer’s solution (150 mM NaCl, 4.7 mM

KCl, 3.3 mM CaCl2, 0.1 mM MgCl2, 2 mM N-2-hydrox-

yethylpiperazine-N#-2-ethanesulfonic acid, and 7.8 mM

glucose). Ringer’s solution containing 2.5 mg/mL collage-

nase type IV (Worthington Biochemical) and 2 mg/mL

elastase (Worthington Biochemical) was injected beneath
a CV papilla. After incubation for 15 min at room temper-

ature, the tongue epithelium was peeled and dissected into

epithelial fragments with/without taste buds. Total RNA

from each tissue was extracted using TRIzol reagent (Invi-

trogen), and the poly A+ RNA was isolated by oligo dT af-

finity chromatography (Invitrogen). cDNA libraries of both

samples were prepared from the poly A+ RNA using Super-

Script Plasmid System for cDNA Synthesis and Plasmid
Cloning Kit (Invitrogen). Taste bud-enriched, subtracted

cDNA library was prepared from the cDNA libraries by nor-

malization and subtraction procedure (Bonaldo et al. 1996).

DNA sequence analyses and annotation

The 5#-end sequence of each clone in the cDNA library was

analyzed by multicapillary DNA analysis system, CEQ2000

(Beckman Coulter Inc.). The sequence data were analyzed

using the DNASPace program (Hitachi Software) and the

UniGene database.

cRNA probes for in situ hybridization

The probe for Lrmp/Jaw1 (1497–1778, GenBank

NM_008511) was produced using the cDNA clones in

pSPORT1 vector (Invitrogen). The probes for Trpm5 (1–
4383, GenBank NM_020277) and Gb3 (998–1798, GenBank

NM_013530) were produced using the cDNA clone in

pGEM-T easy vector (Promega Co.). The probes for Mash1,

T1r3, and gustducin were prepared as previously described

(Kusakabe et al. 2002; Kim et al. 2003). The cRNA probe for

single-colored in situ hybridization was prepared using

digoxigenin (DIG) RNA Labeling Kit (Roche Diagnostics).

For double-colored in situ hybridization, Fluorescein RNA
Labeling Kit (Roche Diagnostics) was also used.

In situ hybridization

In situ hybridization experiments were performed as described

previously (Kimetal.2003).TissuesofCV,FL,andFFpapillae

from 8-week-old male mice were frozen in Optimal Cutting

Temperature (OCT) compound (Sakura Finetech USA), sec-

tioned into 5-lm slices, and attached to aminopropyl silane

(APS)-coated glass slides. All hybridization reactions were per-
formed at 65 �C in hybridization buffer (50% formamide, 5·
standard saline-citrate solution (SSC), 5·Denhardt’s solution,

500 lg/mL salmon testis DNA, 250 lg/mL tRNA, and 1 mM

dithiothreitol), and the slides were subsequently washed with

0.2· SSC at 65 �C. For single-colored in situ hybridization, sig-

nals were detected using alkaline phosphate (AP)-conjugated

anti-DIG antibody (Roche Diagnostics; 1:400) in combina-

tion with 5-bromo-4-chloro-indolyl-phosphate p-toluidine salt
(BCIP) and nitroblue tetrazolium chloride (NBT) (Roche Di-

agnostics). For double-colored in situ hybridization, signals

weredetectedusingAP-conjugatedanti-DIGantibodyandper-

oxidase (POD)-conjugated anti-fluorescein antibody (Roche

Diagnostics; 1:400) in combination with Streptavidin–Alexa

488 (Molecular Probes)–Tyramide-Biotin (PerkinElmer Life

and Analytical Sciences) complex and HNPP/FastRed AP

substrate (Roche Diagnostics), respectively. In situ hybridiza-
tion with sense probes was performed as a negative control.

No specific signal was found with any of the sense probes.

