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Abstract: Sesquiterpenoids constitute a marvelously varied group of natural products that feature
a vast array of molecular architectures. Among them, the unusual bicyclo [6.3.0] undecane
sesquiterpenoids are one of the most representative. To date, only approximately 42 naturally occurring
compounds with this unique scaffold, which can be classified into seven different groups, have been
reported. As the first-found member of each type, dactylol, asteriscanolide, dumortenol, toxicodenane
C, and capillosanane S are characteristic of the four methyl groups on the five-eight-membered
ring system. Only 11-hydroxyjasionone and sinuketal decorate the core with an isopropyl group.
These natural products exhibit a wide range of bioactivities, including antifouling, anti-inflammatory,
immune suppression, cytotoxic, antimutagenic, antiplasmodial, and antiviral activities. It was noted
that some total syntheses of precapnellane-sesquiterpenoids (dactylol, poitediol, precapnelladiene),
asteriscanolide, and 11-hydroxyjasionone have been achieved, because their cyclooctanoid core
represents an important target for the development of synthetic strategies to prepare eight-membered
ring-containing compounds. This review focuses on these natural sesquiterpenoids and their
biological activities and synthesis, and aims to provide a foundation for further research of these
interesting compounds.

Keywords: sesquiterpenoids; bicyclo [6.3.0]; five-eight-membered ring; cyclooctane; structures;
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1. Introduction

In the past thirty years, nature has played a significant role in the discovery of new drugs.
Meanwhile, many natural products with interesting skeletons have been reported from terrestrial and
marine sources [1–4]. Sesquiterpenoids, a group of naturally occurring 15-carbon isoprenoids, are
widely distributed secondary metabolites in nature and show a vast array of interesting molecular
architectures [5–8]. Among them, the unusual bicyclo [6.3.0] undecane sesquiterpenoids are one of the
most representative. To the best of our knowledge, since dactylol was isolated from the sea hare Aplysia
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dactylomela in 1977 [9], only seven types of scaffolds of bicyclo [6.3.0] undecane sesquiterpenoids have
been reported (Figure 1). Structurally, precapnellane (Figure 1a), asteriscane (Figure 1b), dumortane
(Figure 1c), toxicodenane (Figure 1d), and capillosane (Figure 1e) featured four methyl groups on the
5-8 ring moiety, while jasionane (Figure 1f) and sinulane (Figure 1g) decorate the core with an isopropyl
group. As the cyclooctanoid core represents an important and challenging target for the development
of the methodology, necessary to prepare the eight-membered ring-containing compounds, some
total syntheses of precapnellane-sesquiterpenoid [10–29], asteriscane-sesquiterpenoid [30–36], and
jasionane-sesquiterpenoid [37] have been achieved. However, so far, no comprehensive review of these
molecules has been published. To provide a foundation for further research, this review summarizes
the structures, biological activities, and chemical synthesis of bicyclo [6.3.0] undecane sesquiterpenoids.
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which is a chemical conversion compound. In its structure, as the cyclooctanoid core represents an 
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other hand, in the Paquette route, a cycooctadiene ring was built from cycloheptane precursors by 
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closing metathesis was used to synthesize dactylol by Fürstner et al. [17], and Vanderwal’s group 
further developed this strategy [18]. Molandar’s team reported the concise, nonracemic synthesis of 
dactyol utilizing a novel [3 + 5] annulation approach in 1995 [19]. 
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2. Four Methyl Type Bicyclo [6.3.0] Undecane Sesquiterpenoids

2.1. Precapnellane-Sesquiterpenoid

In 1977, the first bicyclo [6.3.0] undecane sesquiterpenoid, named dactylol (1, Figure 2), was
reported in the Caribbean sea hare Aplysia dactylomela by Schmitz’s group [9]. Its absolute configuration
was derived from the CD data of a substituted cyclopentanone degradation product, which is a
chemical conversion compound. In its structure, as the cyclooctanoid core represents an important
and challenging target [10] for preparing the eight-membered ring-containing compounds, dactylol,
an exemplary member of this class, has been widely synthesized (in total) by synthetic chemists.
In order to construct the necessary carbon–carbon bonds, both Paquette’s group and Gadwood’s group
used a [3,3] sigmatropic rearrangement strategy from 1985 to 1987 [10–12]. On the other hand, in
the Paquette route, a cycooctadiene ring was built from cycloheptane precursors by Friedel–Crafts
cyclization, while the Gadwood route featured an anionic oxy–Cope rearrangement. Later, to solve the
undesired isomer problem, originatingthe stereoselective functional group transformations, Feldman
et al. developed concise and stereoselective novel [6π + 2π] intramolecular photocycloaddition to
synthesize dactylol in 1989 and 1990 [13,14]. Then, in 2000, intramolecular 4 + 3 cycloaddition was
achieved in the synthesis of dactylol by Harmata’s group [15,16]. In 1996, ring-closing metathesis
was used to synthesize dactylol by Fürstner et al. [17], and Vanderwal’s group further developed this
strategy [18]. Molandar’s team reported the concise, nonracemic synthesis of dactyol utilizing a novel
[3 + 5] annulation approach in 1995 [19].
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In 1978, dactylol (1), together with poitediol (2), whose structure was determined by X-ray
crystallography, was found in the seaweed Laurencia poitei (Lamouroux) Howe by Fenical’s group [38].
Gadwood’s group and Vanderwal’s group also used their strategy to achieve the total synthesis of
compound 2 [10,18,20,21].

