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Abstract

Background: Abruptness of pigment patterns at the periphery of a skin lesion is one of the most important
dermoscopic features for detection of malignancy. In current clinical setting, abrupt cutoff of a skin lesion determined
by an examination of a dermatologist. This process is subjective, nonquantitative, and error-prone. We present an
improved computational model to quantitatively measure abruptness of a skin lesion over our previous method.
To achieve this, we quantitatively analyze the texture features of a region within the lesion boundary. This region
is bounded by an interior border line of the lesion boundary which is determined using level set propagation (LSP)
method. This method provides a fast border contraction without a need for extensive boolean operations. Then, we
build feature vectors of homogeneity, standard deviation of pixel values, and mean of the pixel values of the region
between the contracted border and the original border. These vectors are then classified using neural networks (NN)
and SVM classifiers.

Results: As lower homogeneity indicates sharp cutoffs, suggesting melanoma, we carried out our experiments on two
dermoscopy image datasets, which consist of 800 benign and 200 malignant melanoma cases. LSP method helped
produce better results than Kaya et al., 2016 study. By using texture homogeneity at the periphery of a lesion border
determined by LSP, as a classification results, we obtained 87% f1-score and 78% specificity; that we obtained better
results than in the previous study. We also compared the performances of two different NN classifiers and support
vector machine classifier. The best results obtained using combination of RGB color spaces with the fully-connected
multi-hidden layer NN.

Conclusions: Computational results also show that skin lesion abrupt cutoff is a reliable indicator of malignancy. Results
show that computational model of texture homogeneity along the periphery of skin lesion borders based on LSP is an
effective way of quantitatively measuring abrupt cutoff of a lesion.
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Background
Melanoma is one of the deadliest and fastest growing
cancer types in the world. In the USA annually 3.5 mil-
lion skin cancers are diagnosed. Skin cancer is rarely
fatal except melanoma which is the 6th common cancer
type in the USA [1]. Women 25–29 years of age are the
most commonly affected group from melanoma. Ultra-
violet tanning devices are listed as known and probable

human carcinogens along with plutonium and cigarettes
by World Health Organization [1]. In 2017, an estimated
87,110 adults were diagnosed with melanoma in the
USA and approximately 9730 were fatal [2].
Melanoma is a malignancy of melanocytes. Melano-

cytes are special cells in skin located in its outer epider-
mis. Since melanoma develops in epidermis, it can be
seen by human eye. Early diagnosis and treatment are
critical to prevent harm. When caught early, melanoma
can be cured through excision operation. However, high
rate of false-negative of malignant melanoma is the main
challenge for early treatments [3].
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Dermoscopy, a minimal invasive skin imaging tech-
nique, is one of the viable methods for detecting melan-
oma and other pigmented skin proliferations. In the
current clinical settings, first step of dermoscopic eva-
luation is to decide whether the lesion meloanocytic or
not. The second step is to find out whether the lesion is
benign or malignant. There are commonly accepted pro-
tocols to detect malignancy in skin lesions, which are
ABCD Rule, 7-point Checklist, Pattern Analysis, Menzies
Method, Revised Pattern Analysis, 3-point Checklist, 4-
point Checklist, and CASH Algorithm [3, 4].
Celebi et al. [5] extracted shape, color, and texture fea-

tures and fed these feature vectors to classifier such that
they are ranked using feature selection algorithms to de-
termine the optimal subset size. Their approach yielded
a specificity of 92.34% and a sensitivity of 93.33% using
564 images. In their seminal work, Dreiseitl et al. [6] an-
alyzed the robustness of artificial neural networks
(ANN), logistic regression, k-nearest neighbors, decision
trees, and support vector machines (SVMs) on classify-
ing common nevi, dysplastic nevi, and melanoma. They
addressed three classification problems; dichotomous
problem of separating common nevi from melanoma
and dysplastic nevi, and the trichotomous problem of
genuinely separating all these classes. They reported that
on both cases (dichotomous and trichotomous) logistic
regression, ANNs, and SVMs showed the same perform-
ance, whereas k-nearest neighbor and decision trees per-
formed worse.
Rubegni et al. [7] extracted texture features, besides

