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Abstract

Directly contrasting ultrafast excited-state dynamics in the gas and liquid phases is crucial to 

understanding the influence of complex environments. Previous studies have often relied on 

different spectroscopic observables, rendering direct comparisons challenging. Here, we apply 

extreme-ultraviolet (XUV) time-resolved photoelectron spectroscopy (TRPES) to both gaseous 

and liquid cis-stilbene, revealing the coupled electronic and nuclear dynamics that underlie its 

isomerisation. Our measurements track the excited-state wave packets from excitation along 

the complete reaction path to the final products. We observe coherent excited-state vibrational 

dynamics in both phases of matter that persist to final products, enabling the characterisation of 

the branching space of the S1-S0 conical intersection. We observe a systematic lengthening of the 

relaxation time scales in the liquid phase and a red shift of the measured excited-state frequencies 

that is most pronounced for the complex reaction coordinate. These results characterise in detail 

the influence of the liquid environment on both electronic and structural dynamics during a 

complete photochemical transformation.
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Introduction

Most chemical reactions and biological processes occur in the liquid phase. Although it is 

well known that solvation can significantly modify the energetics of electronically excited 

states, the effects of a liquid environment on ultrafast dynamics, especially electronic and 

structural excited-state dynamics, are not well understood. Studies of ultrafast dynamics in 

the liquid phase traditionally rely on visible or ultraviolet transient-absorption spectroscopy 

(TAS, see e.g. Ref.1), which is a powerful tool, particularly in its multi-dimensional 

variants2. Despite the breadth of structural information one can obtain from TAS, one must 

still ultimately make assumptions about the electronic configuration of the molecule as a 

function of time.

Time-resolved photoelectron spectroscopy (TRPES) provides direct access to the transient 

electronic states and is therefore a promising alternative approach, which has mostly been 

exploited in the gas phase using ultraviolet probe pulses3, 4 with recent extensions to 

the extreme-ultraviolet (XUV) domain5–7. The introduction of the liquid microjet8 has 

extended the applicability of TRPES to the liquid phase, where promising results have been 

obtained9–14, reaching down to the attosecond time scale15, 16.

Previous comparisons of ultrafast dynamics in the gas and liquid phases were thus also 

limited to different observables, specifically TAS in the liquid phase and photo-electron/ion/
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fragment spectroscopies in the gas phase (see Refs.17, 18 and references therein). Whereas 

those studies yielded important insights into photodissociation and bimolecular reaction 

dynamics, the ultrafast structural and electronic dynamics accompanying multi-dimensional 

conical-intersection dynamics have eluded direct comparison across different phases 

of matter. Yet, such a direct comparison is arguably central for achieving a detailed 

understanding of the role of a complex, highly fluctuating liquid-phase environment under 

ambient conditions on non-adiabatic ultrafast dynamics.

In this work, we report the first comparison of ultrafast excited-state dynamics in the gas 

and liquid phases using the same technique, i.e. TRPES. We maximize the information 

content of the measurements by performing our experiments in the XUV domain, allowing 

us to follow the complete chemical-reaction pathway. The photoisomerisation of cis-stilbene 

is an ideal candidate for this study because it is a prototype of olefinic isomerisation 

dynamics19–26 which underlie a myriad of fundamental natural processes, such as vision and 

germination control27, 28.

Our study for the first time reveals vibrational coherences in both the gas- and liquid-phase 

data. This observation resolves an important controversy between the predictions of such 

vibrational coherences in Refs.29, 30 on one hand, and their reported absence in recent 

gas-phase TRPES data30 on the other. Our observations do not only clearly indicate the 

existence of vibrational coherences in the excited state, supported by our calculations, but 

even the survival of coherent wave-packet motion all the way into the electronic ground 

state. These observations imply that the reaction dynamics of cis-stilbene photoisomerisation 

are a more coherent process than previously assumed. Even more interestingly, this 

high degree of vibrational coherence is found to be robust, even in the presence of a 

complex, fluctuating and interacting environment. By using a high-energy probe wavelength, 

both the isomerisation to trans-stilbene and the ground-state recovery of cis-stilbene are 

observed. The associated signals reveal a long-lived vibrational coherence, originating from 

low-frequency phenyl-torsional modes, which provides an experimental validation of the 

coupling space that forms the S1-S0 conical intersection. Furthermore, as table-top XUV 

sources become more accessible, our work demonstrates both the power of using these 

photon ranges to collect TRPES, and a methodology for the interpretation of the complex 

spectra.

