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PURPOSE. Neovascular age-related macular degeneration (AMD) is a major cause of legal
blindness in the elderly. Diets with omega3-long-chain-polyunsaturated-fatty-acid (x3-LCPUFA)
correlate with a decreased risk of AMD. Dietary x3-LCPUFA versus x6-LCPUFA inhibits mouse
ocular neovascularization, but the underlying mechanism needs further exploration. The aim
of this study was to investigate if adiponectin (APN) mediated x3-LCPUFA suppression of
neovessels in AMD.

METHODS. The mouse laser-induced choroidal neovascularization (CNV) model was used to
mimic some of the inflammatory aspect of AMD. CNV was compared between wild-type (WT)
and Apn�/� mice fed either otherwise matched diets with 2% x3 or 2% x6-LCPUFAs. Vldlr�/�

mice were used to mimic some of the metabolic aspects of AMD. Choroid assay ex vivo and
human retinal microvascular endothelial cell (HRMEC) proliferation assay in vitro was used to
investigate the APN pathway in angiogenesis. Western blot for p-AMPKa/AMPKa and qPCR
for Apn, Mmps, and IL-10 were used to define mechanism.

RESULTS. x3-LCPUFA intake suppressed laser-induced CNV in WT mice; suppression was
abolished with APN deficiency. x3-LCPUFA, mediated by APN, decreased mouse Mmps

expression. APN deficiency decreased AMPKa phosphorylation in vivo and exacerbated
choroid-sprouting ex vivo. APN pathway activation inhibited HRMEC proliferation and
decreased Mmps. In Vldlr�/� mice, x3-LCPUFA increased retinal AdipoR1 and inhibited NV.
x3-LCPUFA decreased IL-10 but did not affect Mmps in Vldlr�/� retinas.

CONCLUSIONS. APN in part mediated x3-LCPUFA inhibition of neovascularization in two mouse
models of AMD. Modulating the APN pathway in conjunction with a x3-LCPUFA-enriched-diet
may augment the beneficial effects of x3-LCPUFA in AMD patients.

Keywords: age-related macular degeneration, omega-3 long-chain polyunsaturated fatty acids,
adiponectin, neovascularization

Choroidal neovascularization (CNV) and retinal angioma-
tous proliferation (RAP) in age-related macular degenera-

tion (AMD) is a major cause of vision loss in elderly people.
CNV leads to exudation, hemorrhage, neural retinal dysfunc-
tion, and eventually loss of central vision. Therefore, preven-
tion and suppression of CNV is of great interest to improve
quality of life. The causes of CNV still remain incompletely
defined, but genetic deficiencies, inflammation, extracellular
matrix (ECM) integrity and remodeling, and dietary lipid and
metabolites could all contribute to the development of CNV.1–3

Dietary lipids and their metabolites have been implicated to
alter many of these processes.1,2 In this work we focus on the
joint actions of fatty acids and adiponectin (APN) on
neovascular AMD and their downstream mediators, inflamma-
tion and ECM integrity.

In clinical investigations, dietary intake of fish containing
omega 3-long-chain-polyunsaturated-fatty-acid (x-3 LCPUFA),

docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA)
is associated with a decreased risk of AMD.4–7 The Age-Related
Eye Disease Study (AREDS) reported 30% less central geo-
graphic atrophy and neovascular AMD in participants with a
diet containing high x-3 LCPUFA, DHA, and EPA (0.106% of
total energy intake) than those with low x-3 LCPUFA intake
(0.013% of total energy intake).8 In a large cohort of female
health professionals in the United States, there was a 42% re-
duced incidence of AMD with higher (two servings of fish per
week) versus lower fish (and x-3 LCPUFA) intake.9 Some
studies show that there is no improvement in AMD progression
associated with DHA and EPA capsule supplementation,
although these patients had a high baseline serum x-3 LCPUFA
level or were otherwise well-nourished.10–12 The effects of x-3
LCPUFA on modulating neovessel formation needs further
exploration, particularly for patients on a Western diet with
low x-3 LCPUFA intake.13,14 Previous studies show that a x-3
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LCPUFA-enriched diet reduces laser-induced CNV in mice15–17;
however, the complete underlying mechanisms are still
unknown.16–19