color and shape features. Their ANN based approach
reached the sensitivity of 96% and specificity 93% on a
data set of 558 images containing 217 melanoma cases.
Iyatomi et al. [8] proposed an internet-based system
which employs a feature vector consists of shape, tex-
ture, and color features. They achieved specificity and
sensitivity of 86% using 1200 dermoscopy images. Local
methods have also been recently applied for skin lesion
classification. Situ et al. [9] offered a patch-based algo-
rithm which is to use Bag-of-Features approach. They
sampled the region of lesion into 16 × 16 grid and ex-
tracted Wavelets and Gabor filters as collecting 23 fea-
tures in total. They compared two different classifiers
which are Naïve Bayes and SVM; the best performance
they achieved is 82% specificity on a dataset consists of
100 images with 30 melanoma cases.
A considerable number of systems have been proposed

for melanoma detection in the last decade. Some of
them aim to mimic the procedure that dermatologists
pursue for detecting and extracting dermoscopic fea-
tures, such as granularities [10], irregular streaks [11],
regression structure [11], blotches [12], and blue-white
veils [13]. These structures are also used by dermatolo-
gists to score the lesion based on seven point-checklist.

Leo et al. [14] described a CAD system that mimics the
7 point-checklist procedure.
However, approaches [5, 7, 15, 16] in the literature

dominantly pursued pattern recognition in melanoma
detection. Majority of these works are inspired by the
ABCD rule [17], and they extract the features according
to the score table of ABCD protocol. Shape features (e.g.
irregularity, aspect ratio and maximum diameter, com-
pactness), which refer to both asymmetry and border,
color features in several color channels and texture fea-
tures (e.g., gray level co-occurrence matrix) [5] are the
most common features analyzed when ABCD protocol is
used [17]. There are other approaches [15, 18, 19] that
used one type of feature for detection of melanoma.
Seidenari et al. [15] aim to distinguish atypical nevi and
benign nevi using color statistics in the RGB channel,
such as mean, variance, and maximum RGB distance.
Their approach reached 86% accuracy, additionally they
concluded that there is a remarkable difference in dis-
tribution of pigments between the populations they
studied. Color histograms have been utilized for discrim-
inating melanomas and atypical or benign nevi [18, 19]
with specificity little higher than 80%.

Methods
Dermoscopic image analysis
The dataset for this study is obtained from ISIC 2016:
Skin Lesion Analysis Toward Melanoma Detection [20]
which has 900 dermoscopic images with 727 benign and
173 malignant lesions, and Edra Interactive Atlas of Der-
moscopy [21] which has 73 benign and 27 malignant le-
sions. The processing steps for this study is given in Fig. 1.
In this study, we focus on border abruptness feature of

skin lesions. The abrupt cutoff is a commonly accepted
clinical indicator of malignancy of a lesion. Assessment
of abrupt cutoff in current clinical practice is performed
by dividing the lesion into eight virtual pies (see Fig. 2).
Dermatologists search abrupt cutoff and assign a score
for each of the pie pieces. Since this process is carried
out manually, it leads subjective outcomes depending on
the experience of the dermatologist examining the le-
sion. To objectively measure and evaluate abruptness,
we first segment the skin lesion using Boundary Driven-
Density Based Spatial Clustering Application with Noise
(BD-DBSCAN) [22]. Then, we consider the offset of a
continuous function of whole lesion border via constant
velocity level sets and contract the lesion border using
these level sets. Next, we compute texture homogeneity
in the designated circular region which resides between
actual and contracted lesion border. Kaya et al. [23], was
the first work addresses the quantification of abruptness
toward melanoma detection. In the current study, we
enhance the prior work [1] in two aspects; i-) offering a
formal curve offsetting method based on the level set
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propagation (LSP) which generates better and non-
overlapping contracted (inner) border [24], ii-) using NN
as a classifier on an extended data set. While first contri-
bution yields us to collect more relevant data during fea-
ture extraction, second contribution leads to improve
accuracy on the extended dataset and that indicates
generalizability of the developed method on greater
dataset over Kaya et al. [23] method.

