
RESEARCH ARTICLE

Dissecting the phyloepidemiology of

Trypanosoma cruzi I (TcI) in Brazil by the use of

high resolution genetic markers

Fabiola Roman1*, Samanta das Chagas Xavier1, Louisa A. Messenger2, Márcio G. Pavan3,
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Abstract

Background

Trypanosoma cruzi, the causal agent of Chagas disease, is monophyletic but genetically

heterogeneous. It is currently represented by six genetic lineages (Discrete Typing Units,

DTUs) designated TcI-TcVI. TcI is the most geographically widespread and genetically het-

erogeneous lineage, this as is evidenced by a wide range of genetic markers applied to iso-

lates spanning a vast geographic range in Latin America.

Methodology/Principal findings

In total, 78 TcI isolated from hosts and vectors distributed in 5 different biomes of Brazil,

were analyzed using 6 nuclear housekeeping genes, 25 microsatellite loci and one mito-

chondrial marker. Nuclear markers reveal substantial genetic diversity, significant gene flow

between biomes, incongruence in phylogenies, and haplotypic analysis indicative of intra-

DTU genetic exchange. Phylogenetic reconstructions based on mitochondrial and nuclear

loci were incongruent, and consistent with introgression. Structure analysis of microsatellite

data reveals that, amongst biomes, the Amazon is the most genetically diverse and experi-

ences the lowest level of gene flow. Investigation of population structure based on the host

species/genus, indicated that Didelphis marsupialis might play a role as the main disperser

of TcI.

Conclusions/Significance

The present work considers a large TcI sample from different hosts and vectors spanning

multiple ecologically diverse biomes in Brazil. Importantly, we combine fast and slow evolv-

ing markers to contribute to the epizootiological understanding of TcI in five distinct Brazilian

biomes. This constitutes the first instance in which MLST analysis was combined with the

use of MLMT and maxicircle markers to evaluate the genetic diversity of TcI isolates in
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Brazil. Our results demonstrate the existence of substantial genetic diversity and the occur-

rence of introgression events. We provide evidence of genetic exchange in TcI isolates from

Brazil and of the relative isolation of TcI in the Amazon biome. We observe the absence of

strict associations with TcI genotypes to geographic areas and/or host species.

Author summary

T. cruzi is a zoonotic protozoan parasite infecting mammals and widely dispersed

throughout endemic Latin America. It is known to possess considerable genetic diversity,

comprising six discrete genetic lineages designated Discrete Typing Units (DTUs) TcI-

TcVI. TcI is the most genetically diverse DTU and the most frequently sampled lineage in

Brazil. We use a combination of high resolution molecular techniques to analyze the

genetic diversity of Brazilian TcI isolates obtained from a wide geographical area encom-

passing five distinct biomes isolated from different mammal hosts and insect vectors. The

results reveal significant genetic diversity and no clear association of genotypes with areas

or host/vector species. Evidence from incongruent phylogenetic topologies based on

nuclear and mitochondrial markers are indicative of genetic exchange and/or introgres-

sion events. The relevance of these findings in the context of population structure, ecology

and epizootiology is discussed.

Introduction

Trypanosoma cruzi, a protozoan parasite (Kinetoplastidea: Trypanosomatidae), is known to

possess a complex epidemiology and is widely distributed from the southern states of the

United States of America to the Argentinian Patagonia. T. cruzi is a pervasive zoonosis capable

of affecting more than 150 domestic and wild mammal species, distributed across 8 orders. T.

cruzi infection in humans, may result in Chagas disease [1–3].Transmission to humans is

mainly vectorial in endemic areas and over 100 species of hematophagous triatomine insects

can harbor the parasites [4, 5]. Moreover, migration of individuals from highly endemic

regions to the United States and Europe has resulted in significant public health concerns in

recipient countries [6]. Domestic transmission of Chagas disease (CD) in Brazil by Triatoma
infestans has been successfully interrupted [7]. However, human infection by T. cruzi is re-

emerging as a food-borne disease in previously non-endemic areas [8–10]. Annual outbreaks

have occurred, particulary in the northern Brazilian Amazon region during the past decade.

Here, some local products derived from fruit juice have been contaminated with infected feces

of triatomine bugs of different genera [9, 11, 12].

T. cruzi is characterized by a remarkable genetic heterogeneity [13, 14] and is currently

comprised of six lineages or discrete typing units (DTUs), designated TcI to TcVI [15, 16]. In

addition, recent evidence also supports the existence of a seventh lineage (TcBat) associated to

bats [17]. The most genetically distant DTUs are TcI and TcII [18]. The evolutionary origins of

TcIII and TcIV was initially proposed to be the result of an old hybridization between TcI and

TcII [19], however more recent evidence shows that TcIII and TcIV have no hybrid origin, but

rather are a monophyletic group with TcI that diverged from TcII [20, 21]. TcV and TcVI are

known hybrid lineages which share haplotypes with TcII and TcIII [22, 23]. Whether given

subpopulations of the parasite are associated with particular vector or host species or with dis-

tinct human disease characteristics is still unresolved.