Our experimental results are supported by state-of-the-art electronic-structure and non-

adiabatic dynamics simulations. These results show that the gas-phase TRPES can be well 

described when a large number of cationic states are included. Furthermore, they reveal that 

the friction introduced by the solvent environment is likely to be an important contribution 

to the condensation-induced lengthening of the relaxation time scales. Our experimental 

results suggest that the non-adiabatic dynamics are qualitatively similar in both phases of 

matter, but essentially differ in their characteristic time scales. This observation particularly 

applies to structural dynamics involving large-amplitude motions, which undergo the most 

significant lengthening upon condensation. Taken together, our methodologies offer a 

general protocol for unraveling the effects of a liquid environment on ultrafast coupled 

electronic and structural dynamics.
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Results

Figure 1a illustrates our experimental approach. Using ultrashort ultraviolet (266 nm) pump 

and extreme-ultraviolet probe pulses, we recorded time-resolved photoelectron spectra of 

the cis-stilbene photoisomerisation in the gas and liquid phases. The specific details of the 

beamlines and spectrometers used in the respective experiments are given in the Methods 

Section. Figure 1b shows a Jabłoński diagram of the electronic states involved in the 

cis-trans isomerisation of cis-stilbene, and the cationic states that are accessed by the probe, 

in both the gas and liquid phases.

Figure 2a shows the measured spectra of cis-stilbene in the gas phase at pump-probe time 

delays between -50 fs and 1 ps (the complete TRPES spectra and global fits can be found 

in the supplementary information (SI) in Supplementary Fig. 1). The spectra at early delays 

are dominated by a broad, very short-lived photoelectron band extending from vertical 

binding energies (vBEs) of ~4.5-9.5 eV (black dotted box). The low-vBE region decays on 

a sub-picosecond time scale (red box), whereas the high-VBE region displays long-lived 

signals (white boxes). The high-vBE region is magnified in Fig. 2c and is further analyzed 

and discussed later. Based on a comparison with dynamical calculations, the signal in the 

black box is assigned to ionisation from the Franck-Condon (FC) region of the initially 

prepared S1 state. This signal decays as a consequence of a structural relaxation from 

the FC region to the so-called ”phantom state” (p*), which is a low-lying, relatively flat 

region of the S1 potential-energy surface, which mediates the cis-trans isomerisation process 

between the S1 and S0 states (see also Fig. 5).25,29–31. The band centred at 8.8 eV has three 

contributions. The contribution in the black box appears within the cross-correlation time of 

the experiment ((96±8) fs) and decays with a time constant of (90±30) fs. At intermediate 

delays (~100-400 fs), it is dominated by ionisation from S1(p*) to a dense manifold of 

cationic states (Dn with n reaching up to 10). At later delays, it is dominated by ground-state 

recovery, including signals from cis- and trans-stilbene. The calculations supporting this 

assignment are shown in Supplementary Fig. 9.

The experimental data shown in Fig. 2a were analysed using a global fitting procedure, 

where each energy bin was fitted using a global time function. A good fit was obtained using 

an offset exponential function

S Ek, Δt = A1 Ek e−Δt/τ1 + c × H(t) ⊗ G(t), (1)

where τ1 is the decay constant for the excited-state signal. The instrument response function 

is given by G(t), H(t) is the Heaviside step function and A1(Ek) is the amplitude of the 

exponential decay component for each energy bin. The obtained global fit is shown in Fig. 