Boundary detection and boundary contour extraction
To access the region where abrupt cutoff possibly exists,
first we need to segment the lesion and extract the le-
sion border. A novel density based clustering algorithm

[22] is used for lesion segmentation. Segmented image is
recorded as black and white pixels where black pixels
are background and white pixels are foreground (refers
to the lesion). To obtain the 2D contour information of
the lesion border, we use the chain-code algorithm pro-
posed by Freeman [25]. The chain-code encodes bound-
ary in a binary representation. These encodings refer to
8 possible directions of a neighboring pixel of a starting
pixel. These directions range from 0 to 7 in the
rectangular-grid. Each number refers to a transition on
the direction in between two consecutive points. As can
be seen in the rectangular grid given in Fig. 3a and b,
direction numbers increase in the counter-clockwise.

Fig. 1 Global work-flow is shown

Fig. 2 a represents a malignant case with abrupt cutoff where the lesion is divided into eight pieces and asterisks indicate abrupt cut off b represents
a benign case with gradual change at lesion border. In both cases, homogeneity feature is a strong indicator for evaluating the abruptness

Erol et al. BMC Bioinformatics 2017, 18(Suppl 14):484 Page 53 of 169



In chain-code, first among all the pixels belong to
foreground, the spatially minimum pixel is selected to
start computation. The starting pixel is shown in Fig. 4a
with its minimum (X,Y) coordinates. After applying the
chain code, the boundary of the lesion is captured as
depicted in Fig. 4b (in green).

LSP for lesion border contraction
In our previous study [23], we developed a geometric
model for border contraction called dynamic scaling
(DS). Interested reader is referred to [23] for details and
mathematical foundation for the DS. In this study, we
use level set method [24] for border contraction. Previ-
ous method of contraction fails to provide equal distance
contraction for all the cases especially with very irregular
lesion contours, and yields unequal data collection dur-
ing feature extraction. Whereas, level set based contrac-
tion method results in constant proximity between
original and contracted border. These can be seen in
Fig. 5 a, b, c and d.
Shape contraction algorithms play an important role

in computer graphics, computer-aided design, manufac-
turing, CNC machines. We adopted the method studied
in a seminal paper of Kimmel et al. [24]. Following set of
formulations give the details of this approach.

In order to formulate shape offsetting/contraction prob-
lem, let us parameterize a curve as in the following form.

X0 sð Þ ¼ x sð Þ; y sð Þ½ �T ð1Þ
where s is a curve parameterization factor for curve X0 .
Let us find an offset curve in a closed form, which is
expressed as,

XL sð Þ ¼ X0 sð Þ−N s; 0ð ÞL ð2Þ
Equation [2] formulates a curve leaning “parallel” to

X0(s), where L is the displacement of the offset curve,
and N(s, 0) represents the unit normal at a x0(s) point
and can be written as,

N s; 0ð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2s sð Þ þ y2s sð Þp ys sð Þ; xs sð Þ½ �T ð3Þ

where N(s, 0) is the normal of the parametric point [ys(s),
xs(s)] on the curve at time 0 (e.g. N(s,0)). For instance,
when L is equal to 1, displacement of each iteration will
be a single pixel. Let us consider that X(s, t) changes con-
tinuously by time (e.g. number of iterations), hence for all
t, X(s, t) =X0(s) − tN(s, 0). The term of tN(s, 0) is negative
because we do contraction, it will become positive if ex-
pansion is needed. Differential description of this curve
evolution becomes as in the following form.

Fig. 3 Chain code initialization is shown

Fig. 4 a The starting point is shown in (a). b Lesion boundary is represented in green
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∂X s; tð Þ
∂t

¼ −N s; 0ð Þ

X s; 0ð Þ ¼ X0 sð Þ

8><
>:

9>=
>; ð4Þ

For the first iteration t is equal to 0; thus, curve will
remain same, which is represented as X(s, 0) = X0(s). Eq.
4 suggests that motion of each point on the border (e.g.
pixel) will be in inward direction (due to the contrac-
tion) of the normal as given in Eq. 5.

