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Uterine Natural Killer Cells
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Natural killer (NK) cells are members of a rapidly expanding family of innate lymphoid

cells (ILCs). While most previously studied NK cells were derived from the mouse spleen

and circulate in the blood, recently others and we found tissue-resident NK (trNK) cells in

many tissues that resemble group 1 ILCs (ILC1s). During pregnancy, NK cells are themost

abundant lymphocytes in the uterus at the maternal-fetal interface and are involved in

placental vascular remodeling. Prior studies suggested that these uterine NK (uNK) cells

are mostly derived from circulating NK cells. However, the murine virgin uterus contains

mostly trNK cells and it has been challenging to determine their contribution to uNK

cells in pregnancy as well as other potential function(s) of uNK cells due to the dynamic

microenvironment in the pregnant uterus. This review focuses on the origins and functions

of the heterogeneous populations of uNK cells during the course of murine pregnancy.

Keywords: uterine natural killer cells, pregnancy, tissue-resident natural killer cells, placenta, maternal-fetal

interface, uterine innate lymphoid cells, conventional natural killer cells

INTRODUCTION

Innate lymphoid cells (ILCs) constitute an expanding heterogeneous family of cells that are found
resident in tissues (1–4). Unlike T and B lymphocytes, ILCs do not require RAG-dependent
somatic rearrangement for expression of their receptors. ILCs can respond early to eliminate
virally infected and transformed cells and provide epithelial barrier immunity. ILCs form complex
interactions with tissue-specific cells where they integrate signals and respond appropriately to
maintain tissue homeostasis and repair, expanding their functions beyond host immunity.

A recent re-classification categorized ILCs into five subsets based on transcription factors and
cytokine production: ILC1s, ILC2s, ILC3s, lymphoid tissue-inducer (LTi) cells and conventional
NK (cNK) cells (5, 6). TBET+ ILC1s produce type 1 cytokines IFN-γ, TNF-α and GM-CSF;
GATA3+ ILC2s produce type 2 cytokines IL-5 and IL-13; and RORγT+ ILC3s cells produce IL-17
and IL-22. LTi cells are also RORγT+ and are important in formation of secondary lymphoid
structures but do not produce IL-17 or IL-22. Similar to ILC1s, cNK cells produce IFN-γ but possess
a much higher cytotoxic potential, differentiating them from the ILC1s. Because of their tissue
occupancy, ILCs are privy to local dysregulation and pathogenic insult and collectively appear to
have a diverse toolbox to not only combat infection but also restore tissue homeostasis by initiating
tissue repair mechanisms (7–10). Hence, at the tissue site, the multidimensional biology of ILCs
allows for a prompt response to meet the needs of the altered tissue.

ILCs are resident in many tissues throughout the body (1). Cells resembling cNK
cells and ILC1s are enriched in several organs (11–15). We identified two populations
of murine NK cells, tissue-resident (trNK) and circulating cNK cells that occupy
non-lymphoid tissues such as the liver, skin, and virgin uterus (13, 14). The virgin uterus
contains an abundant number of trNK cells and a few cNK cells, often described as
negligible. The highly specialized uterine tissue, with cyclic exposure to sex hormones
and invading extravillous trophoblast during pregnancy, contains trNK cells, cNK
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cells, and ILC1s, here referred to as uterine NK (uNK) cells to
include all subsets (15, 16). In this review we provide an overview
of uNK cells, with a focus on mouse.

Conventional NK Cells
Most of our knowledge about the phenotype, function and
development of murine NK cells comes from studying NK
cells found circulating in the blood and spleen, here termed
conventional NK (cNK) cells. The cNK cell population
constitutes 2–3% of the lymphocytes in the blood and spleen
where they have been extensively studied. Functionally, they
are set apart from other ILCs because of their potent cytotoxic
capability to potentially kill on contact. ILC developmental
studies determined that all ILC lineages are derived from early
common lymphoid progenitors (CLPs) that can give rise to
NK cells, ILC1s, ILC2s, ILC3s, and LTi cells (17–19). The
common progenitor to all helper-like innate lymphoid cell
lineages (CHILP) gives rise to PLZF+ ILC precursors that
develop into ILC1s, ILC2s, ILC3s, and LTi cells separating them
from the NFIL3+ NK precursor that give rise to cNK cells earlier
in the developmental pathway (20). Therefore, cNK cells are
developmentally distinct members of the ILCs.