Dissecting the phyloepidemiology of Trypanosoma cruzi in Brazil

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0006466 May 21, 2018 2 / 28

Development (CNPq) to FR. AMJ is funded by

FAPERJ (“Cientista do Nosso Estado”) and by

CNPq (“Bolsista de Produtividade, Nı́vel 1”). NIH

award 5R01AI107028 for supporting LAM. The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pntd.0006466


TcI is the most frequently isolated DTU in the sylvatic environment, infecting diverse host

and vector species across the Americas with an ancestral parental origin estimated at ~0.5–0.9

MYA [24, 23]. In Brazil, it is also the most widely distributed DTU, in terms of geography and

diversity of host and vector species. Furthermore, it is, by far, the most genetically diverse

DTU [25–30]. Llewellyn et al. [31] applied Multilocus Microsatellite Typing (MLMT) to the

study of TcI population substructure in samples that originated from eight countries, isolated

from 18 host and vector species, across 48 tandem repeats [32]. Results revealed extensive intra

DTU diversity and spatial structuring of specific genotypes associated with acute oral out-

breaks or vectorial infections in Venezuela. In addition, remarkable genetic diversity, through

multiclonality, was observed when a single Didelphis reservoir host of TcI was studied [33].

Attempts to subdivide TcI strains into epidemiologically relevant groups are ongoing [34].

Herrera et al. [28] and Cura et al. [35] described five haplotypes associated with transmission

cycles in Colombia, Chile and Bolivia. Ramirez et al. [36], used MLST to identify TcI genotypes

specifically associated with human infection (TcIDOM) and others associated with peridomes-

tic/sylvatic areas. MLST exploits nucleotide diversity present in four to ten single-copy house-

keeping genes and has previously been applied to the study of T. cruzi using different marker

combinations for lineage assignment and intraspecific characterization [18, 37]. Evidence for

genetic exchange in TcI has been reported, for example, in strains isolated from Didelphis mar-
supialis and Rhodnius prolixus in the Amazon Basin [38] and in a domestic/peridomestic TcI

population in Ecuador [39]. Experimental generation of intra-lineage hybrids suggest that TcI

also displays a potential for genetic exchange [40].

Mitochondrial DNA in T. cruzi has a unique structure and function consisting of approxi-

mately 20–50 maxicircles (~20kb) and thousands of smaller minicircles (~1.4kb) [38]. Maxi-

circle DNA is uniparentally inherited and represents a useful taxonomic marker as it is highly

mutable in comparison to nuclear DNA. Messenger et al. [41] developed a high resolution

maxicircle multilocus sequence typing (mtMLST) scheme to describe intra-DTU diversity in

TcI, revealing multiple mitochondrial introgression events and heteroplasmy within South

American TcI. Introgression had already been detected in North America [21, 22] and in Bra-

zil [42] and also Bolivia [43].

Together these studies illustrate several remarkable characteristics of TcI, namely the

immense geographic distribution, diversity of host and vector species, extensive genetic diver-

sity, and the capacity for genetic exchange. However, little is known about TcI in Brazil and

extraordinarily there is only one relevant Brazil centric publication specifically addressing

diversity of TcI [42]. Unlike Colombia and Venezuela, in Brazil there is no evidence of popula-

tion substructure in the context of geographical distribution of intra DTU genotypes, distribu-

tion of host/vector species, or genotypes associated with acute outbreaks of CD in Brazil. In

the present work, we comprehensively analyze a large cohort of Brazilian TcI isolates from five

ecologically disparate biomes. Through the use of high resolution nuclear markers (MLST and

MLMT) and a maxicircle region (COII), we investigate the phyloepizootiology of TcI from dif-

ferent Brazilian biomes. The study described herein was conducted with the following major

hypothesis: DTU I of T. cruzi in Brazilian isolates displays extensive heterogeneity with no par-

ticular association of subpopulations to geographic areas, or host/vector species.

Materials and methods

Parasite isolates

A total of 78 TcI isolates were supplied by Coleção de Trypanosoma sp de Mamı́feros Silvestres,

Domésticos e Vetores COLTRYP/FIOCRUZ. deposited by several researchers and maintained

in liquid nitrogen. DNA was extracted immediately following initial isolation in NNN medium
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and one round of expansion in LIT. The isolates had previously been confirmed as TcI using

Mini-Exon PCR [44].