One year later, Djerassi’s group reported the isolation of precapnelladiene (3) from the nonpolar
fractions of the soft coral Capnella imbricata [39]. To establish its stereochemistry, Mehta and
Murty synthesized precapnelladiene (3) through tricyclo [6.3.0.02,6] undecane via ruthenium-catalyze
oxidation [22,23]. The Claisen rearrangement strategy was also used as a prelude for the preparation
of compound 3 by Paquette’s group and Petasis’s group [24–26]. Moore et al. also reported the total
synthesis of precapnelladiene (3) through the oxy–Cope rearrangement [27,28]. In 2007, Iguchi’s group
reported an enantioselective copper-catalyzed [2 + 2]-cycloaddition reaction to obtain compound 3 [29].

2.2. Asteriscane-Sesquiterpenoid

In 1985, San Feliciano and colleagues reported the first asteriscane type sesquiterpenoid, named
asteriscanolide (4), from the hexane extract of plant Asteriscus aquaticus [40]. Its structure was
determined by X-ray diffraction. The enantioselective total synthesis of asteriscanolide (4) was
achieved in 1988 by Wender et al. based on nickel-catalysed intramolecular [4 + 4] cycloaddition [30].
In 2000, the Michael–Michael reaction sequence and ring-closing metathesis were used as the key
bond-forming operations to synthesize compound 4 by Paquette’s group [31], and in the same year
Krafft and colleagues published on the total synthesis of (±)-asteriscanolide by a intermolecular
Pauson–Khand [2 + 2 + 1] cycloaddition reaction as the key transformation [32,33]. Additionally
in 2000, Snapper’s group developed an efficient synthesis of (±)-4 using sequential intramolecular
cyclobutadiene cycloaddition, ring-opening metathesis, and Cope rearrangement reactions [34]. In 2011,
Yu’s group described the total synthesis of (+)-4 using a chiral ene-vinylcyclopropane substrate induced
Rhodium(I)-catalyzed [(5 + 2) + 1] cycloaddition reaction to construct a 5-8 ring core [35,36].

Additionally in 1985, two asteriscane analogues 1,10,7,8-tetradehydro-asteriscanolide (5, Figure 3)
and methyl-3α,5α,8α,10αH-asteriscan-15-oate (6, Figure 3) were found in the species A. graveolens by
Bohlmann’s group [41].

In 1995 and 1999, in the plant Lippia integrifolia, a traditional medicine of north and central
Argentina, Catalán’s group and König’s group reported two new asteriscane sesquiterpenes
3α-hydroxy-6-asteriscene (7, Figure 3) [42] and asterisca-3(15),6-diene (8, Figure 3) [43], respectively.

The first marine originating asteriscane sesquiterpene, asterisca-2(9),6-diene (9, Figure 3), was
isolated from the marine animal aeolid nudibranch Phyllodesmium magnum by Guo et al. in 2011 [44].
Based on the predator–prey relationship between P. magnum and the soft coral genus of Sinularia, the
source of compound 9 may be soft coral [44–46].