Antibodies

Rabbit polyclonal anti-Lrmp/Jaw1 antibody has been raised

against peptides (TRKPSLSE, corresponding to amino acid

residues 439–446 GenBank NP_032537) conjugated with

keyhole limpet hemocyanin (KLH). Mouse monoclonal

anti-IP3R3 antibody (BD Biosciences) and rabbit polyclonal

anti-FLAG antibody (Sigma) were purchased. Rhodamine-
conjugated anti-rabbit immunoglobulin (IgG) and fluorescein

isothiocyanate (FITC)–conjugated anti-mouse IgG poly-

clonal antibodies (Santa Cruz Biotechnologies Inc.) were used
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as the secondary antibodies for immunohistochemistry and

immunocytochemistry.

Heterologous expression

The coding region of Lrmp/Jaw1 and its deletion construct

(GenBank NM_008511; D961–1389) were cloned into the

pCMV-Tag 2A mammalian expression vector (Stratagene).
The expression plasmid of rat IP3R3 (Blondel et al. 1993) was

kindly provided by Dr Graeme I. Bell. These plasmids were

transfected into COS7 cells using LipofectAmine 2000 re-

agent (Invitrogen). After transfection, cells were cultured

in Dulbecco’s modified Eagle’s medium medium containing

10% fetal bovine serum (Sigma) at 37 �C for 24–48 h.

Immunohistochemistry

Five-micron-thick fresh frozen sections from CV on glass
slides were fixed in a 4% paraformaldehyde–phosphate-buff-

ered saline (PBS) for 15 min at room temperature and

washed 3 times in PBS. The sections were treated with block-

ing solution (PBS containing 5% nonimmune horse serum

and 0.05% Triton X-100) for 1 h and then incubated over-

night at 4 �C with anti-Lrmp/Jaw1 antibody (1:5000 in

blocking solution) and anti-IP3R3 antibody (1:200 in block-

ing solution). Then, rhodamine-conjugated anti-rabbit IgG
and FITC-conjugated anti-mouse IgG polyclonal antibodies

(each 1:500 in blocking solution) were applied for 30 min,

and the slides were observed using a fluorescence microscope

(Leica Microsystems). The images from each staining were

merged using Photoshop (Adobe Systems Inc.).

Immunocytochemistry

Transfected COS7 cells cultured on chamber slides (Asahi

Techno Glass) were fixed in cold methanol for 10 min at

4 �C. After incubation with anti-IP3R3 antibody (1:200 in
blocking solution) and rabbit polyclonal anti-FLAG anti-

body (1:200 in blocking solution), the secondary antibodies

described above were applied for 30 min. The slides were ob-

served by confocal fluorescence microscopy (Olympus Co.).

The images from each staining were merged using Photoshop.

Immunoprecipitation

Immunoprecipitation was performed as described (Harlow

and Lane 1988). At 48 h posttransfection, COS7 cells were
harvested and lysed in lysis buffer (1% Nonidet P-40, 150

mM NaCl, 50 mM Tris–HCl [pH 7.5], 1 mM ethylenediami-

netetraacetic acid, 1 mM phenylmethylsulfonyl fluoride, 10

IU/mL aprotinin, and 10 lg/mL leupeptin) with a micro-ho-

mogenizer. The homogenate was centrifuged at 15 000 · g for

10 min. The supernatant including soluble and microsomal

fraction was incubated with 5 lL of Protein G-Sepharose

fast flow beads (Sigma) for 2 h at 4 �C to eliminate nonspe-
cific binding to the beads. The supernatant was then added to

mouse monoclonal anti-FLAG M2 antibody affinity gel

(Sigma) for 4 h at 4 �C. The affinity gel was washed 5 times

with lysis buffer and boiled for 10 min with sodium dodecyl

sulfate (SDS) sample buffer (10% glycerol, 6% 2-mercapto-

ethanol, 50 mM Tris–HCl [pH 6.8], and 2% SDS). The

proteins prepared from the affinity gels were subjected to

SDS–polyacrylamide gel electrophoresis with a 3–10% gra-
dient gel (ATTO) and transferred onto polyvinylidene di-

fluoride membranes by semidry blotting. After blocking

with Block Ace (Dainippon Sumitomo Pharma Co.) for 1

h at room temperature, the membranes were incubated with

the rabbit polyclonal anti-FLAG antibody or anti-IP3R3 an-

tibody (1:1000 in PBS containing 0.05% Triton X-100) for 16

h at 4 �C, followed by POD-conjugated anti-mouse or rabbit

IgG (GE Healthcare UK Ltd). Immunoreactive bands were
visualized with an enhanced chemiluminescence detection

system (GE Healthcare UK Ltd).