In this work, TcI isolates were characterized using three high resolution methods compris-

ing MLST, MLMT and maxicircle sequencing (COII) using appropriate reference isolates. Full

isolate details are shown in S1 Table and include characterization methods applied to each

sample, isolate localities and collection dates. To increase the robustness of the results, micro-

satellite information from 50 additional isolates, published by Lima et al. [42], was included in

our MLMT analyses.

Isolates originated from vector and mammalian reservoir hosts across five Brazilian biomes;

namely Atlantic Forest, Amazon, Caatinga, Cerrado, and Pantanal (Fig 1 and S1 Table).

The Cerrado biome is primarily open scrubland (savannah) covering approximately 2 mil-

lion km2 of Central Brazil, comprising 23% of the total land surface area [45]. Scrubland is

interspersed with gallery forests and is seasonally dry but with permanent swamplands domi-

nated by Mauritia flexuosa palm trees [46].

The Pantanal biome is a large seasonal floodplain covering approximately 140000 km2 at

the core of South America [47]. It is a biodiversity hotspot and freshwater ecosystem of global

significance containing diverse mammal species and habitats. Climate instability results in

periodic floods and droughts, affecting the population number and behavior of some species

[48].

The Amazon biome is in the largest hydrographic basin of the world, comprising 44% of

the South American subcontinent. The biome is a complex mosaic of very diverse ecosystems,

dominated by tropical rain forests, with semi-arid regions, and a variety of man-made land-

scapes. The Amazon biome contains the greatest biological diversity (in absolute terms) on the

planet [49].

The Atlantic Forest biome extends from the south of Pernambuco to the south of Rio

Grande do Sul, and it is characterized by humid tropical forest. This biome is extensively

impacted by human activities. It originally encompassed 12 percent of the national territory

but only 1 to 5 percent (less than 100,000 km2) is intact today [50]. Containing more than

8,000 endemic species, the Atlantic Forest is recognized as one of the world’s most significant

biodiversity hotspots [51].

The Caatinga biome in northeast Brazil, comprises a semi-arid ecological landscape with

only 1% of its territory currently conserved, it is threatened by agriculture and cattle ranching

[52]. This biome is characterized by clay and sandy soils with open plains supporting flora that

is typical of semi-arid regions [53].

Multilocus sequence typing (MLST)

MLST Loci. Ten housekeeping gene fragments were initially considered with the objective

of detecting intra-lineage variation within TcI. Fragments were selected from Yeo et al. [37]

and Diosque et al. [18] using the following rationale. Firstly, those known to be phylogeneti-

cally informative for TcI based on typing efficiency and discriminatory power [18, 37]; sec-

ondly, reliable PCR amplification, and thirdly consistent sequencing quality in both 5’ and 3’

directions. Two genes previously described by Yeo et al. [37]: mitochondrial peroxidase

(TcMPX) and RNA-binding protein-19 (RB19) and eight housekeeping genes from Lauthier

et al. [54]: glutathione peroxidase (GPX), 3-hydroxy-3-methylglutaril-CoA reductase

(HMCoAR), pyruvate dehydrogenase component E1 subunit alfa (PDH), small GTP-binding

protein Rab7 (GTP), Rho-like GTP-binding protein (RHO1), glucose-6-phosphate isomerase

(GPI), superoxide dismutase B (SODB) and leucine aminopeptidase (LAP) were chosen for ini-

tial evaluation. Post screening, four of the ten targets (TcMPX, SODB, GPX and GPI) were
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discarded due to non-specific PCR amplification products and/or inconsistent sequence qual-

ity. The ratio of non-synonymous to synonymous amino acid changes (dN/dS) was calculated

according to the Nei-Gojobori method [55] to infer relative selection pressures, where genes

possessing a dN/dS ratio <1 meet the criteria for stabilizing selection for the conservation of

metabolic function. Taylor & Fisher [56] recommend incorporating some loci with a dN/dS

ratio of>1 in order to obtain sufficient sequence diversity. Chromosome location and other

Fig 1. Map of the spatial distribution of TcI isolates used in the study. Colours represent the different biomes where samples were obtained: Green: Amazon;

Orange: Atlantic Forest; Red: Cerrado. Blue: Pantanal. Grey: Caatinga.

https://doi.org/10.1371/journal.pntd.0006466.g001
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characteristics for each locus are shown in S2 Table. Additionally, we employed the FEL (Fixed

Effects Likelihood) analyses [57], through the HiPhy application [58] via the Datamonkey web

server [59] to infer selection pressure. Briefly, FEL analyses yields nonsynoymous (dN) and

synonymous (dS) substitution rates on a per-site basis (assuming a significance level of 10% to

all comparisons) for a given coding alignment and corresponding phylogeny through a maxi-

mum-likelihood approach.