Tissue-Resident NK Cells
Circulating cNK cells are widely distributed throughout the body
but many tissues, have resident NK cells, termed tissue-resident
NK (trNK) cells that are present in the liver, skin, kidney and
virgin uterus (13, 14, 21). Although cNK and trNK cells are
both absent in IL15Rα-deficient mice demonstrating they both
depend on IL-15 signaling in early development, there are several
characteristics that distinguish cNK and trNK cells. First, surgical
joining of two congenically marked animals in parabiosis studies
determined that the cNK cells traffic freely in the circulationwhile
the trNK cells remain in the tissue (13, 14, 16). Second, detailed
phenotypic and RNA-seq analyses revealed that cNK and trNK
cells differentially express receptors and transcription factors
that can be used for their identification. The cNK cells express
the integrin DX5 but lack the expression of another integrin,
CD49a, and are defined as CD3−NK1.1+CD49a−DX5+. In
a mutually exclusive manner for DX5 and CD49a staining,
trNK cells lack expression of DX5 but express CD49a and are
defined as CD3−NK1.1+CD49a+DX5−. All cNK cells require the
transcription factors Nfil3 and Eomesodermin for development
while trNK cells do not. In contrast, Tbet, which has a less
profound effect on cNK cell development, is required for the
development of trNK cells in liver and skin. Interestingly, uNK
cells in the virgin uterus are predominantly trNK cells and
develop independent of both Nfil3 and Tbet (13), strongly
suggesting that they form a lineage distinct from cNK cells and
trNK cells in liver or skin. Taken together, these data indicate that
cNK and trNK cells represent different lineages of NK cells rather
than different differentiation states.

ILC1s
The trNK cells and ILC1s share features but have important
differences making it difficult to use the terms interchangeable
to define a population. Both trNK cells and ILC1s are resident

populations in tissues (1, 13, 14) and both express receptors that
have been used to define NK cells such as NK1.1 and NKp46.
In the case of the trNK cells in the liver, developmental studies
indicate that they use the ILC1 precursor pathway distinguishing
them from the cNK developmental pathway (20), making the
term ILC1 an appropriate term to define the trNK cells in
the liver. However, developmental studies are lacking for ILCs
in uterine tissue and trNK cells in the murine virgin uterus
develop independent of Tbet, which is required for all ILC1s and
liver trNK cells. Therefore, caution needs to be taken when a
population is solely defined phenotypically as marker expression
may vary among different tissue microenvironments.

UTERINE ADAPTATION THROUGHOUT
GESTATION

Uterine adaptation to pregnancy supports fetal growth by
the formation of a maternal-fetal interface. Despite structural
placental differences between mouse (labyrinth) and human
(villous), the uterine tissue response to pregnancy is very
similar between the two hemochorial placental species (22),
with the fetal chorion directly bathing in maternal blood. These
pregnancy-induced responses include uterine receptivity to
blastocyst implantation, endometrial decidualization, placental
vascular remodeling, and maternal immune cell composition
at the maternal-fetal interface. The gestational timeline is
well-established during murine pregnancy and continues to
be a valuable model to study pregnancy-related physiology
and pathology.