Results

Lrmp/Jaw1 was expressed in a subset of taste receptor cells

To identify genes related to taste signal transduction, we iso-

lated and sequenced 600 clones of subtracted cDNA library

derived from mouse CV papillae and tongue epithelium. Ac-

cording to sequence annotations, approximately 50 genes

predicted to code membrane proteins or signal transduc-

tion–related proteins were selected for subsequent in situ hy-

bridization analyses using mouse CV sections. As a result of

this process, we found that Lrmp/Jaw1 was distinctly ex-
pressed in a specific subset of taste cells (Figure 1). To inves-

tigate the expression patterns in detail, we performed in situ

hybridization using FL and FF in addition to CV papillae

sections. Robust signals were observed in a subset of taste

cells of all taste buds in each papilla but not in surrounding

tongue epithelium (Figure 1).

Lrmp/Jaw1 was expressed in sweet/umami and bitter taste

receptor cells

A taste bud consists of 50–100 taste cells of various functions

and developmental stages (Beidler and Smallman 1965;

Chandrashekar et al. 2006); thus, the expression patterns

could predict the role of a gene in taste tissues. To understand

the role of Lrmp/Jaw1, coexpression patterns with other

Figure 1 Cellular distribution for mRNA of Lrmp/Jaw1 gene in taste buds.
Mouse CV, FL, and FF papillae slices (5 lm) were used for in situ
hybridization. The broken lines indicate the outline of each taste bud. The
expressions of the genes were visualized by NBT–BCIP. The scale bars
indicate 50 lm.
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taste-related genes were examined by double-colored in situ

hybridization using CV papillae sections (Figure 2a). Trpm5

and Gb3 were used as a marker for both sweet/umami and

bitter taste–responsive cells. Mash1, a basic helix-loop-he-

lix–type transcription factor, was used as a marker for the
taste cells that express neural cell adhesion molecule, which

do not overlap Trpm5-expressing taste cells (Miura et al.

2005). A component of sweet and umami taste receptor,

T1r3, and the taste bud–specific G protein, gustducin, were

used as markers for sweet/umami and bitter taste–responsive

cells, respectively. Double-colored in situ hybridization

showed that Trpm5 was mostly coexpressed with Lrmp/
Jaw1 (92.3–94.5%). A similar relationship of expression pat-

terns was observed between Lrmp/Jaw1 and Gb3 (86.5–

92.8%). In contrast, Mash1 was rarely coexpressed with

Lrmp/Jaw1 (3.4–3.5%). T1r3 or gustducin-expressing cells

were mostly included in a subset of Lrmp/Jaw1-expressing

cells (Table 1). The coexpression pattern between Lrmp/

Jaw1 and Trpm5 was also observed in FF papillae sections

(Figure 2b). These results suggest that Lrmp/Jaw1 was selec-
tively expressed in sweet/umami and bitter taste receptor

cells.

Lrmp/Jaw1 was coexpressed with IP3R3

It has been reported that Lrmp/Jaw1 has a well-conserved

a-helical coiled-coil domain that consists of 140 amino acids

in the middle third of the protein and an ER membrane an-

chor domain in the carboxyl-terminal of the protein (Behrens

et al. 1994, 1996). The coiled-coil domain of Lrmp/Jaw1
shared 44% identity with the domain of IRAG, which asso-

ciates with IP3R1. Because IP3R3 was coexpressed with

Trpm5 in taste buds (Pérez et al. 2002), we predicted that

Lrmp/Jaw1 may colocalize and interact with IP3R3. To inves-

tigate the coexpression patterns of Lrmp/Jaw1 and IP3R3 at

the translational level, we performed double-colored immuno-

histochemistry using CV papillae sections. As expected, the

results showed that almost all Lrmp/Jaw1-expressing taste
cells also expressed IP3R3 in CV papillae (Figure 3).