MLST sequencing. PCR reactions were carried out in 20 uL reaction volumes containing

20 ng of DNA; 0.2 uM of each primer (S2 Table), 1U of Taq polymerase (Bioline, London,

UK), 5X reaction buffer (Bioline, London, UK), 0.2 mM of each dNTPs (New England Biolabs,

Hitchin, UK) and 1.5 mM MgCl2 solution (Bioline, London, UK). Amplification conditions

for all targets were: 5 min at 94˚C followed by 35 cycles of 94˚C for 1 min; 55˚C for 1 min, and

72˚C for 1 min, with a final extension at 72˚C for 5 mins. Products were visualized on 2% aga-

rose gels, stained with ethidium bromide, followed by electrophoresis. Bi-directional sequenc-

ing was performed with Big Dye Terminator Cycle Sequencing V3.1 (Applied Biosystems,

Foster City, CA) and ABI PRISM 3730 DNA Sequencing (Applied Biosystems, Foster City,

CA) according to the manufacturer’s protocol. Sequences were aligned with BioEdit v7.1 [60]

and DNASTAR Lasergene SeqMan v. 7.0 [61]. The presence of two coincident peaks at the

same locus was verified in forward and reverse sequences and scored using IUPAC

nomenclature.

MLST data analysis. Different approaches were used to analyze MLST data. Firstly, for

each locus, typing efficiency (TE) and discriminatory power (DP) were assessed (MLSTest

software, http://ipe.unsa.edu.ar/software) [62] to determine the resolution of individual mark-

ers. Following this, both diplotypic and haplotypic phylogenies were constructed. Diplotypic

phylogenetic trees were initially constructed to investigate isolate diversity and enable concate-

nation across loci, as described by Yeo et al. [37] and Tavanti et al. [63], which renders diploty-

pic data suitable for use in distance based dendrograms. Briefly, individual loci between

isolates can be considered either homozygous or heterozygous, assuming that T. cruzi is mini-

mally diploid. For example, a homozygous locus scored as A (adenine) was modified by dupli-

cation to AA, and a heterozygous locus, for example Y (C or T, in accordance with IUPAC

nomenclature), scored as CT, effectively creating a difference matrix across the panel. Phyloge-

nies were also constructed from heterozygous SNPs were considered as average states. In more

detail, the genetic distance between T and Y (heterozygosity composed of T and C) is consid-

ered as the mean distance between the T and the possible resolutions of Y (distance T-T = 0

and distance T-C = 1, average distance = 0.5 [18, 62].

Suitability of targets for inclusion into an MLST scheme was assessed via Incongruence

Length Difference (ILD) tests, implemented through MLSTest 1.0 software using 1000 permu-

tations [62]. This evaluates differences between expected and observed incongruences between

loci in the context of random unstructured homoplasy [38]. Topological incongruence (TI),

through MLSTest, was applied to the tree derived from concatenated loci to evaluated the

number of fragment trees that are topologically incompatible. [64].

In a parallel approach, to investigate genetic exchange, gene haplotypes were inferred using

PHASE v. 2.1 [65]. Genetic exchange within individual haplotypic gene phylogenies was exam-

ined by assessing allelic contributions to heterozygous isolates from putative homozygous

donor genotypes with unambiguous phase. Genetic exchange within haplotypes was also

examined in isolates with unambiguous phase, through RDP3 [66], in an attempt to detect alle-

lic mosaics. RDP3 software implements an extensive array of methods for detecting and visual-

izing genetic exchange.

Lastly, MLST data were concatenated, testing all fragment combinations, using MLSTest to

define the minimum combination of loci that resolves the maximum number of diploid
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sequence types (DSTs). Individual and concatenated phylogenies were generated initially with

MrBayes, implemented through TOPALI v. 2.5 [67], using the best-fitting model, according to

the Bayesian Information Criterion BIC. Two independent analyses were performed for

1.000.000 generations, sampling every 100 simulations (25% burn-in). Secondly, Neighbor

Joining (NJ) method with uncorrected p-distances and ranch support was calculated by boot-

strap set at 1,000 replications.

Maxicircle (COII) data analysis

The TcI COII locus was amplified and sequenced according to Messenger et al. [41]. Nucleo-

tide sequences per gene fragment are available at GenBank under accession numbers:

MF781085-MF781124. Phylogenies were constructed implementing the substitution model

based on the Akaike Information Criterion (AIC) in MEGA 6 [68]. To compare nuclear and

mitochondrial topologies, Maximum-Likelihood (ML) phylogenies were constructed (T92+I

model, Tamura 3-parameter) which assumes that a fraction of sites is evolutionarily invariable

[68]. TcIII (CM17) and TcIV (Saimiri3 cl1, X10/610 cl5, ERA cl2 and 10R26) strains were

included as outgroups (accession numbers: JQ581330.1, JQ581331.1, JQ581329.1, JQ581328.1

and JQ581327.1, respectively) [41].