The mouse uterus undergoes dynamic changes that
accompany the developing conceptus from implantation to
the main event, parturition (Figure 1B). In C57BL/6J mice,
the gestational length is 19.5 days (gd19.5) while in humans
it is 40 weeks. When embarking on mouse pregnancy studies,
investigators must be aware that specific animal facility
characteristics such as food, water, bedding, noise pollution and
animal husbandry can all affect gestational length. There are also
mouse strain-dependent variations in gestational length so it
is important to breed controls of the same genetic background
when assessing transgenic models for reproductive fitness (23).
One of the most accurate methods for estimating gestational
length is a restricted mating period (24). This is recommended
and most often done with an overnight breeding strategy in
which an estrus-stage dam is placed with a stud male and
checked for the presence of a copulation plug before 8:00 am the
next day. This method is effective because mice are nocturnal
animals and fertilization typically occurs around midnight, the
halfway point of a 12 h dark/light cycle (25). If a copulation
plug is visualized, the mouse is identified as at gestational day
(gd) 0.5, which is important to time accurately because major
changes rapidly occur during early stages of mouse pregnancy.
For preterm birth studies, a more precise gestational length
determination is required and a 2–4 h mating period strategy is
critical to follow (24).

The copulation plug, an indication that mating occurred is
most often followed by pregnancy, but not always. Following the
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FIGURE 1 | Pregnancy events and uNK cell kinetics during murine pregnancy. (A) Schematic diagram of number (y-axis) of trNK and cNK cells during pregnancy (gd

on x-axis). During early pregnancy the trNK cells dominate the virgin and decidualized endometrium. By mid-gestation, cNK cells are increased in number and both

trNK and cNK cells decline during late pregnancy. (B) Schematic diagram of key events during pregnancy at indicated gd’s. Uterine adaptation to pregnancy begins

shortly after the visualization of a copulation plug and before embryo implantation, identified as window of uterine receptivity. During this time the uterine tissue is

prepared for embryo implantation. Embryo implantation triggers the process of decidualization causing extensive proliferation and vascular modification initiating the

process of placentation. A fully developed placenta marks mid-gestation.

next couple of days, the uterus needs to experience a necessary
estrogen surge at gd 3.5 in order to activate the window of
implantation which puts the luminal epithelium in a receptive
state to bind the blastocyst at gd4.5 (26). In mice blastocyst
implantation initiates the endometrium transformation process
called decidualization and the vascular permeability and immune
cell accumulation that are associated with the process.

Decidualization begins at gd6.5 and is characterized by
extensive cell proliferation and remodeling. Fibroblast cells
proliferate and differentiate into decidual cells that assume an
epithelial cell-like phenotype. Extracellular matrix remodeling of
the endometrial stroma and angiogenesis are initiated during
decidualization and continue until the placenta is fully formed.
Additionally there is a marked increase in immune cells;
specifically uNK cells, beginning with the onset of decidualization
(16, 27). The embryo becomes completely surrounded by
the decidualized endometrium at which time the primitive
placenta, called the choriovitelline placenta, is the main source
of nutrition for the developing embryo between gd 6.5–10.5
(28, 29). In human pregnancy, decidualization is triggered
during the menstrual cycle, independent of implantation (30).
Decidualization is essential for a successful pregnancy to ensue as
insufficiency in decidualization can cause infertility and recurrent
spontaneous abortion.

The murine definitive placenta, chorioallantoic placenta,
is considered fully developed and assumes nourishment of
the developing embryo at gd10.5–11.5 when four distinct
compartments can be histologically distinguished (Figure 2).
Farthest away from the fetus is the mesometrial lymphoid
aggregate of pregnancy (MLAp) embedded in the myometrium
of the uterine wall and specific to murine pregnancy. Underneath
the MLAp is the decidua basalis, which contains immune cells,
invading trophoblasts and the remodeled vasculature, and which

in mouse does not extend into the MLAp. The junctional zone
consists of spongio-trophoblast (SpT) and glycogen trophoblast
cells (GlyT), and a layer of parietal trophoblast giant cells (P-
TGCs) that provides a separation between the maternal decidua
basalis and the labyrinth. Closest to the fetus is the labyrinth,
the innermost compartment of the placenta. The interhemal
membrane unit, also known as the exchange barrier, in the
labyrinth is made up of three trophoblast cell types and an
endothelial cell layer of the fetal vasculature (Figure 2 inset).
Sinusoidal trophoblast giant cells line the maternal blood sinus,
which is separated from the fetal blood capillary by two barrier
layers, syncytiotrophoblast I and II. Moreover, the invasive
extravillous trophoblast cells are intimate with the maternal
immune cells and both are in the same space, the decidua basalis.
Together they provide the structure of the remodeled vasculature.