APN plays anti-angiogenic and anti-inflammatory roles in
vascular diseases.20,21 In the mouse model of oxygen-induced
proliferative retinopathy, APN is involved in x-3 LCPUFA’s
inhibition of retinal neovascularization.22 Therefore, the APN
pathway may be involved in x-3 LCPUFA’s protection in
neovascular AMD. We hypothesized that the APN signaling
pathway mediates x-3 LCPUFA protection against choroidal/
retinal NV. We explored this question in two animal models:
the laser-induced CNV model and very low density lipoprotein
receptor deficient mice (Vldlr�/�) with retinal angiomatous
proliferation (RAP) and CNV.

METHODS

Ethics Statement

All animal studies adhered to the Association for Research in
Vision and Ophthalmology Statement for the Use of Animals in
Ophthalmic and Vision Research and were approved by the
Institutional Animal Care and Use Committee at Boston
Children’s Hospital (ARCH protocol number 16-06-3155R).
C57BL/6J and Apn�/� (backcrossed with C57BL/6J for 11
generations) from the Jackson Laboratory were used.

Laser-Induced CNV in Mice

Four laser burns were induced by a green Argon laser pulse
(Micron IV, Phoenix Research Laboratories, Pleasanton, CA,
USA) with duration of 70 ms and power of 240 mW in 6- to 8-
week-old C57BL/6J and Apn�/� mice. Mice were fed defined
rodent diets with either 2% x-3 (1% DHA and 1% EPA) or 2% x-
6 LCPUFA (AA)23 (Supplementary Table S1) 7 days before and
after laser photocoagulation. ARASCO (42% AA), DHASCO
(43% DHA), and MEG-3 (45% EPA and 24% DHA), respectively,
were obtained from DSM Nutritional Products (TE Heerlen,
Netherlands) and were integrated into the rodent feed at
Research Diets (New Brunswick, NJ, USA). The eyes were
enucleated and fixed in 4% paraformaldehyde (PFA) for 1 hour
at room temperature. The choroid was penetrated with 1%
Triton X-100 PBS for 1 hour at room temperature and stained
overnight with fluorescent Griffonia Bandeiraea Simplicifolia
Isolectin B4 (Alexa Fluor 594, I21413, Molecular Probes, Grand
Island, NY, USA; 10 lg/mL) in 1 mM CaCl2 in 1% Triton X-100
PBS. The choroid was washed with PBS and whole mounted,
and images were taken at 1003 or 2003 magnification on a
Zeiss AxioObserver.Z1 microscope. Lesion area was quantified
and exclusion criteria were followed per previous publica-
tions.15,24

Very Low Density Lipoprotein Receptor Deficient
(Vldlr�/�) Mice

Vldlr�/� mice develop pathological RAP similar to AMD.25

Neovessels extend from the deep retinal vascular layer of the
outer plexiform layer (OPL) toward the retinal pigment
epithelium (RPE). Mice were fed defined rodent diets with
either 2% x-3 (DHA and EPA) or 2% x-6 LCPUFA (AA)23 from
postnatal day (P) 1. At P16, the eyes were enucleated and fixed
in 4% PFA for 1 hour at room temperature. The retinas were
dissected and stained overnight with fluorescent Griffonia
Bandeiraea Simplicifolia Isolectin B4 (Alexa Fluor 594, I21413,
Molecular Probes, 10 lg/mL) in 1 mM CaCl2 in PBS, then
whole mounted with photoreceptors facing up. Images were
taken at 503 magnification on a Zeiss AxioObserver.Z1

microscope and merged to form one image with AxioVision
4.6.3.0 software. Vascular lesions were analyzed using the
SWIFT_MACTEL method, a plugin in ImageJ.25