In 2013, fourteen new asteriscane-type sesquiterpenoids (capillosananes A-N) (10–23, Figure 3)
(the first large-scale discovery of bicyclo [6.3.0] undecane sesquiterpenoids) were found in the soft
coral S. capillosa by Lin’s group [45]. Their absolute configurations were determined by Mosher’s
method (compounds 10, 11, 14, 19), CD rules (compounds 13, 16–18, 23), ECD calculation (compounds
16 and 17), biogenetic consideration (compound 15), and chemical conversion (compounds 10, 16,
20, 22). In bioassay tests, these compounds were inactive against HCT-8, HePG2, BGC-823, A549,
and SKOV3 human humor cell lines. Nevertheless, compounds 11 and 18 exhibited weak in vitro
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inhibitory effects on inflammation-related TNF-α. Compound 10 showed potent antifouling activity
against Balanus amphitrite with an IC50 value of 9.70 µM, whereas the value of compound 18 was 54 µM.
A capillosanane D derivative (also from the genus of Sinularia (S. verruca)), named deoxocapillosanane
D (24, Figure 3), was isolated by Yan and coworkers in 2016 [46], but it showed no anti-HIV-1 or
anti-inflammatory activities.Molecules 2019, 24, x 4 of 12 
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In the search for bioactive compounds in the roots of Cynanchum wilfordii, two new asteriscane
type sesquiterpenoid wilfolides A and B (25 and 26, Figure 3) were isolated and identified by Zhao’s
group in 2015 [47]. Their absolute configurations were elucidated by X-ray crystallography with Cu
Kα radiation. Compound 25 exhibited weak inhibitory effect against acetylcholinesterase.

A chemical examination of the aerial parts of the Asteriscus graveolens subsp. stenophyllus. by
León et al. in 2016 resulted in the isolation of asteriscanolidenol (27, Figure 3), a new sesquiterpene
lactone of the asteriscanolide type [48]. Unfortunately, this lactone showed no cytotoxicity effects
against the HL-60 and MOLT-3 leukemia cell lines.

2.3. Dumortane-Sesquiterpenoid

The first dumortane sesquiterpenoid, dumortenol (28, Figure 4), was isolated from the diethyl
ether extract of Argentinian liverwort Dumortiera hirsuta by Toyota and coworkers in 1997 [49].
The stereochemical assignments of 28 were clarified by X-ray crystallographic analysis (crystals
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were obtained from the methanol solution). In 1999, their reinvestigation of a new collection of
Argentine D. hirsuta led to the isolation of two new dumortane derivatives (29 and 30), together with
nor-dumortane sesquiterpene 31 [50].
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Compound 28 was also obtained from soft coral Sinularia capillosa by Duh’s group in 2010, which is
the first report of this type of sesquiterpenoid in a marine organism [51]. In 2014, chemical examination
of the same soft coral species was carried out by Lin’s group and resulted in the isolation of two
dumortane analogues, capillosananes W and X (32 and 33, Figure 4) [52]. The absolute configuration of
32 was determined via the CD data of the in situ complex of the tertiary alcohol with Rh2(OCOCF3)4

by applying the bulkiness rule; 33 was assumed to be the same as 32 from biogenetic consideration.
Bioactive assays indicated that compound 32 has anti-inflammatory effects with an inhibitory rate of
34% (at 10 µM, the positive control NK007 with inhibitory rates of 46% at 100 nM).

In 2014, Shen’s group reported only one microorganism-originated bicyclo [6.3.0] undecane
sesquiterpenoid, named tuberculariol D from a mutant strain G-444 of Tubercularia sp. TF5 isolated
from the inner bark of Taxus mairei (34, Figure 4) [53]. At 30 µg/disc, this compound exhibited no
antifungal activities against Candida albicans.

2.4. Toxicodenane-Sesquiterpenoid

In 2013, toxicodenanes C (35, Figure 5) was obtained from the dried resin of Toxicodendron
vernicifluum by Cheng’s group [54]. This compound showed significantly inhibitory effects with a
dose- and time-dependent relationship on fibronectin, collagen IV, and IL-6 in high-glucose-induced
mesangial cells, which means that it has potential in treating diabetic nephropathy.Molecules 2019, 24, x 6 of 12 
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2.5. Capillosane-Sesquiterpenoid

One year later, Lin’s group reported capillosananes S and T (36 and 37, Figure 5) from the soft
coral S. capillosa [52]. The absolute configuration of compound 36 was determined by the octant rule
for cyclopentenones and further supported by the ECD method; compound 37 was only determined by
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the octant rule. Unfortunately, these compounds were not active in cytotoxic (HCT-8, HePG2, BGC-823,
A549, SKOV3) and pathogenetic microorganism assays.

3. Isopropyl Type Bicyclo [6.3.0] Undecane Sesquiterpenoids

Isopropyl type bicyclo [6.3.0] undecane sesquiterpenoids are rare in nature. By the end of August
2019, only 5 isopropyl type bicyclo [6.3.0] undecane sesquiterpenoids (far fewer than the four methyl
type) have been reported. This may be due to the difficulty for diverse biogenic pathways to form a 5-8
fused ring in nature. As shown in Scheme 1, the plausible biosynthetic pathways of bicyclo [6.3.0]
undecane sesquiterpenoids were proposed. The carbon skeletons of the four methyl type bicyclo [6.3.0]
sesquiterpenoids can be carried out by cyclization reaction and Wagner–Meerwein rearrangements
from the farnesyl diphosphate (FPP) [54,55]. However, an unexpected cycloheptane to cyclooctane
ring expansion process [56], a key step, may determine the occurrence rate of isopropyl type bicyclo
[6.3.0] undecane sesquiterpenoids.Molecules 2019, 24, x 7 of 12 
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3.1. Jasionane-Sesquiterpenoid

