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Abstract 

Long-term sequelae of severe acute respiratory coronavirus-2 (SARS-CoV-2) infection 

may include an increased incidence of diabetes. Our objective was to describe the 

temporal relationship between new diagnoses of diabetes mellitus and SARS-CoV-2 

infection in a nationally representative database. There appears to be a sharp increase 

in diabetes diagnoses in the 30 days surrounding SARS-CoV-2 infection, followed by a 

decrease in new diagnoses in the post-acute period, up to 360 days after infection. 

These results underscore the need for further investigation, as understanding the timing 

of new diabetes onset after COVID-19 has implications regarding potential etiology and 

screening and treatment strategies. 
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Introduction 

The relationship between severe acute respiratory coronavirus 2 (SARS-CoV-2), the 

Covid-19 pandemic, and diabetes mellitus (DM) is the subject of active investigation (1-

2). A growing body of evidence suggests a possible increased incidence of new-onset 

DM after infection with SARS-CoV-2 (3-5). The mechanism by which SARS-CoV-2 

infection increases the risk of developing DM is not fully understood. Hypotheses 

include stress hyperglycemia related to acute illness, direct effect of the virus on 

pancreatic vasculature or beta cells, changes in innate immunity, and iatrogenic causes 

(6-8).    

 

However, risk factors for developing diabetes likely increased for the population, 

regardless of infection with SARS-CoV-2, as rates of overweight and obesity increased 

at the population level (9-11). In addition, physical activity declined globally during the 

pandemic and has not recovered (12).  Stress related to the pandemic has increased 

endogenous cortisol which may be risk factor for DM (10, 13-14). It is currently unknown 

if rates of incident DM are higher after infection with SARS-CoV-2 than after infection 

with similar non-Covid-19 viruses (3-5).  

 

We sought to characterize the temporal relationship between new diabetes diagnoses 

relative to SARS-CoV-2 infection in individuals who had SARS-CoV-2 and were also 

diagnosed with DM within 6 months of the start of the pandemic. We undertook this 

analysis in a large, nationally representative database in the U.S., the National Covid 

Cohort Collaborative (N3C). 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 4, 2022. ; https://doi.org/10.1101/2022.12.02.22283029doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.02.22283029
http://creativecommons.org/licenses/by-nc-nd/4.0/


Methods 

This is a nation-wide cross-sectional analysis to display the temporal relationship 

between new onset diabetes relative to SARS-CoV-2 infection in the N3C database.  

The N3C database aggregates data from electronic health records (EHR) from more 

than 70 institutions nationally to accelerate research efforts on the evolving Covid-19 

pandemic (15).  

 

The study sample included all persons with SARS-CoV-2 and with type 2 DM, from 

March 2020 to February 2022 in the N3C Database. To reduce ascertainment and 

selection bias, the sample was restricted to patients who had at least one outpatient 

clinical encounter at least six months prior to their SARS-CoV-2 infection, and at least 6 

months of follow-up data. Because the earliest data in the N3C database is from 2018, 

everyone in the sample had engaged with the healthcare system at least once between 

6 and 21 months prior to their SARS-CoV-2 infection.   

 

SARS-CoV-2 infection is defined by either the ICD-10 code or laboratory results 

confirmed in a clinical setting. The date of SARS-CoV-2 infection is the index date and 

includes the 7 days prior to the index date to account for labs that resulted after the 

initiation of a clinical encounter for suspected Covid-19.  

 

For this manuscript, type 2 diabetes is defined by ICD code using ICD lists reviewed for 

completeness and accuracy by two clinicians (16). New DM is defined as the earliest 

problem list code for DM, in persons who did not have an ICD code for DM in the EHR 

before September 2019. Because the sample is restricted to persons who had at least 6 
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months of EHR data before an infection with SARS-CoV-2, the earliest DM diagnoses in 

the sample would be September 2019.   All problem list items in N3C are mapped to 

SNOMED, and 523 SNOMED codes were identified by clinicians as a diagnosis of DM. 

The earliest DM diagnosis date was subtracted from the index date per subject to 

determine a specific number of days to bucket them per 30-day time period.  

 

Two analyses of DM incidence were conducted among persons in the N3C who had 

SARS-CoV-2 and an ICD code for DM, but who did not have an ICD code for DM before 

September 2019. Both analyses are presented by calendar month of the pandemic. 

Analyses were conducted in the secure computing environment using Palantir and R 

statistical software (R Foundation for Statistical Computing, Vienna, Austria).  