Choroid Assay Ex Vivo

Three-week-old C57BL/6J and Apn�/� mice were killed. RPE/
choroid/sclera complex (‘‘choroid explants’’) from the
peripheral area was dissected and cut into approximately 1
3 1 mm pieces.26 The choroid explants were immediately
embedded in 30 lL growth factor–reduced Matrigel (BD
Biosciences, San Jose, CA, USA; Cat. 354230) in 24-well tissue
culture plates (day 0, D0). The explants were grown in CSC
complete medium (Cell Systems, Kirkland, WA, USA; Cat. 420-
500) supplemented with growth factor Boost and 1%
Penicillin/Streptomycin (GIBCO, Grand Island, NY, USA; Cat.
15142) at 378C with 5% CO2. At D6, images were taken under
253 magnification. The sprouting area was quantified using
ImageJ.

Human Retinal Microvascular Endothelial Cell
(HRMEC) Proliferation Assay

HRMECs (passage 7 or 8) were grown in EGM2 and 1%
antibiotic-antimycotic (GIBCO, #15240) on 0.1% gelatin-coated
96-well cell culture plate. HRMECs were treated with APN
receptor agonist adipoRon (2.5, 5.0, 10, and 25 lM) and
vehicle (0.1% DMSO) for 24 hours. Ten microliters MTT
reagent (ATCC, #30-1010K) was added to 100 lL EGM2 in each
well. After 6-hour incubation at 378C, cells were washed with
PBS and 100 lL DMSO was added per well. The absorbance
was recorded at 570 nm.

HRMECs (passage 7 or 8) were grown on 0.1% gelatin-
coated six-well cell culture plate and treated with APN
receptor agonist adipoRon (25 lM) or vehicle for 2 hours.
The cells were collected for RNA extraction.

Real-Time PCR

Freshly isolated sclera/choroid/RPE/retina complex or retinas
or HRMECs were lysed with QIAzol lysis reagent and incubated
on ice for 15 minutes, and 20% chloroform was added and
incubated for 5 minutes at room temperature. The mixture was
centrifuged at 12,000g for 15 minutes, and the supernatant was
collected for RNA extraction according to the manufacturer’s
instructions using a PureLink RNA Mini Kit (#12183018A;
Ambion, Grand Island, NY, USA). RNA was then reverse
transcribed using iScript cDNA synthesis kit (#1708891; Bio-
Rad, Hercules, CA, USA). The sequences of primers were Apn

(F: 50-GAA GCC GCT TAT GTG TAT CGC-30, R: 50-GAA TGG
GTA CAT TGG GAA CAG T-30); AdipoR1 (F: 50-TCT TCG GGA
TGT TCT TCC TGG-30, R: 50-TTT GGA AAA AGT CCG AGA
GAC C-30); Vegfa (F: 50-GGA GAT CCT TCG AGG AGC ACT T-30,
R: 50-GCG ATT TAG CAG CAG ATA TAA GAA-30); Mmp2 (F: 50-
TGG GAG CAT GGA GAT GGA TAC-30, R: 50-AAG TGA GAA TCT
CCC CCA ACA C-30); Mmp9 (F: 50-ACT GCG GGC TCT TCT
GAG G-30, R: 50-CCC TGG ATC TCA GCA ATA GCA-30); hMmp2

(F: 50-TAC AGG ATC ATT GGC TAC ACA CC-30, R: 50-GGT CAC
ATC GCT CCA GAC T-30); hMmp9 (F: 50-TGT ACC GCT ATG
GTT ACA CTC G-30, R: 50-GCA GGG ACA GTT GCT TCT-30).
Quantitative analysis of gene expression was generated using
an Applied Biosystems (Grand Island, NY, USA) 7300 Sequence
Detection System with the SYBR Green Master mix kit, and
gene expression was calculated relative to internal control
Cyclophilin A (F: 50-CAG ACG CCA CTG TCG CTT T-30; R: 50-
TGT CTT TGG AAC TTT GTC TGC AA-30) for mouse retinas
and 18S ribosomal RNA (F: 50-ACGGAAGGGCACCACCAGGA-
30, R: 50-CACCACCACCCACGGAATCG-30) for HRMECs using
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the DDCt method. The relative mRNA levels were presented as
the ratio of change versus internal control.