The extent of trophoblast invasion differs between mouse
and human, with more extensive invasion into decidua stroma,
arteries and myometrium in the latter (31). In human, pregnancy
complications linked to inadequate placental perfusion such as
preeclampsia and intrauterine growth restriction (IUGR) are
associated with inefficient extravillous trophoblast invasion (32).
Hence, uterine adaptations to pregnancy establish and maintain
the maternal-fetal interface.

MATERNAL-FETAL INTERFACE

The development of the maternal-fetal interface is critical for
the successful outcome of pregnancy. The maternal component
of the interface is the decidua basalis, which contains the
maternal immune cells and the fetal component is the placenta
labyrinth, which contains fetal-derived invading trophoblast cells
(Figure 2). The maternal-fetal interface is common ground for
the two allogeneic entities to communicate. At the center are
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FIGURE 2 | Schematic of cellular structures of mouse definitive chorioallantoic placenta. Schematic diagram of placenta, oriented with maternal tissues above fetal

tissues, as indicated. The inset shows a closer view of the interhemal membrane unit in the placental labyrinth. The murine chorioallantoic placenta, at gd11.5, is fully

developed. The maternal contributions to the chorioallantoic placenta are the MLAp and the decidua basalis, both regions dominated by uNK cells. The fetal-derived

invading trophoblasts can be found in the decidua basalis and with the uNK cells they aid in spiral artery remodeling during placentation. The spongiotrophoblast layer

and parietal trophoblast giant cells (P-TGCs) layer make up the junctional zone that separates the placenta labyrinth from the decidua basalis. The labyrinth contains a

highly organized cellular barrier called an interhemal membrane unit that separates the maternal blood from the fetal blood. The maternal blood sinus is lined with

sinusoidal trophoblast giant cells and separated from the fetal blood compartment by two layers of syncytiotrophoblast cells (SynT-I and SynT-II). The fetal endothelial

cells line the fetal capillaries.

the uNK cells that have been implicated in remodeling of the
placental vasculature, regulating invading trophoblast cells, and
providing immunity.

NK HETEROGENEITY IN THE UTERUS

Granulated metrial gland (GMG) cells were first visualized and
characterized by light microscopy over a century ago and more
recently by electron microscopy. Identified by morphologists as
a prominent cell population containing cytoplasmic granules
and occupying the metrial gland during pregnancy, the metrial
gland is induced during murine pregnancy and is embedded
between the muscle layers of the uterus at the implantation
site (33). Since the metrial gland was not of epithelial cells, did
not resemble glands histologically, and did not have endocrine
or exocrine functions, Croy proposed to rename the structure
(34). As a result, two names have been used interchangeably
in the literature to replace the term granulated metrial gland:
mesometrial triangle and MLAp (34–36). In this review we will
refer to this structure as MLAp. Concurrently with the name
change, studies revealed that GMG cells belonged to the NK cell
lineage and have since been referred to as uterine NK (uNK) cells,
as well (37).