2b and the corresponding temporal profile, as well as τ1 are shown in the inset of panel e. 

The global fit mostly captures the TRPES very well, as can be seen from the reconstructed 

features between 8.5 – 9.0 eV, and 6.8 – 8.0 eV. However, it is clear that the experimental 

transient between 5.5 – 6.5 eV decays faster than the global fit. Therefore, the photoelectron 

signal between 2 and 10 ps was averaged and subtracted from the spectrum with the aim of 

subtracting the ground-state photoelectron signal – which helps to emphasise this transient 

against the higher-energy photoelectron signals. This is shown in Fig. 2c, and the global fit 
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of this feature is shown in Fig. 2d. In this case, the best fit was obtained with a parallel 

biexponential decay without offset

S Ek, Δt = A1 Ek e−Δt/τ1 + A2 Ek e−Δt/τ2 × H(t) ⊗ G(t) (2)

The obtained temporal profiles and time constants are shown in Fig. 2e. The time constant of 

the faster decay is consistent with that obtained from the global fit according to Eq. (1).

The results of the time-dependent non-adiabatic-dynamics simulations are shown in Fig. 2f. 

They included 200 trajectories, 4 neutral electronic states (S0-S3) and 15 cationic states (see 

Methods section for details). These calculations show that photoexcitation at 266 nm mainly 

populates the S1 (lowest-lying bright) state, with smaller populations in the S2 and S3 states 

(Suppl. Figs. 9, 10). The observed dynamics are dominated by those of the S1 state (Suppl. 

Fig. 10), on which we focus from hereon. The direct comparison of theory and experiment, 

reveals striking similarities which are highlighted by the dashed boxes, facilitating a direct 

comparison of Fig. 2a and f. Both show a strong signal from higher-lying cationic states 

at short time delays around 8.8 eV, with the excited-state signal decaying within ~400 fs. 

The signal observed at longer delays, corresponding to ionization of the photoexcited wave 

packet that has returned to the electronic ground state, also agrees very well. The regions 

highlighted by the red rectangle also agree well, although the decay of the S1(p*) signal 

is faster in the calculation than in the experiment. The time scale of the calculated decay 

is in good agreement with the most recent ab-initio multiple spawning calculations29, 30. 

The shorter calculated decay time scale might be the consequence of zero-point leakage, 

i.e. a higher effective temperature in the calculations. The experimentally observed decay in 

the region of 7-8 eV is also well reproduced by the calculations, although the calculations 

underestimate (overestimate) the signal around binding energies of 6.2 eV (7.8 eV). The 

calculations predict a strong, rapidly decaying signal below 5 eV, which is less clear in 

the experimental data, possibly due to the finite experimental cross-correlation time, as 

opposed to the impulsive excitation assumed in the calculations. Finally, we note that the 

experimental signal at all binding energies appears more slowly for the same reason.

The experimental TRPES of liquid-phase cis-stilbene is shown in Fig. 3a with the global 

fit of this data being shown in panel b. The time function that gave the best fit differs 

slightly from the gas-phase results, in that it is a sequential (rather than a simultaneous) 

biexponential model. The sequential biexponential decay is described as

S Ek, Δt = A1 Ek e−Δt/τ1 + A2 Ek 1 − e−Δt/τ1 e−Δt/τ2 × H(t) ⊗ G(t) (3)

where the decay constant τ1 is the same as the rise time of the second exponential decay. 

The one-dimensional decay profile of this model is shown in Fig. 3d, and the calculated 

TRPES from the dynamical simulations is shown in panel c.