  

Results 

Table 1 presents the demographic characteristics of new cases of DM in persons with 

SARS-CoV-2 infection in the N3C, by each month of the pandemic. Figures 1 and 2 

present the temporal relationship between SARS-CoV-2 infection and new diagnoses of 

DM. Figure 1 shows the proportion of individuals with DM that were diagnosed with DM 

since September 2019; Figure 2 shows the number of new DM cases relative to SARS-

CoV-2 infection. DM diagnosed in the 7 days prior SARS-CoV-2 infection could indicate 

that the DM and SARS-CoV-2 were diagnosed in the same healthcare encounter, due 

to lag times in SARS-CoV-2 results. 

 

Both figures depict a sharp increase in DM diagnoses in the days immediately 

surrounding a positive SARS-CoV-2 result, from 7 days prior to 30 days after SARS-
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CoV-2 infection. The count of new DM diagnoses is lower in the months after SARS-

CoV-2 infection than in the months before (Figure 2). The percentage of DM cases in 

the EHR that are newly diagnosed appears to be approximately 2% to 3% lower for 

each month after the index date (Figure 2). Supplementary Tables 1 and 2 contain the 

data that were used to make the figures.  

 

Discussion 

This is a cross-sectional, population-level assessment of the temporal relationship 

between SARS-CoV-2 infection and new diagnoses of DM persons who have both 

conditions in the N3C database. We observed a sharp increase in new cases of DM 

within 7 days before to 30 days after SARS-CoV-2 infection, followed by a decrease in 

new DM diagnoses. It also appears that the number and proportion of new-onset DM 

may then be lower in the months after SARS-Co-V-2 infection than in the months 

preceding.  

 

It is possible that the sharp peak in DM cases represents a marked increase of 

interaction with the healthcare system at the time of SARS-CoV-2 infection. Hemoglobin 

A1C is the most commonly used criteria for diagnosing diabetes. Because of the 

general requirement for confirmation of lab criteria for the diagnosis of diabetes and the 

asynchronous documentation of ICD codes at an encounter with the return of lab 

results, clinicians may not enter an ICD code for DM after just one episode of 

hyperglycemia, or two episodes of hyperglycemia in the same healthcare encounter. 

Thus, the spike of new DM cases immediately surrounding SARS-CoV-2 infections 

could represent individuals who were newly interacting with the healthcare system, 
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having their hemoglobin A1C or glucose value tested, and receiving a diagnosis of DM 

based on the lab result.  

 

A recent retrospective cohort study reported an increased risk of incident DM during the 

post-acute infection period in the US Department of Veterans Affairs (VA) database (5). 

The VA population has guaranteed access to healthcare, whereas the spike followed by 

a decrease in new-onset DM in the N3C population may reflect patients newly 

interacting with the healthcare system who are simply diagnosed with DM that they 

already had because of this interaction with healthcare. Further analysis from the VA 

cohorts may demonstrate a decreased incidence of new-onset DM when followed for a 

full year after infection. 

 

Another potential explanation for a large peak in DM cases is that the physiologic stress 

of infection with SARS-CoV-2 does push high-risk individuals to develop DM. The 

decrease in new DM diagnoses in the months after SARS-CoV-2 infection could reflect 

the metabolic challenge of the infection revealing DM that would have presented later in 

the absence of SARS-CoV-2 infection. As such the SARS-CoV-2 infection caused 

individuals to develop diabetes earlier, or be diagnosed earlier, thereby decreasing the 

population at risk for DM in the months after SARS-CoV-2 infection. 

 

Understanding the population at risk for diabetes is difficult when considering the effects 

of the pandemic on the population as a whole – increased stress, weight, central 

adiposity and decreased physical activity. Thus, the risk of developing diabetes has 

potentially increased regardless of infection with SARS-CoV-2. It is also possible that 
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infection with SARS-CoV-2 does precipitate new diagnoses of DM in persons who 

would not have developed diabetes otherwise, and that with longer follow-up the slope 

of new DM diagnoses will go up in persons who have been infected with SARS-CoV-2.  