During murine pregnancy, uNK cells make up the vast
majority of the maternal leukocytes, constituting 70% of the
lymphocyte fraction (38–40). Histological analysis revealed uNK
cells to occupy both the MLAp and the decidua basalis of the
implantation site in early pregnancy, with a decline in both
locations at parturition. Heterogeneity among the uNK cells was
identified by differences in size and cytoplasmic granule content,
which correlated with the maturation status, with the smaller
uNK cells mostly residing in the MLAp. Classically identified
by histological approaches, uNK cells were detected by the
periodic acid-Schiff (PAS) reaction with or without co-reactivity
by Dolichos biflorus agglutinin (DBA) lectin staining, with DBA

reactivity specifically found in the murine pregnant uterus (41).
The DBA+ cells are often referred to as decidual NK cells in the
literature. Flow cytometry helped to further characterize uNK
cells, which expressed CD45 and NK cell-specific receptors and
lacked expression of T cell, B cell and macrophage markers.
Analysis of Rag2−/−γ c−/− mutant mice, deficient in cNK cells,
also indicated absence of uNK cells. When reconstituted with
wild-type bone marrow, they showed uNK cell development in
the uterus, consistent with bone marrow derivation of uNK cells
(42, 43). Taken together, the morphologic, phenotypic and bone
marrow reconstitution experiments supported the assignment of
uNK cells to the NK cell lineage.

Recently, we used a novel NK reporter mouse to visualize the
emergence of uNK cells during pregnancy (Figure 3). Since the
Ncr1 gene encodes NKp46, a receptor selectively expressed on all
NK cells, Ncr1iCre mice restrict improved Cre (iCre) expression
to NK cells (44). RosamT/mG mice (45) contain a construct with
membrane-bound Tomato constitutively expressed in all tissues.
When Cre is expressed, the Tomato cassette and a stop codon
are excised, allowing for expression of membrane-bound GFP
and fate mapping of essentially all NKp46+ NK cells in Ncr1iCre

x RosamT/mG mice. We confirmed the GFP+ cells in the uteri
of these reporter mice were indeed NK cells based on flow
cytometry phenotypic analyses with NK cell-specific markers
(16). An extensive time course revealed that at gd6.5 the decidua
basalis contained proliferating GFP+ uNK cells, prior to the
development of MLAp, challenging the proposed idea that the
MLAp was a source of immature uNK cells (46). At gd 10.5
(mid-gestation), we found a prominent MLAp structure and a
fully developed decidua basalis, both of which contained GFP+

uNK cells, unlike the placenta labyrinth (16). Shortly after mid-
gestation, the GFP+ uNK cells began to decline in number to
essentially non-existent at the implantation site in a laboring
dam. Remarkably, at 2.5 days post-partum, GFP+ uNK cells start
to resemble those in the non-pregnant uterus (Figure 3). Hence,

Frontiers in Immunology | www.frontiersin.org 4 May 2019 | Volume 10 | Article 960

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Sojka et al. Uterine Natural Killer Cells

FIGURE 3 | The accumulation and decline of GFP+ uNK cells in the Ncr1iCre X RosamT/mG reporter mice during pregnancy. The GFP+ uNK cells accumulate in the

decidualized endometrium at gd6.5 and are found segregated to the myometrium and decidua basalis by gd11.5. At gd18.5, (laboring dam) the placenta has

remnants of the MLAp and decidua basalis and is essentially devoid of uNK cells. Remarkably by 2.5 days post-partum, the structure of the uterus is remodeled and

contains uNK cells. Uterine sections were derived from non-pregnant mouse, different gd’s, and 2.5 days post-partum, as indicated.

the Ncr1iCre x RosamT/mG mice allow detection of GFP+ uNK
cells with greater sensitivity, particularly with easily detectable
GFP+ uNK cells in the MLAp (16) that can be further analyzed
by histological analysis and by flow cytometry.

ORIGIN OF UNK CELLS

The origin of uNK cells during pregnancy has been of long
standing interest. Whether mouse uNK cells in the pregnant
uterus develop in situ from progenitor cells in the virgin uterus
or home there from the periphery had been addressed using
several approaches that include uterine segment transplantation,
adoptive transfers and parabiosis. Here we will summarize these
studies before describing more recent studies that provide a
new hypothesis.