N s; tð Þ ¼ ys sð Þ; xs sð Þ½ �T 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2s sð Þ þ y2s sð Þp ð5Þ

Here constant 1 in numerator of the fraction refers to
the velocity during the curve propagation at time t. For
faster contraction, velocity or time step may be in-
creased. Eq. 5 yields time t dependent shape offsets for
t > 0. Figure 6b illustrates deficiency of selecting bigger
time step or higher velocity values where displacement
factor L becomes larger than the curvature. Thus, it re-
sults in loss of silhouette of actual curvature. To

Fig. 5 In a and b, red curves represent the contracted border. a The curve set shows that the LSP can obtain quantitatively accurate results.
b The curve set shows the DS still suffers from high curvatures and cannot offer constant distance from the original curve. c shows that the DS
yields a deficient data collection along the layer where the abruptness is searched. Yellow brushes indicate that not equal amount of territory
considered for feature extraction in spanning windows. Note that, these regions are masked using polygon intersection operations prior to feature
extraction. d shows that the constant velocity LSP imbues equalization of data amount during feature extraction

Fig. 6 a Without entropy condition stability can be preserved if contraction distance is less than the curvature of an arbitrary 2d curve; b Cusps
emerge when contraction distance is greater than the curvature. Shocks and cusps can be avoided adopting entropy condition
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overcome these possible problems (also called singular-
ities or shocks), we employ a more stable technique
based on flame-propagation model given in [24].
Shocks occur when normal of original curve collide or

cross itself, in other words when the curvature of X0 be-
comes singular. To address this constraint, Huygens ap-
plies “entropy condition” on the evolving curve. Osher
and Sethian [26] offered an efficient and numerically
stable wave front propagation for the curves in the plane
to overcome self collision problem. Osher et al. [26] ap-
plied Huygens principle, which is also known for adhering
entropy condition, proposing a solution for Eq. 5 such that
X(s, t) at time t is the approximation of the whole class of
disks of time t centered along the original curve X0(s). We
adopted Osher’s method [25] with entropy condition to
contract curve to obtain more accurate results as given in
Eq. 6 while eliminating self collision problem. Due to the
front dependency of the parameters s and t, a Langrangian
numerical-propagation scheme may be used to approxi-
mate the curve propagation as in the following form.

∂x s; tð Þ
∂t

¼ ys s; tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2s s; tð Þ þ y2s s; tð Þp

∂y s; tð Þ
∂t

¼ xs s; tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2s s; tð Þ þ y2s s; tð Þp

8>>>><
>>>>:

9>>>>=
>>>>;

ð6Þ

Numerical-propagation scheme takes central derivatives
of x and y in location s, and forward-derivative in time t.
However, Langrangian based numerical propagation of a
curve given in Eq. 6 is unstable and suffers from afore-
mentioned topological problems, i.e. shocks, self-
intersections (a.k.a. self collision). To maintain stability
and address topological problems, instead of Langrangian
numerical propogation, we use the ‘Eulerian formulation’.

Eulerian formulation
Eulerian approach implements the entropy condition in-
herently by a recursive procedure. Let us define a function
ϕ(x, y, t) and initialize it as ϕ(x, y, t) = 0 that results in a
closed curve X(s, 0). ϕ is strictly negative inside and out-
side of the level set ϕ(x, y, 0) = 0. The rationale behind this
approach is to search for the surface evolution of ϕ(x, y, t),
hence level sets ϕ(x, y, t) = 0 yield the propagated curves
X(s, t) preserving the entropy condition. Let us consider
ϕ(x, y, t) = 0 along X(s, t), therefore chain rule yields to:

∂x s; tð Þ
∂t

þ ∂ϕ x s; tð Þ; y s; tð Þ; tð Þxt
∂x

þ ∂ϕ x s; tð Þ; y s; tð Þ; tð Þyt
∂y

¼ 0

or

ϕt þ ∇Xt s; tð Þ ¼ 0

ð7Þ

where,

∇∅ ¼ ∂∅
∂x

;
∂∅
∂y

� �
ð8Þ

represents the gradient of ∅(x, y, t) for point (x, y) at
time t. Following equation is to derive a connection with
the scalar velocity of each point on the curve and its
normal direction:

v ¼ N s; tð Þ:Xt s; tð Þ ð9Þ
Here, we constrain v = 1 to have 1 pixel displacement

for a single time step. Since the gradient is always nor-
mal to the curve, it will be equal to zero as ∅(x, y, t) = 0 ;
therefore,

N s; tð Þ ¼ −
∇∅
∇∅k k ð10Þ

where negativity indicates that the direction of propaga-
tion is inward (contraction); thus,

v ¼ N :Xt ¼ −
∇∅
∇∅k kXt ¼ 1 ð11Þ

Embedding Eq. 12 into Eq. 8 results in the surface evo-
lution as in the following form.