In the experimental TRPES in Fig. 3a, we first note the overall shift of the signal to lower 

binding energies by ~1 eV, a consequence of solvent polarization. At early delays up to ~200 

fs, we particularly note the rapid decay of the band between 3.1 eV, and 3.9 eV, which is 
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assigned to relaxation out of the Franck-Condon region by comparison with the calculations 

shown in Fig. 3c. At longer time delays, the spectrum is dominated by a broad band centered 

at 4.7 eV, which is reminiscent of the excited-state gas-phase signal, shown in Fig. 2c, and 

also corresponds to the decay of the S1(p*) signal. The primary temporal difference between 

the corresponding photoelectron signals is the longevity of the liquid-phase transient. The 

gas-phase excited-state signal has been fitted with a monoexponential decay, yielding a 

decay constant of (426±28) fs, whereas the liquid-phase signal remains in the excited state 

for much longer, with a decay constant of (1029±157) fs. This is also reflected by the 

theoretical simulations shown in Fig. 3c, where the excited-state signal is still reasonably 

strong after a picosecond, in contrast to the corresponding gas-phase calculation (Fig. 2f).

Following excitation at 266 nm the S1 state is mainly populated (Supplementary Fig. 10). 

Our measurements (Fig. 3a) show a very short-lived transient at vBEs between 3.3-4.0 eV, 

which we assign to relaxation out of the Franck-Condon region. The p* region of the S1 

state dominates the measured excited-state transient at longer time delays, both in the gas 

and liquid phases (Fig. 2c for the gas phase, and the photoelectron signal between ~6.5 and 

4.0 eV in Fig. 3a).

In the liquid phase, the rise time of the p* signal (blue curve in Fig. 3d) is thus explicitly 

correlated to the decay time of the signal from the Franck-Condon region, with a time 

constant of (208±97) fs. In the gas phase, the decay of the signal from the Franck-Condon 

region and the rise time of the p* signal are both within the cross-correlation time. The 

transient p* signals are the dominant and longest-lived features for both liquid and gas 

phases. Interestingly, the liquid-phase p* signal appears more slowly with a rise time of 

(208±97) fs. The decay time of the liquid-phase signal p* is about two times longer than in 

the gas phase.

One of the main advantages of using an XUV probe is its ability to follow the excited-state 

dynamics all the way to the electronic ground state. As will become evident from the 

Fourier analysis shown below, coherent vibrational dynamics are observed in the gas-phase 

photoelectron signals of both the ground (Fig. 2a) and electronically excited (Fig. 2c) 

states. The intensity of the ground-state photoelectron signal displays a long-lived oscillation 

(Fig. ??). A Fourier transform of this signal (Fig. 4a) gives a number of distinct frequencies 

that can all be assigned to the overtones of the phenyl torsional mode of the electronic 

ground state of trans-stilbene. The measured frequencies from the literature are shown in 

parentheses for comparison32. This observation suggests that the phenyl torsion is one of the 

two vibrational modes spanning the branching space of the CI that mediates the cis-trans 
isomerisation. This conclusion is indeed confirmed by our ab-initio calculations (SI, Section 

7). Moreover, coherent oscillations are also present in the p* signal (Fig. 2c,e). The Fourier 

transform of the corresponding residuals is shown in Fig. 4b. These frequencies can mostly 

be assigned to excited-state phenyl torsional motions32 of the cis-stilbene S1 state (p* 

region), except for 365 cm−1, which is assigned to the ethylenic torsion of the complex 

reaction coordinate25, 33.

Turning to the liquid phase, oscillations in the p* signal are also visible (Fig. 3d), and 

their Fourier spectrum is presented in Fig. 4c. Just as in the gas phase, the peak at 175 
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cm−1 is assigned to excited-state phenyl torsion motion. The higher frequency of 323 cm−1 

in the liquid phase matches with the ethylenic torsion of the complex reaction coordinate. 

This red shift of this frequency compared to the gas phase amounts to 42 cm−1, which 

is mainly assigned to frictional forces in the liquid phase that hinder the corresponding 

large-amplitude motion.

Discussion

Our experimental results combined with theoretical calculations lead to the following 

comprehensive picture of the isomerisation dynamics. The excited-state dynamics of cis-

stilbene are characterised by two concerted nuclear motions, as graphically outlined in Fig. 