Previously, uNK cell origin was studied by uterine segment
transplantation (47, 48). Wild-type (WT) uterine segments from
virgin mice were engrafted into the uterine horns of either NK-
deficient (Rag2−/− γ c−/−) or NK-sufficient (WT) controls. After
the uterine segments established end-to-end anastomosis, the
mice were mated and analyzed histologically on gd10. Uterine
segments transplanted into WT hosts contained uNK cells but
when transplanted into NK-deficient hosts, no uNK cells were
found despite having a decidualized uterus originating from WT
(NK-sufficient) donors. These data demonstrated that peripheral
NK cells homed to the uterus and that the uterus did not contain
uNK cells that expanded during pregnancy, with the caveat of
possible surgical effects on the host uterine tissue. Regardless,
in another approach, adoptive transfer of bone marrow, thymus,
lymph node, and spleen or fetal liver cells from SCID mice into
alymphoid recipients resulted in detection of donor-derived uNK
cells in the pregnant uterus (43), providing further support for
NK or progenitor cell homing. This homing to the uterus was
independent of chemokine receptors CCR-2 and CCR-5 (49) but
specific chemokine receptors have not been identified. However,
a recent study disputed these findings as transferred splenic NK
cells from virgin mice did not home to the pregnant uterus and
already present uNK cells appeared to expand (50).

Previously, we reported that murine virgin uteri contain few
circulating CD49a− DX5+ cNK cells and an abundant CD49a+

DX5− trNK cell population (13). A subset of the CD49a+

DX5− trNK cell population in the uterus was found to lack
the expression of Eomesodermin and identified as ILC1, with

trNK cells still dominating the uterus during early pregnancy
(15, 16, 27, 51, 52). The accumulation of uNK cells during
pregnancy could be due to local proliferation of trNK cells and
ILC1s, migration of cNK cells or a combination of both. In the
decidua basalis during early pregnancy (gd6.5), trNK cells but
not cNK cells were highly proliferative as marked by increased
BrdU incorporation and high Ki67 expression (16, 27), with
undetectable ILC1s in these studies. Parabiosis experiments with
experimentally induced decidualization confirmed that there is
minimal contribution from migrating cNK cells to the local
proliferating pool of trNK cells in a model of early pregnancy
(16). Taken together, these findings indicate that accumulation of
uNK cells in early pregnancy originates from local proliferating
trNK cells.

Our data do not exclude the contribution of cNK cells
migrating from the periphery. Although we did not detect any
indication of their proliferation, cNK cells increased in number.
As previously reported, migration into the pregnant uterus could
be one mechanism to account for the increase in cell number
in the absence of proliferation. Taken together, we propose a
new hypothesis to account for the cNK cell and trNK cell
contributions to the pool of uNK cells during murine pregnancy.

We proposed a two-wave hypothesis for uNK cell
accumulation in the pregnant uterus that is driven by uterine
tissue remodeling events during pregnancy and takes into
account uNK cell heterogeneity (Figure 1A) (16, 27). The first
wave is initiated at the onset of the decidualization process where
our parabiosis experiments demonstrated the local proliferation
of trNK cells with minimal contribution from the circulating
cNK cells (16). The second wave involves the recruitment of
cNK cells during the placentation process that includes vascular
remodeling. Mice that lack cNK cells but retain trNK cells,
such as the Nfil3−/− mice, have a major defect in uNK cell
accumulation and placentation is suboptimal with aberrant
spiral artery remodeling (53, 54). Taken together, these data
support the contribution of both trNK cells and peripheral cNK
cells to the uNK cell population during pregnancy.

CNK CELL FUNCTION

NK cells can eliminate tumor cells upon contact without prior
sensitization, an event known as natural cytotoxicity (55). This
is in contrast to T cell-mediated cytotoxicity that requires
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major histocompatibility complex (MHC)-dependent antigen
recognition. NK cells can also use their cytotoxic machinery and
cytokine production to elicit anti-viral immunity early during
an infection.