The first isopropyl-branched bicyclo [6.3.0] undecane sesquiterpenoid, named 11-hydroxyjasionone
(38), was isolated from the aerial parts of the Jasonia montana plant by Ahmed et al. in 1988 [57]. It was
first synthesised in 1994 by Trost and Parquette, using a TMM (2-(1-(trimethylsilyl)-1-cyclopropyl)
allyl pivalate) cycloaddition strategy through fragmentation of the [3.3.0] system to form a 5-8-fused
bicyclic core [37].
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In the following year, Rustaiyan and coworkers isolated a new jasionane type sesquiterpene lactone
tehranolide (39, Figure 6) from the aerial parts of Artemisia diffusa [58]. As there is an endoperoxide
pharmacophore like the antimalarial agent artemisinin in the molecule, some bioactivity test works
on compound 39 [59–65] and the fractions containing it [66,67] have been done by Iranian scientists.
In summary, tehranolide (39) has a variety of biological activities, including modulating the immune
response by reducing regulatory T cell [59,60], inhibiting proliferation of MCF-7, HeLa, and K562
cells [61–63], against chemical mutagens in Salmonella strains [63], and inhibiting the growth of
Plasmodium falciparum [64,65].Molecules 2019, 24, x 8 of 12 
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Figure 6. Structures of jasionane-sesquiterpenoids and sinularia-sesquiterpenoids.

In 2013, chemical investigations of the aerial parts of another Artemisia specie A. vestita by Tian et al.
led to the isolation of two new jasionane sesquiterpenes: Arvestolides B and C (40 and 41, Figure 6) [68].
The absolute configuration of compound 40 was determined by single-crystal X-ray diffraction with
Cu Kα radiation, and the absolute configuration of compound 41 was the same as compound 40 based
on biogenetic consideration and comparing its optical rotation with 40. Compound 40 showed a
moderate inhibitory effect on lipopolysaccharide (LPS)-induced nitric oxide (NO) production in BV-2
microglial cells.

3.2. Sinulane-Sesquiterpenoid

In 2018, Li’s team found the first example of marine-originated isopropyl type bicyclo [6.3.0.]
undecane sesquiterpenoid sinuketal (42, Figure 6) from soft coral Sinularia sp. [56]. Its relative and
absolute configurations were determined on the basis of the NOESY spectrum in combination with a
conformational analysis, density functional theory-NMR, and the TDDFT/ECD method. Compared with
the similar analogue compound 39, the positions of the methyl and isopropyl groups of compound
42 were quite different. The biological activity tests showed that 42 displayed antiviral activities
(against influenza A viruses H1N1 and PR8, with IC50 values of 172 and 443 µM, respectively), weak
cytotoxic activities (toward Jurkat, MDA-MB-231, and U2OS cell lines), mild in vitro antimalarial
activity (against Plasmodium falciparum 3D7), as well as mild inhibitory acetylcholinesterase activity.

4. Conclusions

Bicyclo [6.3.0] undecane sesquiterpenoids are relatively rare in nature. From 1977 to 2018, only
approximately 42 compounds with this unique scaffold were reported in terrestrial plants of the genera
Asteriscus, Lippia, Cynanchum, Dumortiera, Toxicodendron, Jasonia, and Artemisia, marine organisms of the
genera Aplysia, Laurencia, Capnella, Sinularia, and Phyllodesmium, and a mutant bacteria of Tubercularia
sp. Their absolute configurations were determined by X-ray diffraction, Mosher’s method, CD rules,
ECD calculaion, biogenetic consideration, and chemical conversion methods. They can be classified
into seven different types. Structurally, precapnellane, asteriscane, dumortane, toxicodenane, and
capillosane feature four methyl groups on the 5-8 ring moiety, while jasionane and sinulane decorate the
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core with an isopropyl group. How the isopropyl type bicyclo [6.3.0] undecane sesquiterpenoids were
formed remains a mystery, though this question may be resolved by a biosynthesis study. Because of
the broad bioactivities and synthetic challenges of the cyclooctanoid core, some total synthesis works
on dactylol (1), poitediol (2), precapnelladiene (3), asteriscanolide (4), and 11-hydroxyjasionone (38)
were achieved to develop the methodology to prepare the cyclooctane-containing compounds. Unique
structural molecules continue to be a rich source for lead compound discovery.
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