 

This is not a causal analysis and should not be interpreted as such. Our analysis 

suggests that there is a spike in DM diagnoses immediately surrounding SARS-CoV-2 

infection, followed by a decrease in new diagnoses. Such a pattern may be attributable 

to increased interaction with the healthcare system or the stress of the SARS-CoV-2 

infection. Rigorous epidemiologic and mechanistic studies are needed to understand 

whether there are causal relationships between SARS-CoV-2 infection and the 

development of DM in the short- and long-term. Clinical trial cohorts may represent an 

opportunity for prospective, complete data for assessing the prevalence of new-onset 

DM in those infected with SARS-CoV-2. The main conclusion from this cross-sectional 

analysis of the temporal relationship between SARS-CoV-2 infection and DM is that the 

interplay between Covid-19, pandemic related lifestyle chances and DM is complex and 

must be studied carefully with an appropriate control cohort. 

 

Table 1: Demographic characteristics of all patients in the N3C Data Enclave with 

SARS-CoV-2 infection from March 2020 to June 2022 and a clinical encounter 6 months 

prior to infection.  
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Demographic characteristics are reported for all individuals in the sample who received 
a new diabetes diagnosis in the six months prior to 360 days after SARS-CoV-2 
infection, across each month of the pandemic. 
 

  

 
 

Day 
relative 

to 
Calendar 

Month 

Person 
count 

Age 

Female Race/Ethnicity, n (%) 

n (%) Age 
Asian/ 
Pacific 

Islander 
Age  Black Age  White 

Ag
e  

 
Hispani
c/Latinx 

Ag
e  

Un-known Age 

3-Mar-20 21988 54 
12070 
(55) 

45 
921 
(4) 

43 
5648 
(26) 

45 
10415  
(47) 

46 
3313 
(15) 

42 
99  

(0.4) 
43 

4-Apr-20 63018 54 
37102 
(59) 

49 
2413 
(4) 

48 
15689 
(25) 

48 
28650  
(45) 

50 
13068 
(21) 

45 
107  
(0.2) 

43 

5-May-20 49149 51 
29598 
(60) 

47 
1834 
(4) 

45 
10847 
(22) 

46 
24188  
(49) 

49 
11629 
(24) 

43 
59  

(0.1) 
42 

6-Jun-20 41683 48 
25146 
(60) 

49 
1433 
(3) 

48 
7877 
(19) 

48 
23726 
(57) 

51 
9099 
(22) 

46 
139  
(0.3) 

43 

7-Jul-20 66264 46 
40103 
(61) 

45 
1742 
(3) 

41 
12912 
(19) 

42 
40829 
(62) 

47 
12298 
(19) 

41 
253  
(0.4) 

40 

8-Aug-20 59857 46 
36204 
(60) 

48 
1570 
(3) 

45 
9110 
(15) 

47 
39750 
(66) 

50 
9890 
(17) 

43 
155  
(0.3) 

39 

9-Sep-20 55507 47 
32691 
(59) 

46 
1445 
(3) 

44 
7012 
(13) 

43 
39216 
(71) 

49 
7619 
(14) 

41 
116  
(0.2) 

45 

10-Oct-20 106177 49 
62061 
(58) 

46 
2534 
(2) 

44 
11501 
(11) 

42 
79630 
(75) 

48 
12127 
(11) 

41 
136  
(0.1) 

42 

11-Nov-
20 

244876 48 
14378
6 (59) 

49 
5927 
(2) 

49 
25786 
(11) 

49 
185952 

(76) 
51 

26086 
(11) 

47 
439  
(0.2) 

47 

12-Dec-
20 

253434 50 
14954
7 (59) 

46 
7091 
(3) 

45 
31757 
(13) 

44 
182328 

(72) 
47 

30440 
(12) 

43 
718  
(0.3) 

39 

13-Jan-21 177844 50 
10421
7 (59) 

49 
5216 
(3) 

47 
23838 
(13) 

49 
122835 

(69) 
52 

22905 
(13) 

45 
529  
(0.3) 

46 

14-Feb-
21 

72152 50 
41647 
(58) 

50 
2358 
(3) 

44 
10348 
(14) 

48 
47011 
(65) 

54 
9178 
(13) 

46 
107  
(0.2) 

43 

15-Mar-
21 

59866 48 
34893 
(58) 

51 
1940 
(3) 

47 
8930 
(15) 

48 
38545 
(64) 

54 
6820 
(11) 

46 
50 

(0.1) 
43 

16-Apr-21 63475 46 
37704 
(59) 

51 
1838 
(3) 

51 
11917 
(19) 

49 
40070 
(63) 

54 
6632 
(10) 

46 
58 

(0.1) 
48 

17-May-
21 

37838 48 
22835 
(60) 