Western Blot

Choroidal-retinal explants were homogenized and protein was
extracted in radioimmunoprecipitation assay buffer (RIPA)
(#89900; Pierce, Grand Island, NY, USA) supplemented with
phosphatase inhibitor (1:100, P0044, Sigma-Aldrich Corp., St.
Louis, MO, USA) and protease inhibitor (1:1000, Sigma, P8340).
Forty micrograms protein lysate were used to detect the levels
of phosphor-AMPKa27 (p-AMPKa, 1:500, #2535; Cell Signaling,
Beverly, MA, USA) and AMPKa28 (1:500, #2532, Cell Signaling)
overnight at 48C. Signals were detected using 1:5000 corre-
sponding horseradish peroxidase-conjugated secondary anti-
bodies and enhanced chemiluminescence (ECL, Pierce).
GAPDH (1:3000, sc-32233; Santa Cruz, Dallas, TX, USA) was
used as internal control.

Statistical Analysis

Animal data are presented as mean 6 SEM. All data were used
except for low quality images that were not sufficient for
analysis. Both male and female mice were used. For drug
treatments, the mice were randomly assigned to treatment and
vehicle control in the same litter. For in vitro study, the
experiment was repeated two or three independent times.
Two-tailed unpaired t-test, ANOVA with Bonferroni’s multiple
comparison test was used for comparison of results as
specified in the figure legends (Prism v5.0; GraphPad Software,
Inc., San Diego, CA, USA). Statistically significant difference
was set at P � 0.05.

RESULTS

Dietary Intervention of x-3 Versus x-6 LCPUFA

Decreased Laser-Induced CNV in Mice

In the mouse model of laser-induced CNV, there was a 20%
decreased lesion area (P¼ 0.0435. Fig. 1; Supplementary Table

S2) in mice with x-3 versus x-6 LCPUFA-enriched diets, as
shown in our previous reports.15–17

APN Pathway Mediated x-3 LCPUFA Protection
Against Laser-Induced CNV

In laser-induced CNV with dietary x-3 LCPUFA supplementa-
tion, the lesion area was increased 60% in Apn�/� versus WT
mice (P ¼ 0.0033, Figs. 2A–B). However, APN deficiency did
not affect lesion area in mice fed a x-6 LCPUFA-enriched diet
(Figs. 2C–D), indicating that APN played a major role in x-3
LCPUFA dependent inhibition in CNV. We also examined the
lesion severity in mice fed animal chow (with undefined
composition) provided by our animal facility. APN deficiency
worsened CNV lesion formation (P ¼ 0.0438; Supplementary
Fig. S2A; Supplementary Table S3) and activation of the APN
pathway with APN receptor agonist AdipoRon administration
significantly reduced the lesion size (P ¼ 0.0233; Supplemen-
tary Fig. S2B; Supplementary Table S3).