5. The first is pyramidalisation of the ethylenic carbons, very similar to hydrogen-out-of-

plane (HOOP) motions29, 34, 35. The second motion is a dihedral rotation around the central 

ethylenic bond. The Fourier transform of the experimental TRPES of the p* region reveals 

frequencies (Fig. 4b) that correspond to the ethylenic dihedral motion of cis-stilbene.25 This 

motion is part of a complex reaction coordinate that leads to the S1-S0 conical intersection. 

The fact that these vibrational coherences appear is a strong indication of coherent non-

adiabatic dynamics in the electronically excited state of cis-stilbene. The preservation of 

coherence is further reflected in the Fourier transform of the ground-state photoelectron 

signal between 2 and 10 ps, around 9 eV in the experimentally measured TRPES in Fig. ??

a. This Fourier transform is shown in Fig. 4a, and corresponds to low-frequency phenyl 

torsional modes, which are a vibrational fingerprint of the coupling space of the S1-S0 

conical intersection, as further consolidated by calculations shown in the SI (section 7). 

This interpretation is consistent with previous computational modelling which showed how 

kinetic energy from motion along the direction of the coupling vectors is redistributed into 

the phenyl torsional motions26, 29, 36.

The liquid-phase TRPES displayed excited-state dynamics that is similar to the gas phase, 

though with important differences. In the gas phase, a parallel biexponential decay gives the 

best agreement with the measured data, whereas the liquid-phase data requires a sequential 

biexponential decay. It should be stressed that this is not necessarily an indication of 

different dynamics, but is most likely the consequence of a systematic lengthening of 

the relaxation time scales. The first decay would thus correspond to relaxation out of the 

Franck-Condon region towards the p* region, which in the gas phase happens on a time 

scale very similar to the cross-correlation time, as it corresponds to HOOP motions. This is 

supported by previous studies who found that this relaxation takes place in <25 fs in the gas 

phase.29, 34, 35

The effect of the liquid environment on the cis-stilbene photodynamics has been 

qualitatively modeled with the Langevin equation, introducing friction and random forces. 

It is well known e.g. from the studies on trans-stilbene photodynamics that frequency-

dependent friction terms would be needed to model such effects quantitatively37. However, 

even the simple approach with a constant friction term predicts a noticeable lengthening of 

the relaxation time scales, in agreement with our observations.
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Despite these differences, there is a key similarity between the liquid-phase data and the 

gas-phase data in terms of the observed vibrational coherences. This is manifested in 

the close agreement between the two Fourier spectra of the p* signals (Figs. 4b,c). The 

highest-frequency peak 365/323 cm−1, is assigned to the ethylenic torsion, which forms the 

primary motion of the cis-trans isomerisation coordinate. This motion is characteristic of the 

excited-state wave packet oscillating in a local minimum of the p* region. Comparison of 

the frequencies reveals a red shift in the liquid phase, which is largest (42 cm−1) for the 

ethylenic torsion. This can be rationalised by the friction imposed by the liquid environment, 

which is most significant for the largest-amplitude motion, as illustrated in Fig. 3f.

Although coherent vibrational motion in the liquid phase has been previously observed38–42, 

it might seem remarkable that such a large-amplitude motion as torsion of the ethylenic 

dihedral angle would be able to maintain coherence. Indeed, steric interactions with the 

solvent could be expected to be sufficient for the molecule to start favouring dissipation of 

its internal energy into the various bath modes available. In the case of isolated molecules, 

the vibrational coherence is preserved due to the relaxation pathways to both the p* region 

and the ground state featuring no potential-energy barrier. The observed preservation of 

coherence suggests that the effects of the liquid-phase environment are not sufficient 

to modify or create a barrier on the gas-phase relaxation pathway. This could possibly 

explain why the ethylenic chromophore has been so evolutionary favourable in liquid-phase 

biological processes that require a chemical switch - for example, the photoisomerisation of 

rhodopsin.