MLMT sequencing and data analysis

Twenty-five microsatellite loci were amplified as previously described by Llewellyn et al. [31]

with some modifications (S3 Table). Markers were distributed across 11 chromosomes, includ-

ing six groups of physically linked loci [69]. The following reaction conditions were imple-

mented across all loci: a denaturation step of 4 mins at 95˚C, 30 amplification cycles 95˚C (20

s), 57˚C (20 s), 72˚C (20 s) with a final 20 mins elongation step at 72˚C. Reactions were per-

formed in a final volume of 10 μL containing, 1X ThermoPol Reaction Buffer (New England

Biolabs (NEB, UK), 4 mM MgCl2, 34 μM dNTPs; 0.75 mM of each primer, 1 unit of Taq poly-

merase (NEB, UK) and 1 ng of genomic DNA. Five fluorescent dyes were used to label forward

primers, 6-FAM & TET (Proligo, Germany), NED, PET & VIC (Applied Biosystems, UK).

Allele sizes were determined using an automated capillary sequencer (ABI 3730, Applied Bio-

systems, UK), in conjunction with a fluorescently tagged size standard (GeneScan– 500 LIZ,

Applied Biosystems, UK), and manually checked for errors in GeneMapper software v3.7

(Applied Biosystems, UK).

Microsatellite data were assessed in accordance with Lewellyn et al. [31]. Individual-level

clustering defined by Neighbour-Joining (NJ) phylogenies (DAS: 1 –proportion of shared

alleles at all loci/n) between microsatellite genotypes was calculated in MICROSAT v. 1.5 [70]

under the infinite-alleles model (IAM). To accommodate multi-allelic genotypes (�3 alleles

per locus), a script was developed in Microsoft Visual Basic to generate random multiple dip-

loid re-samplings of each Multilocus profile. A final pair-wise distance matrix was derived

from the mean across multiple re-sampled datasets and used to construct a NJ phylogenetic

tree in PHYLIP v3.67 [71]. Majority rule consensus analysis of 10,000 bootstrap trees was per-

formed in PHYLIP v 3.6 by combining 100 bootstraps generated in MICROSAT v. 1.5 [70],

each drawn from 100 randomly re-sampled datasets.

Population assignment with a prior assumption of subdivision by collection sites was esti-

mated with the Bayesian clustering program Structure v. 2.3 [72]. We assumed the admixture
model due to the lack of information regarding ancestry, with correlated allele frequencies (i.e.

frequencies in different populations are similar as a consequence of migration or shared ances-

try) [72]. Simulations were set at 106 Markov Chain Monte Carlo (MCMC) interactions, with

2.5 x 105 iterations as burn-in. Ten independent runs were performed for each value of K (that
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correspond to the number of groups, 2–10), as suggested by Pritchard et al. [72]. The most

likely K value was estimated with the ΔK method [73].

An alternative approach to summarize genetic polymorphism was performed using a non-

parametric approach, free from Hardy-Weinberg assumptions. Briefly, a K-means clustering

algorithm, executed in ADEGENET [74] was used to identify the optimal number of ‘true’

populations, with reference to the BIC, which reaches a minimum when approaching the best

support for assignment of isolates to the appropriate number of clusters. The relationship

between clusters and the strains contained within them was evaluated using a discriminant

analysis of principal components (DAPC), as described in Jombert et al. [74].

A single randomly sampled diploid dataset, generated using a custom Microsoft Visual

Basic script to re-sample random multiple diploid combinations of each Multilocus profile,

was used for all subsequent analyses, as described in Jombert et al [75]. Population genetic sta-

tistics were calculated considering strains assigned to their DAPC-derived population clusters.

DTU-level genetic diversity was evaluated using sample size corrected allelic richness (Ar) in

FSTAT v 2.9 [76]. Intra-population sub-clustering was calculated as mean pairwise DAS values

and associated standard deviations in MICROSAT v1.5 [70]. Sample size corrected private

(population-specific) allele frequency per locus (PA/L) was calculated in HP-Rare [77]. Mean

FIS, a measure of the distribution of heterozygosity within and between individuals, was calcu-

lated per population in FSTAT 2.9. FIS varies between -1 (all loci are heterozygous for the same

alleles) and +1 (all loci are homozygous for different alleles). DTU-level heterozygosity indices

were calculated in ARLEQUIN v3.11 [78] and associated significance levels for p-values

derived after performing a sequential Bonferroni correction to minimize the likelihood of

Type 1 errors [79]. Population subdivision was estimated using pairwise FST, linearized with