Activation of the APN Pathway by Dietary x-3
LCPUFA Supplementation Inhibited Matrix
Metalloproteinase (MMP) Expression in Laser-
Induced CNV

To explore the underlying mechanism of APN pathway
activation causing CNV suppression, we examined changes
in potential APN downstream targets Mmp2 and Mmp9 in WT
and Apn�/� mice with either x-3 or x-6 LCPUFA-enriched
diets. x-3 LCPUFA supplementation increased Apn mRNA in
WT choroid-retina complex (P¼ 0.0010; Fig. 3A). Dietary x-3
versus x-6 LCPUFA decreased Mmp2 and Mmp9 in WT
choroid-retina complex (Mmp2: x-3 to x-6¼ 0.4, P¼ 0.0006;
Mmp9: x-3 to x-6¼ 0.43, P¼ 0.0431; Fig. 3A). The decreases
were abolished with APN deficiency (Mmp2: x-3 to x-6¼ 1.1,
P¼0.6607; Mmp9: x-3 to x-6¼ 0.91, P¼ 0.6673; Fig. 3B). We
then investigated the downstream target of the APN pathway
AMPKa,29,30 which transcriptionally regulates the expression
of MMPs.31,32 A decreased choroidal-retinal p-AMPKa/AMPKa
ratio (Apn�/� to WT ¼ 0.4) was found in Apn�/� versus WT
CNV mice fed with x-3 LCPUFA (Fig. 3C). Our findings

FIGURE 1. Dietary x-3 LCPUFA versus x-6 LCPUFA suppressed laser-induced CNV. Eight-week-old C57BL/6J (WT) mice were fed x-3 or x-6 LCPUFA-
enriched diets starting 1 week before and continuing until 1 week after laser-induced CNV (day 0). At day 7, choroidal neovessels were examined.
(A) Representative neovessel lectin-stained (red) choroidal whole-mounts. The brackets in the top panel are shown at the bottom. (B) Significantly
reduced lesion areas were found in x-3 versus x-6 LCPUFA-fed retinas. n¼ 12 to 14 mice per group. Unpaired t-test. Arrow (top): optic nerve head.
Scale bar: 200 lm (top); 50 lm (bottom).

APN Mediates x-3LCPUFA Protection Against CNV IOVS j August 2017 j Vol. 58 j No. 10 j 3864



suggested that dietary x-3 LCPUFA supplementation activated

the APN pathway to phosphorylate AMPKa and reduce MMP2

and MMP9 levels, which in turn inhibited neovessel forma-

tion.

Activation of the APN Pathway Inhibited

Endothelial Cell Activity Ex Vivo and In Vitro

The inhibitory effects of the APN pathway on ocular vessel

growth were further confirmed in the choroidal sprouting

assay ex vivo26 and HRMECs proliferation assay in vitro. APN

deficiency resulted in a larger choroid sprouting area (Apn�/�

to WT ¼ 1.67; P ¼ 0.0445; Fig. 3D). Activation of the APN

pathway with adipoRon (a dual agonist for APN receptor

ADIPOR1 and ADIPOR2)33 dose-dependently inhibited HRMEC

proliferation (Fig. 3E). AdipoRon treatment significantly

decreased Mmp2 (AdipoRon to vehicle ¼ 0.57; P ¼ 0.0083;

Fig. 3F) and Mmp9 expression in HRMECs in vitro (AdipoRon

to vehicle ¼ 0.75; P < 0.0001; Fig. 3F). The results were

consistent with activation of the APN pathway mediating x-3

LCPUFA inhibition of laser-induced CNV through activation of

AMPKa and reduction in Mmp2 and Mmp9 mRNA expression
(Fig. 4).

Dietary x-3 LCPUFA Supplementation Suppressed

Lesion Formation in Vldlr�/� Mice

In addition to the inflammatory contribution to CNV
formation,34 metabolic alterations may also lead to disease
progression of AMD.35,36 In Vldlr�/� mice, the absence of
VLDLR is associated with RAP,25 similar to that seen with
neovascular AMD.37 To assess if dietary intervention of x-3
LCPUFA also attenuated vascular lesion formation caused by
dysregulated metabolism, Vldlr�/�mice were fed either x-3 or
x-6 LCPUFA-enriched diets from P1. The mother’s milk reflects
the lipid content of their diet.23 In Vldlr�/� mice with x-3
versus x-6 LCPUFA diets, there was no difference in retinal
Apn but an increase in AdipoR1 mRNA levels (x-3 to x-6¼3.9;
P ¼ 0.008; Fig. 5A). Retinal AdipoR1 was increased during
development from P3 to P17, and induced in Vldlr�/� versus
Vldlr-þ/þmice (Fig. 5B). At P16, dietary x-3 versus x-6 LCPUFA
decreased the number of neovascular lesions by 18% (P ¼
0.0099) and total lesion area by 29% (P¼ 0.0095) (Figs. 5C–E).