Before concluding, it is worth pointing out that our results contain no indications of the 

formation of 4a,4b-dihydrophenanthrene (DHP). The TRPES spectra show no clear evidence 

for its formation and none of the calculated trajectories predict its appearance. It is therefore 

likely to be a minor channel under the conditions of the present experiments. It is also 

worth noting that our liquid-phase measurements have been done on neat stilbene to avoid 

dilution-induced signal reduction. In the future, it will be interesting to study the influence 

of other solvent environments on the reported isomerisation dynamics and coherences.

Conclusions

In summary, XUV probe photons have enabled us to follow the complete reaction 

paths of the photoisomerisation of cis-stilbene in both the gas and liquid phases and to 

directly compare them using the same observables. Qualitative similarities in the relaxation 

pathways, combined with quantitative differences in the time scales have been observed. 

Relaxation out of the Franck-Condon region was found to occur on time scales of (118±18) 

fs and (208±97) fs in the gas and liquid phases, respectively, whereas non-adiabatic 

relaxation from the p* region to the electronic ground state were found to occur in 

(426±28) fs and (1029±157) fs. These dynamics were assigned through comparison with 

non-adiabatic-dynamics calculations. The lengthening of the time scales by a factor of ~2 in 

the liquid phase was at least partially assigned to the effect of friction on the large-amplitude 

molecular motion. Importantly, long-lived vibrational coherences in the electronic ground 

state of stilbene, surviving internal conversion in both phases of matter have also been 

observed, thereby revealing that the cis-trans isomerisation is a remarkably coherent process. 
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This work demonstrates the considerable potential of XUV-TRPES in building bridges 

that connect liquid-phase chemical-reaction dynamics with those of isolated gas-phase 

molecules, opening a new pathway to a detailed understanding of the coupled electronic 

and nuclear dynamics contributing to chemical-reaction dynamics in the liquid phase.

Methods

Two complementary experimental setups were employed in this study. For the liquid-phase 

measurements, XUV probe pulses obtained from high-harmonic generation (HHG) were 

combined with pump pulses centered at 266 nm in the interaction region of a magnetic-

bottle photoelectron spectrometer, as shown in Extended Data Figure 1. The XUV pulses 

were provided by a time-preserving monochromator43. The 1.6 mJ pulses with a duration 

of 30-fs centered at 800 nm at a repetition rate of 5-kHz were split into two arms using 

an 80:20 beamsplitter. The major reflected beam was focused into a semi-infinite gas cell 

filled with 10 mbar Xe to drive HHG. The generated high-order harmonics were first 

spatially selected by a 300 lines/mm grating and then focused with a toroidal mirror into 

the interaction region (focal diameter: ~250 μm). The minor transmitted beam was used 

to produce 266 nm pump pulses by mixing the fundamental 800 nm with the second 

harmonic at 400 nm in a type I process in BBO, and the 266-nm beam was focussed 

into the chamber with a focal diameter of ~150 μm. The delay between the two pulses 

was set by changing the optical path length of the 266 nm pulses using a motorised 

translation stage. Photoelectron spectra of rare gases were used for energy calibration of 

the photoelectron spectrometer. The needle valve for the gas-phase experiment and the 

35 μm quartz nozzle generating the microjet for the liquid-phase experiment were both 

mounted on a grounded PEEK holder. The quartz nozzle was capped with Cu tape, held 

together by Sn solder, to prevent the insulating quartz from charging up due to stray 

electrons44. The liquid cis-stilbene was purchased from abcr swiss AG and was recycled 

for multiple measurement purpose, its purity was repeatedly analysed by a commercial gas 

chromatograph from ThermoFisher Scientific (Model:TRACE 1300) after each recycle. Our 

liquid sample contains 99.2% of cis-stilbene and 0.8% of trans-stilbene. The small amount 

of trans-stilbene will not affect our results, owing to the long-lived character (~100 ps) of 

its S1 state. Tetrabutylammonium chloride is dissolved in cis-stilbene to a concentration of 

50 mmol/l to minimize electrokinetic charging. The experiments were run with a liquid flow 

rate of 0.4 mL/min.