Direct contact with the target cells may engage receptors
expressed on NK cells. NK cell receptors are stochastically
expressed and an individual NK cell can express several different
inhibitory and activation receptors simultaneously, resulting
in the potential for many specificities. The NK cell receptor
repertoire is dependent on the inherited haplotype of NK cell
receptor genes. In the mouse, the genes for Ly49, CD94, NKG2,
NKG2D, and NK1.1 (encoded by Nkrp1) receptors reside in the
NK gene complex (NKC) on mouse chromosome 6 (56).

NK cells recognize their cellular targets via two functional
types of surface receptors: activation and inhibitory (55). NK
cell inhibitory receptors that engage target MHC-I and deliver
negative signals via cytoplasmic immunoreceptor Tyr-based
inhibitory motifs (ITIMs) that recruit Tyr phosphatase, SHP1,
provide an explanation for missing-self recognition. This
mechanism of activation receptor suppression holds true
for the inhibitory receptors in mouse and human, lectin-
like Ly49s and killer immunoglobulin (Ig)-like receptors
(KIRs), respectively, that are functional orthologs. In
contrast, ligand binding activation receptor chains couple
to immunoreceptor Tyr-based activation motif (ITAM)-
containing molecules, CD3ζ, FcεRIγ, or DAP12, that stabilize
expression and transmit downstream intracellular signals
resembling events found in TCR signaling. Thus, during
effector responses, NK cell triggering by its cellular targets is
typically dependent on integrating signals from activation and
inhibitory receptors.

In the spleens of C57BL/6 mice, cNK cells express NK1.1,
NKp46, and Ly49 receptors. Although the Ly49 receptors are also
expressed by some trNK cells, their expression differ depending
on the tissue from which they are examined. For example,
ILC1s in the liver do not express the activation receptors Ly49D
and Ly49H and have variable expression of the inhibitory Ly49
receptors (13). The inhibitory receptor Ly49I is differentially
expressed on uterine trNK cells and is dependent on the location
with no expression in the MLAp while in the decidua basalis
expression is similar to that found on cNK cells (16). Hence, it is
plausible that during pregnancy uNK cells may respond to their
cellular targets using strategies, similar to but distinct, from those
used by cNK cells.

Pregnant women with a specific KIR haplotype and fetal
HLA-C genotype combination have a significantly higher risk
of preeclampsia (57). Similar findings were reported in a cohort
of African women, which have more genetically diverse KIR
haplotypes andHLA alleles (58), strengthening the interpretation
that inhibitory receptors on uNK cells interact with their
fetal MHC-I ligands leading to increased susceptibility to
preeclampsia. Conversely, genetic association studies indicate
that a KIR activation receptor recognizing a fetal HLA ligand
protects from preeclampsia (58, 59). Thus, these data suggest
uNK cells respond to fetal MHC-I via their inhibitory and
activation receptors to control proper placental vascularization
and development.

UNK CELL FUNCTION DURING
PREGNANCY

Placental Vascular Remodeling
Although uNK cells were thought to belong to the NK cell lineage
and contained large cytoplasmic granules, when isolated from the
murine pregnant uterus, they possessed essentially no cytotoxic
ability to kill prototypic NK cell-sensitive target cells (60–62).
This was puzzling because NK cells are defined by their natural
ability to kill targets. But their abundance in the pregnant uterus
left many to wonder about their function. Since uNK cells have
been visualized by microscopy from the very beginning of their
discovery, they often were noted to be in close association with
trophoblast cells lining the blood vessels. Pioneering work by
Croy and colleagues proposed the hypothesis that during murine
pregnancy uNK cells modulate placental vascular remodeling.