Lrmp/Jaw1 associated with IP3R3 in COS7 heterologous

expression system

To investigate the protein–protein interaction between Lrmp/

Jaw1 and IP3R3, we utilized the COS7 heterologous expres-

sion system and the FLAG epitope–tagged Lrmp/Jaw1 con-

struct with/without a coiled-coil domain (FLAG-Lrmp/Jaw1

and FLAG-Lrmp/Jaw1D, Figure 4a). Immunocytochemistry
showed that both constructs of Lrmp/Jaw1 were similarly co-

localized with IP3R3 on the ER membrane of transfected

COS7 cells, whereas immunoprecipitation experiments

showed that FLAG-Lrmp/Jaw1 and FLAG-Lrmp/Jaw1D
had different molecular properties (Figure 4b,c). We found

Figure 2 Coexpression patterns of Lrmp/Jaw1 and known taste-related
genes. (a) Comparison of the mRNA expression pattern of Lrmp/Jaw1
(green) with Trpm5 (red, upper) and Mash1 (red, lower) in CV papillae by
double-colored in situ hybridization. (b) Comparison of the mRNA
expression pattern of Lrmp/Jaw1 (green) with Trpm5 (red) in FF papillae by
double-colored in situ hybridization. After merging, colocalization is
indicated in yellow. The coexpression ratios in CV papillae are summarized
in Table 1. The scale bars indicate 50 lm.

Table 1 The coexpression ratio of Lrmp/Jaw1 and taste-related genes in CV papillae

Trpm5 Gb3 Mash1 T1r3 Gustducin

(Lrmp/Jaw1)/genea 92.3% (709/768) 86.5% (532/615) 3.5% (11/316) 98.3% (347/353) 85.7% (276/322)

Gene/(Lrmp/Jaw1)b 94.5% (709/750) 92.8% (532/573) 3.4% (11/328) 53.1% (347/653) 58.0% (276/476)

Numbers of counted cells were given in parentheses.
aThe coexpression ratio of the cells expressing both Lrmp/Jaw1 and a taste-related gene per the cells expressing a taste-related gene.
bThe coexpression ratio of the cells expressing both Lrmp/Jaw1 and a taste-related gene per the cells expressing Lrmp/Jaw1.
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that IP3R3 was co-immunoprecipitated with FLAG-Lrmp/

Jaw1 but not with FLAG-Lrmp/Jaw1D in the lysate of trans-

fected COS7 cells. Therefore, the deletion of the coiled-coil

domain did not affect subcellular localization of Lrmp/

Jaw1 and IP3R3 but altered its interaction with IP3R3. These
results suggest that Lrmp/Jaw1 is associated with IP3R3 via

its coiled-coil domain in the COS7 heterologous expression

system.

Discussion

In this paper, we demonstrated that Lrmp/Jaw1 was selec-

tively expressed in sweet, umami, and bitter taste–responsive

cells. Lrmp/Jaw1 was originally identified in lymphoid B and

T cell lineages and was assumed to have a role in the devel-

opment of lymphoid cells (Behrens et al. 1994, 1996). Hoon
and Ryba (1997) also reported that Lrmp/Jaw1 was identi-

fied in rat CV cDNA library by analysis of partial sequences

of clones. These reports, however, did not provide any indi-

cations as to the expression patterns and roles of Lrmp/Jaw1

in taste tissues; therefore, we found the expression of Lrmp/

Jaw1 in taste cells for the first time. Coexpression of Lrmp/

Jaw1 with the molecules related with IP3-Ca2+ signal cascade

such as Gb3, Trpm5, and IP3R3 suggests that Lrmp/Jaw1 is
component of the taste mechanism in sweet/umami and bit-

ter receptor cells.