∅t− ∇∅k k ¼ 0 ð12Þ
Solution for partial differential equation given in Eq. 13

can be carried out considering Hamilton-Jacobi Equations
and gradient descent. Algorithm 1 (see Algorithm 1) sum-
marizes steps for the LSP to generate contracted border.
Figure 5 illustrates results of contracted borders generated
from the DS method and the LSP. As seen from Fig. 5, the
LSP eliminates problems such as shocks and self-
intersections whereas these problems exist with DS.
Interested readers are referred to [24] for detailed math-
ematical derivations of the LSP.

After contracted border is found with LSP method, we
calculate texture homogeneity between lesion border
and contracted border with various radii sizes.
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Feature extraction
We obtain three different statistical measures which are
mean, standard deviation, and a texture descriptor Gray
Level Co-occurrence Matrix (GLCM) as a homogeneity
indicator [27]. GLCM is a statistical method that is to
analyze texture characteristics of an image which relies
on the spatial dependency of pixels. Mathematical repre-
sentation of GCLM is given below,

CΔxΔy i; jð Þ ¼
Xn

p¼1

Xm

q¼1

1; if I r; tð Þand I pþ Δx; q þ Δyð Þ ¼ u

0; otherwise

� �

ð13Þ
where I is an image with nxm size, C is the co-occurrence
of intensity value u, (Δx,Δy) is an offset parameter, and
lastly r and t are the spatial coordinates in the image I(r,t).
Note that, offset parameters make the co-occurrence
matrix variant to rotation.
Various statistical features (texture related) can be ob-

tained by deploying the GCLM matrix, such as contrast,
correlation, energy, and homogeneity. Here, we focus on
homogeneity which measures the similarity of grey level
distribution on the image. Hence, the homogeneity can
be expressed as in the form given in Eq. 14 where m and
n respectively represent the number of image pixels in
the vertical and horizontal directions. Figure 7 illustrates
a sample region where homogeneity feature is extracted.

Xm

i¼1

Xn

j¼1

GLCM i; jð Þ
1þ i−jj j ð14Þ

After border contraction using the LSP and extracting
homogeneity features in GLCM, next step is to analyze
generated data.

Data analysis and results
After feature extraction step, we categorized dataset ac-
cording to thickness of layer they are collected from. As
mentioned in the abstract, we selected 5, 7, 10, and 15
as the radius of circles between border and contracted

border, and the layer is generated by enveloping these
circles. In each overlapping circles (patches), we compute
the “mean-homogeneity”, “min-homogeneity”, “mean-
color value average”, “minimum color value average”,
“mean color value standard deviation”, and “minimum
color standard deviation”. We performed the experiments
on two different color spaces which are RGB and HSV
and fed them as input to the NN architectures and SVM.
Dataset provides dermoscopy images which are labeled

either as malignant or benign. We are measuring abrupt-
ness of lesion along the periphery of the lesion border
using homogeneity features to conduct binary classifica-
tion. Here, we argue that Multi-layer Perceptron-based
Neural Networks (MPNN) have ability to compete with
SVM, when it is combined with softmax regression.
The hidden layer system can include multi-layers

within separate instances better and converge the values
efficiently. A careful design of a NN is required for
obtaining higher accuracy rates in classification. There
are some parameters that the user needs to tune [28] for
the best accuracy, such as input layer selection, weights,
the number of hidden layers, the number of nodes on
each hidden layer, activation function, learning rate, the
number of iterations, and cost minimization function.
We train our NN with a pair of input feature values and
output malignancy values. In our study, in order to solve
the malignancy problem of the dataset, we choose two
NN architectures; multi-layer perceptron and the fully-
connected multi-hidden layer NN.
The first architecture we used is NN models multi-

layer perceptron binary classification [29]. In this ar-
chitecture, we used standard single layer NN which
consists of input layer, single hidden layer, and output
layer. Figure 8 schemes the architecture. In the input
layer of this NN, we used three different inputs which
are RGB channels, HSV channels, and RGB-HSV com-
bined channels. The number of features for RGB, HSV,
and RGB-HSV channels are 18, 18, and 36, respectively.
In the hidden layer, we used the same size as they are in
the input layer. In the output layer, two classes’ values
that are “benign” and “malignant” are converted to “0”
and “1”, respectively. In the running process of this NN,
each epoch has one feed forward and one back propaga-
tion. After empirical trials, execution continued at most
1000 iterations or execution stopped when the learning
rate between each epoch is less than or equal to 0.001.
The rectified linear unit (ReLU) is chosen as the activa-
tion function for this NN.
The architecture of the second NN is fully-connected

multi-hidden NN network. Figure 9 illustrates the archi-
tecture of its design such that in this NN, the input layer
is the same with the previous NN. The hidden layer is
designed with the Softmax regression [30]. In the output
layer, benign and malignant values are converted to one-