Slatkin’s correction, in ARLEQUIN v 3.11. Statistical significance was assessed via 10.000 ran-

dom permutations of alleles between populations. Three different strategies were performed to

group the samples and calculate pairwise FST values: i) using isolate collection locations to

investigate local diversity, ii) to assess levels of gene flow between the five ecologically disparate

biomes and, iii) investigate the role of host/vector specificity in the context of host movement

and the distribution of TcI genotypes. Within-population subdivision was evaluated in ARLE-

QUIN v 3.11 [74] using a hierarchal analysis of molecular variance (AMOVA). A Mantel test

for the effect of isolation by distance within populations (pairwise genetic vs. geographic dis-

tance) was implemented in GENAIEX 6.5 using 10,000 random permutations [80]. The associ-

ation between host/vectors and genotypic clusters based on DAPC were calculated using

contingency tables along with a Chi-squared test.

Nucleotide sequence and read data accession numbers

Nucleotide sequences per gene fragment are available from GenBank under the accession

numbers: MF615620-MF615679; MF615680-MF615739; MF615740-MF615799; MF615800-

MF615859; MF615860-MF615919; MF615920-MF615979.

Results

In our cohort of 78 isolates, 60 isolates were successfully characterized using all six MLST

markers, 62 isolates by maxcicircle gene sequencing and 42 using MLMT markers. In particu-

lar, only twenty two isolates could be analyzed using all three methods. Furthermore, 50 more

isolates were reassessed with MLMT, totaling 92 isolates considered for microsatellite analysis.

S1 Table provides details of the typing methodologies applied to each particular isolate.

Six MLST markers were sequenced in 78 T. cruzi isolates, of which 60 consistently produced

amplicons and sequences of acceptable quality. Concatenated gene fragments comprised a
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total of 2571 bp for each isolate. No single gene was able to differentiate all 60 isolates on the

basis of TE and DP. Table 1 describes the level of diversity seen in each gene fragment; the

number of polymorphic sites ranged from 10 (RHO1) to 1 (LAP). Typing efficiency (number

of ST/number of polymorphisms) was variable among loci and the gene fragment distinguish-

ing the highest number of genotypes per polymorphic site was RB19 (TE = 2.25). In contrast,

CoAR showed the lowest efficiency (TE = 1). RHO1 demonstrated the highest DP (0.935) for

our cohort; and LAP, the lowest (DP = 0.383).

All fragments met the criterion for stabilizing selection (dN/dS<1) for conservation of met-

abolic function. FEL analyses detected signs of purifying (negative) selection in 10 sites across

four gene fragments (LAP - 24th site; RB19 - 35th and 63th sites; RHO1 - 76th site; and GTP -

13th, 15th, 42th, 98th, 119th, 136th positions; p< 0.1).

A comparison of diplotypic phylogenies of individual gene trees revealed differences in

topology and clustering between gene fragments (S1–S9 Figs). However, similarities did exist,

most notably, the highly diverse loci RB19 and RHO1 possessed similar topologies (S8 Fig).

Following concatenation of all six markers, DP increased to 0.997, differentiating 55 genotypes

from 60 isolates.

The minimum number of loci needed to derive the maximum DP was assessed for all com-

bination of fragments (2 loci to 6 loci) through MLSTest. A combination of 5 fragments:

CoAR-GTP-LAP-RB19-RHO1 (S10 Fig) also yielded a high DP (0.995), discriminating 53 geno-

types (2 genotypes less than yielded by the use of all 6 MLST markers).

MLST intraspecific diversity

Individual gene fragment trees revealed multiples polytomies in all six phylogenetic trees (S1–

S9 Figs). Substantial congruences between the phylogenetic trees generated with SNP duplica-

tion (with Bayes) and Average State (with NJ) were observed (S1–S6 Figs), The two fragments

with the most pronounced inconsistencies between Bayes and NJ were PDH and RHO1 (S4

and S6 Figs).

S7–S9 Figs, show the comparison between the six gene trees. RB19 and RHO1 each pro-

duced a cluster corresponding to isolates from Atlantic Forest, Cerrado and Pantanal, which

are mostly congruent. However, no two gene fragments showed completely identical topolo-

gies. The remaining loci (CoAR, LAP, PDH and GTP), which had lower TE and DP values, gen-

erally yielded trees that were less congruent. None of the gene fragments showed 100%

congruence between their clusters.

Topological incongruence analyses revealed a mean of 2.86 incongruences per branch and

25% of branches with at least n-1 incongruent fragments. These correspond to moderate levels

of incongruence (S11 Fig), where moderate incongruence was defined as being between 20

and 40% [64]. The ILD tests of discrepancies were no higher than expected, indicating that the

combination of six gene fragments produces reliable branches (ILD = 0.05).

Table 1. Properties of six T. cruzi MLST loci.