For the gas-phase measurements, 266-nm pump and 133-nm probe pulses are combined in 

a home-built velocity-map imaging (VMI) spectrometer45, 46. The parameters of the laser 

pulses and beam paths are indicated in Extended Data Figure 2. 3 mJ pulses with a duration 

of 30 fs centered at 800 nm are split into two arms using an 80:20 beam splitter. The major 

component of the beam is frequency-doubled in a BBO and then used to generate low-order 

harmonics of 400 nm in a semi-infinite gas cell filled with 10 mbar of Xe, resulting in 133 

nm laser light47. The minor component is used to generate 266 nm pulses which are used as 

the pump in this experiment. The cis−stilbene is delivered into the chamber by flowing 2 bar 

He through a bubbler containing the liquid sample. The photoelectrons created by ionisation 

of the gaseous sample are accelerated by the extractor and repeller plates and then detected 
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through an imaging system consisting of a microchannel-plate detector, a phosphor screen 

and a CCD camera.

The non-adiabatic simulations of cis-stilbene upon the photoexcitation into the first 

absorption band were performed with the Landau-Zener surface hopping (LZSH) 

algorithm.48, 49 LZSH is a multi-dimensional and adiabatic version of the Landau-Zener 

surface hopping method where the transition probabilities are evaluated based on the 

curvature of the potential energy surface along the trajectory. The main advantage of the 

LZSH scheme is that it does not require knowledge of non-adiabatic coupling elements 

for the evaluation of the transition probabilities. We have calculated 200 trajectories for 

both the gas phase and the liquid phase for 1.2 ps, with a time step of 0.12 fs. In 

our simulations, 4 electronic states were included; with this choice, the bright, absorbing 

state was always covered. The initial conditions for the LZSH simulations were evaluated 

within molecular dynamics simulations with a quantum thermostat based on the Generalised 

Langevin equation (GLE).50 The GLE quantum thermostat approach covers the zero-point 

energy delocalisation exactly for harmonic modes and the initial state is captured reasonably 

even for modes with medium anharmonicity.51 For the liquid phase, we modeled the effect 

of the environment by coupling all atoms of the system to the Langevin thermostat with a 

time constant τ =1.0 ps and τ =0.5 ps. We have assumed a temperature of 300 K in all the 

simulations. The molecular dynamics (MD) calculations were run within our in-house code 

ABIN.52 The parameters for the GLE thermostat were taken from an online database.53

The MD calculations used energies and forces calculated within the multi-reference 

configuration interaction method built upon a semi-empirical orthogonalisation (OM3) 

parametrisation based on the MNDO-type Hamiltonian.54 This approach was shown to 

work well for various systems,55 noticeably the combination provided faithful results for 

cis-trans isomerisation processes in combination with the LZSH scheme.56 We considered 6 

occupied and 11 unoccupied orbitals in our active space. For correlation treatment, graphical 

unitary group approach (GUGA-CI). MR-CISD/OM3 were performed in the MNDO2005 

7.0 program.57

The time-dependent signal corresponding to the time-resolved photoelectron spectra was 

modeled by calculating the density of electronic states along the trajectory; we also 

considered varying contributions of the distinct electronic states to the signal, i.e. the Dyson 

norms were evaluated. The ionisation energies were calculated with the CASSCF(16/10)/

6-31g* approach, considering 8 occupied and 2 unoccupied orbitals in the active space, 

state-averaging over 4 neutral excited and 15 ionized states. The ionization energies were 

then shifted to match the first ionization energy of the MR-CISD/OM3 approach. We 

have further tested the energetics against the CASPT2 calculations, see the Supplementary 

Information. The CASSCF and CASPT2 calculations were performed in the MOLPRO 2012 

package.58 The Dyson norms were evaluated using WFOVERLAP program within SHARC 

suite.59 For the liquid phase calculations, we have added a constant solvent shift of 1.05 eV 

for all ionic states. The value was calculated within a polarisable continuum model using 

the concept of non-equilibrium solvation (see the Supporting Information for more details). 