Fig. 7 Homogeneity extraction from the highlighted region along
the lesion boundary
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hot encodings which are [1 0] or [0 1], respectively. The
implementation of this design is done using TensorFlow
NN library [31].
We obtained results of two different abrupt cutoff fea-

ture extraction methods; Kaya et al. [23] and our LSP
based method using the two NN architectures intro-
duced above with same parameters. Optimum results
are obtained from the features collected when radius is
10 and on RGB channel. NNs are highly sensitive to
hyper-parameter changes, we applied tunings to get
optimum results. We empirically determined the iter-
ation numbers as 600, 750, and 1000 without constrain-
ing a stoppage criterion. Then, we added the learning
rate of 0.0001 to exit the iteration between two consecu-
tive epochs. We applied 10-fold cross-validation to split
the data into training and test sets. Since NNs generate

random weights between the layers at each time, we run
the algorithms 10 times. Consequently, all evaluation
metrics are the average of the all results generated in
these experiments. Notably, to maintain consistency we
used same dataset to test our NN designs.
We run both NN methods and SVM on the same set

of image data however different feature vectors based on
the different feature extraction methods used (the LSM
and the DS). Table 1 shows the results obtained from
the multi-layer perceptron NN, fully connected multi-
hidden layer NN, and SVM classifiers which are fed by
features extracted using both the LSP and the DS
methods. Table 2 is shows the parameters of the all clas-
sifiers used in the experiments. The highest f1-score,
87% with 78% specificity, is obtained using fully con-
nected multi-hidden layer NN in the RGB combination
with the radius 10.

Conclusions
An improved automated measurement of abrupt cutoff
for skin lesions is presented. LSP over dynamic scaling
to do lesion border contraction is introduced. Compu-
tational results showed that skin lesion abrupt cutoff is a
worthy indicator of malignancy. Results show that com-
putational model of texture homogeneity along the

Fig. 9 Fully-connected multi-hidden layer NN architecture

Fig. 8 Multi Layer Perceptron with a single hidden layer NN architecture

Table 1 LSP vs. DS based texture homogeneity feature
extraction and classification of lesions with various classifiers:
multi-layer perceptron, fully connected multi-hidden layer NN,
and SVM. 10-fold cross-validation is used. Results listed here are
means of 10 random executions
Feature Extraction- Classification Precision Recall Sensitivity F1-Score

LSP-Multilayer Perceptron NN 0.82 0.81 0.75 0.8

DS-Multi Layer Perceptron NN 0.77 0.76 0.56 0.74

LSP-SVM 0.69 0.64 0.66 0.66

DS-SVM 0.62 0.61 0.61 0.61

LSP-Fully-connected multi-layer NN 0.86 0.87 0.78 0.87

DS-Fully-connected multi-hidden
layer NN

0.76 0.75 0.61 0.75

Table 2 The parameters of the NN (the multi layer perceptron
and the fully-connected multi-hidden layer NN) classifiers and
SVM

Parameters NN Parameters SVM

Learning Rate 0.001 Kernel Function Polynomial

Number of iteration 1000 Polynomial Order 3

Number of run 20 Kernel Scale auto

Number of hidden layer 1 Box constraint inf

Number of hidden layer node 4 Standardize TRUE

Number of hidden layers
(If multilayer NN is used)

4 Outlier Fraction 0.05
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periphery of skin lesion borders is an effective tool to
quantitatively measure abrupt cutoff of a lesion. A multi-
layer perceptron and a fully connected multi-hidden layer
NN, and SVM classifiers are used. We obtained 87% f1-
score and 78% specificity for correctly classifying lesions
with the fully-connected multi-hidden layer NN classifier
and LSP based border contraction method.
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