47 
943 
(2) 

46 
7651 
(20) 

44 
23756 
(63) 

49 
3663 
(10) 

42 <20 49 

18-Jun-21 19748 51 
11747 
(59) 

46 
580 
(3) 

48 
3019 
(15) 

41 
13247 
(67) 

49 
1770 
(9) 

41 
23  

(0.1) 
42 

19-Jul-21 39539 47 
23260 
(59) 

47 
903 
(2) 

44 
7142 
(18) 

44 
26810 
(68) 

48 
3196 
(8) 

42 
145 
(0.4) 

41 

20-Aug-
21 

126287 47 
74135 
(59) 

47 
2273 
(2) 

47 
19468 
(15) 

47 
91961 
(73) 

48 
9395 
(7) 

46 
247 
(0.2) 

43 

21-Sep-
21 

120129 47 
70806 
(59) 

48 
1910 
(2) 

46 
15700 
(13) 

44 
91260 
(76) 

50 
8214 
(7) 

42 
151 
(0.1) 

43 

22-Oct-21 75960 49 
44359 
(58) 

50 
1143 
(2) 

50 
8060 
(11) 

45 
59436 
(78) 

53 
5046 
(7) 

44 
76 

(0.1) 
39 

23-Nov-
21 

97887 48 
56396 
(58) 

50 
1563 
(2) 

44 
9111 
(9) 

49 
78025 
(80) 

54 
6224 
(6) 

46 
66  

(0.1) 
44 

24-Dec-
21 

224781 45 
13442
9 (60) 

52 
5517 
(2) 

51 
41095 
(18) 

53 
149546 

(67) 
56 

19257 
(9) 

49 
538 
(0.2) 

52 

25-Jan-22 424738 46 
25718
3 (61) 

45 
13960 

(3) 
44 

60657 
 (14) 

45 
295523 

(70) 
47 

42728 
(10) 

43 
1323 
(0.3) 

40 

26-Feb-
22 

76582 51 
46117 
(60) 

50 
2220 
(3) 

48 
7408 
 (10) 

49 
57584 
(75) 

53 
6842 
(9) 

44 
227 
(0.3) 

47 

27-Mar-
22 

24794 52 
14986 
(60) 

45 
964 
(4) 

44 
2264 
(9) 

47 
18210 
(73) 

47 2188 (9) 43 82 (0.3) 43 

28-Apr-22 35539 52 
21736 
(61) 

47 
1905 
(5) 

45 
3279 
(9) 

47 
26350 
(74) 

49 2640 (7) 44 194 (0.6) 42 

29-May-
22 

54951 52 
34055 
(62) 

47 
3136 
(6) 

44 
5706 
(10) 

48 
39729 
(72) 

48 
4570  
(8) 

44 
404  
(0.8) 

39 

30-Jun-22 31044 52 
19280 
(62) 

52 
1570 
(5) 

49 
3815 
(12) 

55 
21914 
(71) 

54 
3430 
(11) 

51 
155  
(0.5) 

53 
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Figure 1: Among all persons with diabetes in the database, the proportion of 
diabetes cases that were diagnosed between Sept 2019 and February 2022, by 30-
day periods relative to infection with SARS-CoV-2. 

Figure 1 Legend: This plot represents the proportion of diabetes cases in the N3C 
database that were diagnosed after September 2019 in persons who did not have a 
previous diagnosis of diabetes. Each line represents a calendar month of the pandemic. 
The Y axis is the proportion of all persons with SARS-CoV-2 and a DM diagnosis who 
received the ICD code for DM after September 2019, and the temporal relationship 
between the diagnoses between 180 days prior to 360 days after the SARS-Co-V-2 
infection. The large peak between 8 days before and 30 days after is represented in an 
inset so that the top of that peak is visible without compressing the Y axis. 
 
  

-

 

ic. 
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Figure 2: Number of new diabetes mellitus (DM) cases within 180 before and 360 
days after SARS-CoV-2 infection, among individuals who have both EHR-
recorded SARS-CoV-2 infection and ICD code for DM and did not have an ICD 
code for DM before September 2019. 
 
Figure 2 Legend: Each line represents a calendar month during the pandemic; the Y 
axis is the number of new DM cases in the N3C database in persons with a 
documented SARS-CoV-2 infection. The x-axis is temporal relationship between the 
diabetes diagnosis relative to each individual’s SARS-CoV-2 infection. 
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