Furthermore, we showed that Lrmp/Jaw1 may engage in

direct protein–protein interaction with IP3R3. A number

of IP3Rs-binding proteins are known to regulate the IP3-

Ca2+ signal cascade (Choe and Ehrlich 2006), and their dif-

ferential distribution is thought to produce various signal

transduction in various organs, although little is known
about such regulators in taste cells. Our results raise the pos-

sibility that Lrmp/Jaw1 regulates the IP3-Ca2+ signal cascade

Figure 3 Coexpression patterns of Lrmp/Jaw1 and IP3R3 in CV papillae.
Comparison of the protein expression pattern of Lrmp/Jaw1 (red) and IP3R3
(green) by double-colored immunohistochemistry. After merging, colocali-
zation is indicated in yellow. The scale bars indicate 50 lm.

Figure 4 Association between Lrmp/Jaw1 and IP3R3 in COS7 heterologous expression system. (a) Schematic diagrams of FLAG epitope–tagged Lrmp/Jaw1
constructs with/without a coiled-coil domain (FLAG-Lrmp/Jaw1 and FLAG-Lrmp/Jaw1D). TM, transmembrane domain, numbers indicate each amino acid
residue. (b) Comparison of the subcellular localizations of IP3R3 (green, upper panel; red, lower panel) and FLAG-Lrmp/Jaw1 (red, upper panel) or FLAG-Lrmp/
Jaw1D (green, lower panel) by double-colored immunocytochemistry. After merging, colocalization is indicated in yellow. The scale bars indicate 10 lm. (c)
Co-immunoprecipitated proteins with anti-FLAG antibody were detected by anti-IP3R3 antibody (upper) or anti-FLAG antibody (lower). Arrows indicate the
predicted molecular weight (65 kDa for FLAG-Lrmp/Jaw1, 50 kDa for FLAG-Lrmp/Jaw1D). The genes transfected in COS7 is indicated by symbols (+ or �).

Expression of Lrmp/Jaw1 175



not only in sweet, umami, and bitter taste–responsive cells

but also in other cells such as related lymphoid systems.

The possibility remains that Lrmp/Jaw1 performs an alter-

native role in taste tissues. Because Lrmp/Jaw1 expression

was abundant in mature B, pre-B, and pre-T cell lines,
whereas it was low or undetectable in mature T cell lines,

Behrens et al. (1994) predicted that Lrmp/Jaw1 could have

a role in lymphoid development, such as developmentally

regulated intracellular trafficking. It is considered that

Lrmp/Jaw1 participates in the trafficking systems in taste

cells. However, this is difficult to justify, at least for

IP3R3 trafficking, because deletion of the potential binding

domain (coiled-coil domain of Lrmp/Jaw1) did not alter
IP3R3 expression on the ER membrane in the COS7 heter-

ologous expression system. Further investigation using mice

lacking Lrmp/Jaw1 would provide insights regarding the role

of Lrmp/Jaw1–IP3R3 interaction in taste tissue in vivo.

It has also been reported that several single nucleotide

polymorphisms (SNPs) were detected in the Lrmp/Jaw1 se-

quence and were possibly associated with the type I diabetes

phenotype and the pulmonary adenoma susceptibility phe-
notype in mice (Grimm et al. 2003; Wang et al. 2003). Thus,

future investigation of the relationships between these SNPs

and phenotypes may help us to understand the role of Lrmp/

Jaw1 in taste tissue.

In summary, the present study showed that Lrmp/Jaw1

was selectively expressed in sweet, bitter, and umami

taste–responsive cells. We also showed that Lrmp/Jaw1

may engage in direct protein–protein interaction with
IP3R3. These findings suggest that Lrmp/Jaw1 participates

in taste signal transduction by regulating IP3R3. Although

further experiments are needed, we consider that Lrmp/

Jaw1 has an important role in sweet, bitter, and umami

taste signal transduction by regulating the IP3-Ca2+ signal

cascade.
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