FIGURE 2. APN deficiency abolished dietary x-3 LCPUFA protection against laser-induced CNV. Eight-week-old Apn�/� and WT mice were fed x-3 or
x-6 LCPUFA-enriched diets from 1 week before until 1 week after laser-induced CNV (day 0). At day 7, choroidal neovessels were examined.
Representative lectin-stained (red) vessels in choroidal whole-mounts (A, C) and quantification of choroidal lesion area (B, D). The brackets in the
top panel are shown at the bottom (A, C). Significantly larger lesions were observed in x-3 LCPUFA-fed Apn�/� versus WT mice but not in x-6
LCPUFA-fed Apn�/� versus WT mice (B, D). n¼ 9 to 14 mice per group (x-3). n¼ 8 to 12 mice per group (x-6). Unpaired t-test. Arrow (top): optic
nerve head. Scale bar: 200 lm (top, panel A, C); 50 lm (bottom, panel A, C).
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Interestingly, x-3 versus x-6 LCPUFA diets did not impact
retinal Mmp2 and Mmp9 expression in Vldlr�/�mice (Fig. 5F).
Instead, there were increased anti-inflammatory marker IL-10

mRNA levels in x-3 versus x-6 LCPUFA-fed Vldlr�/� mice (x-3
to x-6 ¼ 13.3; P ¼ 0.0009; Fig. 5F). Activation of the APN
pathway with adipoRon (50 mg/kg, oral gavage daily from P3–
16) also increased IL-10 expression (Fig. 5G) and decreased
Mmp2 and Mmp9 (Supplementary Fig. S3) in Vldlr�/� mouse
retinas. However, in the laser-induced CNV model, x-3 versus
x-6 LCPUFA did not change IL-10 expression in WT choroid-

retina complex (x-3 to x-6 ¼ 0.67; P ¼ 0.1554; Fig. 5H). In
mice fed with animal chow provided by animal facility with
undefined composition, APN deficiency increased gene
expression of Mmp2 and Mmp9 but not IL-10 in laser-induced
CNV (Supplementary Fig. S4). These observations suggested
that activation of the APN pathway might target different
downstream pathways to modulate neovascularization in
different models, such as laser-induced CNV and Vldlr�/�

mice. APN is one but not the only way mediating omega-3
protective effects in Vldlr�/� mice.

DISCUSSION

Many signaling pathways including lipids are associated with
the development of CNV.38–40 Because many clinical studies
suggest a strong protective effect of dietary x-3 LCPUFA on
neovascular AMD, it is particularly important to understand the
underlying mechanisms. Laser-induced CNV is a widely used
model of neovascularization driven by inflammation.34,35

Vldlr�/� mice as a model of metabolically driven neovascular
AMD have abnormal lipid metabolism and photoreceptor
energy deficits that drive RAP (and CNV).25 Our data showed
that x-3 LCPUFA protects against AMD-like neovascularization
in these two animal models through the activation of the APN
pathway.