Finally, we have subtracted the signal calculated at t = 0 from the signal calculated at a given 

time. The quantity calculated in this way is directly comparable to the experiment.
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Extended Data

Extended Data Figure 1. The experimental setup for the liquid-phase TRPES measurements.
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Extended Data Figure 2. The experimental setup for the gas-phase measurements.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Schematic illustration of the experimental methods
Panel a) illustrates TRPES in the gas and liquid phases, highlighting their direct comparison. 

Panel b) shows a Jabłoński-type diagram illustrating the neutral and cationic electronic states 

that contribute to the TRPES during the cis-trans photoisomerisation of stilbene.
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Figure 2. Time-resolved photoelectron spectra of the photoisomerisation of gaseous cis-stilbene.
Panel a) shows the measured spectrum with a noise threshold of 5% applied. The dashed 

boxes are the same as in panel f (theory), where their assignment in terms of initial and final 

states is given. A global fit of the data according to Eq.(1) is shown in panel b). The features 

between 8.5 – 9 eV, and 6.8 – 8 eV are very well described, but the signal between 5 – 

6.5 eV decays too quickly. Therefore, this section was extracted and fitted separately. This 

high-energy part is shown in panel c), and the corresponding global fit according to Eq.(2) 

is shown in panel d). The one-dimensional decay profile of this fit is shown in panel e), the 
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inset of which shows the temporal profile of the global fit from panel b). The red-shaded 

area in (e) represents the error range (1 standard deviation) of the measured signal (black 

dots). Panel f) shows a histogram of the calculated ionisation energies weighted by Dyson 

norms along 200 trajectories of a non-adiabatic-dynamics simulation, including ionisation to 

15 final states.
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Figure 3. Time-resolved photoelectron spectra of the photoisomerisation of liquid cis-stilbene.
Panel a) shows the measured spectrum, with a noise threshold of 5% applied. The dashed 

boxes are the same as in panel f (theory), where their assignment in terms of initial and 

final states is given. A global fitting with a sequential biexponential model (Eq.(3)) is 

applied and shown in panel b). The one-dimensional decay profile of this fit is shown 

in panel d), with the decay-associated spectra shown in panel e). The red-shaded area in 

(d) represents the error range (1 standard deviation) of the measured signal (black dots). 

Panel c) shows a histogram of the calculated ionisation energies weighted by Dyson norms 

along 200 trajectories of a non-adiabatic-dynamics simulation, including ionisation to 15 

cationic states. The calculations included frequency-independent friction, represented by a 

time constant τ = 0.5 ps of the Langevin thermostat. The frictional effect is schematically 

illustrated in panel f).
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Figure 4. Fourier transform of the coherent oscillations observed in excited- and ground-state 
signals.
a) FFT of the ground-state oscillations shown in Supplementary Fig. 1, which is partially 

reproduced in Fig. 1a. b) and c) present the FFT spectrum obtained from the residuals of 

the p* region for the gas- and liquid-phase, respectively. The red lines represent the FFT of 

the experimental data that was zero-filled to improve the frequency resolution, whereas the 

black dots are the FFT of the non-zero-filled data. The density plots in blue quantify the 

sensitivity of the Fourier transform to white noise added in the time domain, as obtained 

from a Monte-Carlo simulation. The final relative error of the Fourier-transform amplitude 

in (c) amounts to 12%, as described in the SI, Section 1.2. The wavenumbers are compared 

to those obtained from other experiments (in parentheses, from Refs.32, 33). Additional 

details are given in the SM Section 1.2. and 7, where the FFT of the theoretical simulations 

is shown as Supplementary Fig. 12.
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Figure 5. Summary of the excited-state dynamics of cis-stilbene.
Schematic representation of the potential-energy surfaces along the ethylenic 

pyramidalisation angle (Φ) and the dihedral angle of the ethylenic torsional motion (Ψ). 

The wave packet dynamics on the involved potential energy surfaces and across the most 

important conical intersections are shown, together with the time constants measured in the 

present work.
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