Targets No of Polymorphic Sites No of Genotypes Typing Efficiency Discriminatory Power Ratio Of Nonsynonymous To Synonymous Changes

CoAR 9 9 1 0.529 0.16

GTP 7 10 1.42 0.646 0.032

LAP 1 3 3 0.383 0.30

PDH 5 10 2 0.549 0.073

RB19 4 9 2.25 0.829 0.014

RHO1 10 19 1.9 0.935 0.957

https://doi.org/10.1371/journal.pntd.0006466.t001
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To evaluate intra-DTU diversity of TcI, phylogenies were inferred from the concatenated

alignment of six gene fragments (Fig 2). Both, NJ and Bayesian methods produced similar

results, although NJ analysis showed lower bootstrap values. Clusters with>50% support in

both analyses are indicated. The presence of several sub-clusters was observed, revealing con-

siderable intraspecific diversity within TcI and also similar genotypes circulating sympatrically

over large geographical areas.

Fig 2. Bayesian inference based on the concatenation of 6 gene fragments from 63 TcI isolates. The highlighted

clusters indicate congruence between SNPs duplication (Bayesian analysis) and Average State (NJ). Colors represent

the biome of collection: green, Amazon; orange, Atlantic Forest; red, Cerrado; blue, Pantanal. Bullets correspond to

mammal host or insect vector species: triangle, Didelphis spp.; square, Chiroptera spp.; circle, triatomine; diamond,

primate; inverted triangle, rodent.

https://doi.org/10.1371/journal.pntd.0006466.g002
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Specific phyloepidemiological observations are as follows. Cluster A grouped isolates origi-

nating from very distant localities including the Atlantic Forest, Cerrado and Pantanal biomes

(BPP = 81% and bootstrap <50%). Of particular note, cluster A (Fig 2) lacked genotypes pres-

ent in the Amazon, in congruence with results from maxicircle phylogenies (below). Also, sim-

ilar genotypes were isolated from different species. For example, isolates from Didelphis spp,

primates, chiroptera, one rodent, and triatomine bugs grouped within cluster A (Fig 2).

Amazonian isolates were genetically diverse and were mostly contained within a single

clade (Fig 2). Cluster B (Fig 2) contained genotypes from the Atlantic Forest and Cerrado

biomes, comprising an enormous geographical distance (~1.130 km). Interestingly, cluster C

comprised isolates from distant biomes, Amazon and Atlantic Forest. Likewise, isolates from

Abaetetuba (11609) and Cachoeira do Arari (10272), separated by vast geographical distances

(~78.38 km), were grouped in the same cluster. Of note, a single isolate FRN26, Oecomys
mamorae from the Pantanal, was genetically dissimilar from all other TcI strains and placed in

different topological positions in the context of MLST and maxicircle phylogenies.

Although isolates were collected in different years and localities (S1 Table), no clear cluster-

ing by collection date or biome was apparent; however, statistical tests were not able to rule

out the existence of some association. Details of these tests are described below.

Haplotype analyses

Haplotype analysis, applied to nuclear loci, was used to generate phylogenies and investigate

the allelic origins of heterozygous isolates from homozygous putative donor genotypes (Fig 3

and S12–S16 Figs). Here isolates with haplotypes present in two different genetically clusters

that also contained respective homozygous donor isolate genotypes were considered potential

hybrids.

Three genetic loci (GTP, PDH and RB19) revealed heterozygous isolates and allelic profiles

that could be derived from homozygous genotypes (Fig 3, S12 and S13 Figs, respectively). In

more detail, Fig 3 shows the GTP locus and alleles from homozygous donor isolates: 10285,

haplotypes 1 and 2, in one clade; and 14943, haplotypes 1 and 2, in another. Within GTP, two

isolates contain heterozygous allelic profiles, 12630 and 12624, corresponding to one allele

from each homozygous donor. For PDH, five isolates contain heterozygous allelic profiles:

2892, 2896, 10285, 17645 and G41 (S12 Fig). The potential parental alleles for PDH were: 2879

and 2869, in one clade, and 2880, in another clade (S12 Fig). Similarly, for RB19, eight isolates

showing potential genetic exchange were identified. The most plausible parental alleles for

each putative hybrid are shown in S13 Fig, while the SNP profile for putative homozygous

donors and the corresponding heterozygous profiles are shown in the S4–S6 Tables. Putative

recombinants were different in PDH, GTP, and RB19; possibly indicating that there have been

multiple genetic exchange events over time. Although we detect the signature of genetic

exchange through heterozygous genotypes and their associated homozygous “donor” isolates,

we observe no evidence of genetic exchange at the level of individual alleles, since allelic mosa-

ics were not detected using RDP3 software.