FIGURE 3. The APN pathway inhibited neovessel formation through the suppression of MMP expression in laser-induced CNV. (A) WT mice fed x-3
versus x-6 LCPUFA-enriched diets had increased Apn, and decreased Mmp2 and Mmp9, as well as unchanged AdipoR1 expression in choroidal-
retinal explants. n¼ 3 mice per group. Unpaired t-test. (B) APN deficiency abolished x-3 LCPUFA inhibition of choroidal-retinal Mmp2 and Mmp9

levels. n ¼ 3 to 4 mice per group. Unpaired t-test. (C) APN deficiency decreased the levels of phosphorylated AMPKa in choroidal-retinal CNV
explants. n¼ 6 mice per group. Unpaired t-test. (D) In the choroidal sprouting assay ex vivo, choroidal explants from Apn�/�mice showed larger
sprouting areas than WT mice. n¼4 to 6 explants per group. Unpaired t-test. Scale bar: 500 lm. (E) In HRMEC MTT assay in vitro, activation of the
APN pathway with APN receptor agonist adipoRon inhibited endothelial cell proliferation. n ¼ 10 replicates per group. Unpaired t-test. (F)
AdipoRon treatment (25 lM) decreased Mmp2 and Mmp9 expression in HRMECs. Results were repeated in two independent experiments.
Unpaired t-test.

FIGURE 4. Schematic of the APN pathway in mediating x-3 LCPUFA
inhibition on laser-induced CNV.
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There are indications in other systems that x-3 LCPUFA

and APN are linked. APN is an important metabolic modulator

mainly derived from white adipocytes.41 Dietary intake of x-3

LCPUFA increases circulating APN levels in premature infants,

diabetic patients, and the elderly.42–45 x-3 LCPUFA activates

peroxisome proliferator-activated receptor c, an upstream

transcriptional regulator of APN expression.18,46 Dietary

supplementation of x-3 LCPUFA reduces white-adipose

endoplasmic reticulum stress and increases the production

of APN to inhibit hypoxia-induced retinal neovascularization

in vivo and white adipocytes in vitro.22 Interestingly,

mutations in APN or ADIPOR1 are associated with severe

AMD.47,48

Exploring the role of APN and neovascularization, we

examined retinal vascular development. AdipoR1 gradually

increased during retinal vascular formation in both Vldlr�/� and

WT mice from P3 to P17, demonstrating a key role of the APN

pathway during the period of normal retinal neurovascular

development.49 Vldlr�/� had consistently higher expression of

AdipoR1 during this period, suggesting that the APN/AdipoR1

pathway might also be involved in the pathologic NV in

Vldlr�/� retinas. x-3 LCPUFA versus x-6 LCPUFA increased APN

receptor mRNA AdipoR1 in WT mice, suggesting that x-3

LCPUFA could act through APN. In laser-induced CNV, APN

deficiency abolished dietary x-3 LCPUFA-induced inhibition of

CNV formation but did not affect CNV in mice fed a x-6

FIGURE 5. Dietary x-3 LCPUFA decreased retinal neovascular lesions in Vldlr�/� mice. Vldlr�/� mice were fed either x-3 or x-6 LCPUFA-enriched
diets from postnatal day (P) P1. (A) In Vldlr�/� retinas, x-3 LCPUFA induced gene expression of APN receptor adipoR1 but not Apn (n¼3 to 4 mice
per group). Unpaired t-test. (B) Increased AdipoR1 mRNA levels in Vldlr�/� versus Vldlrþ/þ retinas from postnatal day 3 to 17. Unpaired t-test. (C) At
P16, retinal neovascularization was examined. 3D reconstruction demonstrated blood vessels invading from the OPL toward RPE; representative
images of neovascular lesion (2003 magnification). (D) Representative images of isolectin-stained vessels (red) in retinal whole mounts. (E) Dietary
x-3 versus x-6 LCPUFA supplementation decreased the number and total lesion area of neovascular lesions (n¼7 to 10 mice per group). Unpaired t-
test. (F) x-3 versus x-6 LCPUFA did not affect retinal Mmp2 and Mmp9 expression in Vldlr�/�mice. Retinal IL-10 was increased in x-3 LCPUFA-fed
Vldlr�/�mice. n¼ 3 to 4 mice per group. Unpaired t-test. (G) Change in IL-10 in Vldlr�/�mice treated with either 50 mg/kg adipoRon or vehicle
from P3 to 15. n¼ 3 to 4 retinas per group. (H) In the model of laser-induced CNV, there was no change in IL-10 expression in choroidal-retinal
complex from WT mice fed x-3 versus x-6 LCPUFA-enriched diets. n¼ 3 mice per group. Unpaired t-test.
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LCPUFA-enriched diet, confirming that APN mediated x-3 and
not x-6 LCPUFA prevention of CNV.