During pregnancy, spiral arterioles are transformed into high-
capacitance, low-resistance, thin-walled vessels with large lumens
(63). This vascular adaptation is thought to keep up with the
nutritional demands of the growing fetus. Studies of mouse uNK
cells support their role in this remodeling. Mice lacking cNK
cells have defects in spiral artery remodeling during placentation
that were rescued when IFNγ was injected systemically (53, 64–
68). In bone marrow (BM) chimeric experiments, the remodeling
defects were rescued when BM from NK-sufficient mice, but not
BM from IFNγ−/−mice was used. Also, BM from IFNγ receptor-
deficient mice was able to rescue, indicating that NK cells did not
respond to IFNγ in order to rescue. Thus, IFNγ produced by NK
cells contributes to spiral arteriole remodeling by acting on non-
NK cells such as endothelial cells and decidual stromal cells but
the exact signaling pathway to initiate their cytokine production
and other aspects of uNK cell-dependent remodeling have not
been elucidated.

Growth Promoting Factors
Recently, uNK cells have been reported to directly stimulate
fetal growth by producing growth-promoting factors essential for
embryo development prior to the establishment of the placenta
(52). The trNK cells specifically produced the growth factors
pleiotrophin, osteoglycin, and osteopontin. A decrease in trNK
cells secreting these growth factors in theNfil3−/− and aged mice
impacted offspring from these dams, which had fetal growth-
restricted pups with defects in bone development. The fetal
growth deficiency and bone development were restored when
the dams were reconstituted with in vitro expanded trNK cells
that produced sufficient amounts of growth factors. Hence, this
study sheds light on additional novel functional roles of trNK
cells during early embryo development in pregnancy.

Memory of Pregnancy
In human, first time pregnancies are at a higher risk for
miscarriages and preeclampsia, a multifactorial disease
characterized by impaired placental perfusion (69). The
percentage of preeclampsia is greater among women
that are pregnant for the first time when compared to
women with repeated pregnancies. Likewise the uterus and
placenta differ during a second pregnancy with regard to
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placental vascularization and trophoblast invasion (70).
The following studies suggest that uNK cells may provide
memory to aid in vascular remodeling of the placenta during
subsequent pregnancies.

Mandelboim et al. identified a unique subset of human NK
cells that only exist in repeated pregnancies (71). They defined
these cells as pregnancy-trained decidual NK (PTdNK) cells.
The PTdNK cells have a unique transcriptome and epigenetic
signature and express NKG2C and LILRB1. When stimulated,
the PTdNK cells produced more IFNγ and VEGFα, both
important in vascular modification of the placenta in mouse
studies (64, 67). In another recent study, single cell RNA-
seq analysis of human first trimester decidua identified three
uNK cell subsets termed dNK1, dNK2, and dNK3 (72) that
all co-expressed CD49a, the receptor used to identify murine
trNK cells in the uterus (13). The dNK1 cell subset expressed
higher levels of KIRs and LILRB1 receptors that bind HLA-C
and HLA-G molecules, respectively, expressed on extravillous
trophoblast. Thus, these studies propose that a previously primed
uNK cell subset during the first pregnancy may function to
recall subsequent pregnancies and be better equipped to support
placental vascular development.

Colucci et al. tracked the emergence and decline of the ILC
family of cells during murine pregnancy (51). The trNK cells
are most abundant during early pregnancy while the cNK cells
peak during placentation. The ILC1 population is dominant
before puberty and is essentially not detected again until the
second pregnancy, where it is the most abundant population.

The ILC1 cells express CXCR6 and phenotypically resemble
liver NK memory cells described in the contact hypersensitivity
model (73). Taken together, these data provide the intriguing
idea where an uNK cell subset provides a protective memory
response in subsequent pregnancies and is conserved between
mice and humans.

CONCLUSIONS

In both mouse and human, uNK cells are the most
prominent immune cells that occupy the maternal-fetal
interface. The uNK cells appear to engage and establish
complex interactions with the surrounding tissue, which
impact their function. As more cell subsets are identified
within the heterogeneous uNK cell population, it is
anticipated that their functional heterogeneity will extend
beyond vascular modification, growth-promotion and
memory generation.
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