APN receptor activation is known to promote anti-
angiogenic, and anti-inflammatory functions.20,21,50,51 How-
ever, the neovascular inhibitory effects of APN activation
were independent of vascular endothelial growth factor A
(VEGFA) in both models (Supplementary Fig. S1). Interest-
ingly, although APN mediated the protective effect of dietary
x-3 LCPUFA on neovascularization in both the laser-induced
CNV model and in Vldlr�/� mice, the downstream mecha-
nisms were different. x-3 LCPUFA inhibited laser-induced
CNV through the suppression of MMP2 and MMP9 but
inhibited NV in Vldlr�/�mice through the induction of IL-10.
In laser-induced CNV mice, APN deficiency reduced AMPKa
phosphorylation and completely reversed x-3 LCPUFA-
induced effects on MMP2 and MMP9, proteases which
degrade ECM and basement membrane, to promote tumor
growth and angiogenesis.52–55 MMP2 and MMP9 are ex-
pressed in vitreous56 and retina57,58 in human eyes with
neovascular AMD and are genetically associated with
AMD.59,60 Plasma MMP9 levels are higher in subjects with
CNV versus control groups.61 Inhibition of AMPK activity
partially abolished metformin inhibition of Mmp2 and Mmp9

mRNA levels.31 Phosphorylation of AMPKa leads to the
reduction in MMP9 levels in mouse embryonic fibroblasts.32

AMPKa phosphorylation is increased with activation of the
APN pathway.62,63 Therefore, x-3 LCPUFA, mediated by APN,
inhibits MMPs production. As previously reported, x-3
LCPUFA is associated with decreased MMP2 and MMP9
activity.64–67

Surprisingly, unlike in laser-induced CNV, MMP2 and MMP9
were not decreased in Vldlr�/� mice on a x-3 LCPUFA diet.
However, the anti-inflammatory factor IL-10 was increased 13-
fold in x-3 LCPUFA versus x-6 LCPUFA-fed Vldlr�/� mice. A
dual agonist of AdipoR1/R2, AdipoRon, increased IL-10 in
Vldlr�/� mice, suggesting that the inhibitory regulation of x-3
LCPUFA on CNV was through APN/AdipoR1 and IL-10. There
was no measurable change in IL-10 expression in x-3 LCPUFA
versus x-6 LCPUFA-fed laser-induced CNV mice, suggesting
that x-3 LCPUFA may exert protective effects through APN but
with different downstream mechanisms in the two neovascular
AMD models with respect to inflammation and metabolic
alterations.

Further work is needed to explore how to manipulate the
APN pathway to facilitate x-3 LCPUFA’s effect in CNV
prevention. Our observations suggest that APN could poten-
tially be a biomarker for the effects of dietary x-3 LCPUFA in
AMD progression, and indicate a plausible target to treat AMD
and other choroidal/retinal neovascular diseases. The current
treatment for CNV, anti-VEGF therapy, does not treat all
patients effectively and requires repeated intravitreous injec-
tions, associated with complications.68–70 The inhibitory
effects of x-3 LCPUFA in AMD seen in the present study were
independent of VEGFA. The potential use of x-3 LCPUFA and
pharmaceutical modifiers of its protective effects on neovas-
cular AMD is of great interest. Increased dietary x-3 LCPUFA
consumption in conjunction with the modulation of the APN
pathway may prevent disease progression in neovascular AMD
through inflammation and metabolic alterations.
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