Mitochondrial analysis

Sixty two COII sequences produced a 449 bp alignment, 10 unique haplotypes and 64 poly-

morphic sites. Maximum-Likelihood trees (Fig 4) revealed two major clades and almost com-

plete congruence with cluster A derived from concatenated MLST (S17 Fig). This cluster

contains strains from the Atlantic Forest, Cerrado and Pantanal with the notable exclusion of

Amazonian isolates (bootstrap = 100%). Interestingly, isolate FRN26 from the Pantanal, and

isolate G41 from the Atlantic Forest formed a strongly supported sub-clade (bootstrap = 100%).
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In contrast, nuclear phylogenies grouped G41 with Amazonian isolates. Also of note, isolates

within sub-clusters were highly homogeneous. Analyses with MLST and maxicircle were con-

gruent in relation to the isolates of Amazon, in which they formed a separate group that

included a cluster with isolates from Cerrado and Atlantic Forest (S17 Fig).

Fig 3. Haplotypic Bayesian Tree with GTP locus. Haplotypes inferred by PHASE V2.1. Red labels indicate

heterozygous hybrid isolates (12630–12624) and black potential parental alleles (10285–14943).

https://doi.org/10.1371/journal.pntd.0006466.g003

Fig 4. Maximum-Likelihood tree constructed from maxicircle sequences for 62 TcI Brazilian isolates. Colors

represent the biomes where samples were obtained: Green, Amazon; orange, Atlantic Forest; red, Cerrado; blue,

Pantanal; gray, reference sequences from Caatinga. Symbols correspond to strain host/vector: Triangle, Didelphis spp.;

square, Chiroptera spp.; circle, triatomine; diamond, primate; inverted triangle, rodent.

https://doi.org/10.1371/journal.pntd.0006466.g004
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The presence of genetically identical mitochondrial sequences despite a mutation rate one

order of magnitude greater than that of nuclear genes provides support for the occurrence of

multiple mitochondrial introgression events (Fig 4 and S17 Fig). Additionally, these sequences

correspond to geographically dispersed isolates, obtained from different biomes and hosts and

vectors, further supporting the case for introgression.

Microsatellite analysis

In total, 4595 alleles were identified, corresponding to 92 unique multilocus genotypes. Multi-

ple (�3) alleles were observed at 1.87% of markers. This is most likely attributable to aneu-

ploidy in a small proportion of the loci (S7 Table). Bayesian clustering applied to 92 strains

revealed the existence of four discrete phylogenetic groups without apparent association to the

biome of origin (Fig 5). For example, isolates from Atlantic Forest clustered across three

groups (Fig 5, yellow, green and pink label), in which specimens from the state of Rio de

Janeiro are genetically similar to those from Posse, Goias (Cerrado biome) and specimens

from the states of Minas Gerais and Santa Catarina clustered together with samples from Pan-

tanal. Moreover, TcI specimens of the state of Bahia are genetically more similar to samples

from the states of Piauı́ (Caatinga), Pará and Amazonas (Amazon) than to other samples from

the Atlantic Forest biome. It is worth mentioning that, in general, samples from Cerrado, Caa-

tinga and Amazon biomes were grouped together in two different groups (Fig 5, red and pink

coloured groups).

The DAPC analysis with the 92 strains yields five genetic clusters, evidenced by a slight

‘elbow’ in the distribution of the BIC values across optimal cluster numbers at K = 5, once 22

principal components (PCs) were retained and analyzed (representing 80% of the total varia-

tion) (S18 Fig). DAPC-derived populations were broadly congruent with patterns of nuclear

clustering identified by NJ and Bayesian clustering analysis. The five DAPC clusters, showed

in S1 Table, corresponded to: Population 1 that includes Caatinga (n = 13) and Cerrado

(n = 4); population 2, Atlantic Forest (n = 4), Pantanal (n = 10) and Cerrado (n = 1);

Fig 5. Population structure based on Bayesian clustering (K = 4) for 92 TcI isolates from five Brazilian biomes, genotyped for 25 microsatellite loci. Each number

(above) represents the collection sites (below). Colours in vertical bars represent the proportion of the individual’s genome derived from four assumed clusters.

https://doi.org/10.1371/journal.pntd.0006466.g005
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Population 3, Amazon (n = 30), Atlantic Forest (n = 6), Pantanal (n = 1) and Caatinga (n = 1);

population 4, Atlantic Forest (n = 14) and Cerrado (n = 3) and population 5, the remaining

parasites principally from opossums and primates in the Atlantic Forest (n = 14) and bats and

an opossum in Cerrado (n = 3). Similarly, the NJ tree (Fig 6) reveals that parasites from the

Atlantic Forest, Cerrado and Pantanal were generally admixed together. We observe no strict

specific association between biomes, species or collection years and the clusters based on

DAPC; however, the chi square contingency test (p<0.05) can not completely exclude an asso-

ciation between these clusters and host/vector species, collection biome or dates.

Cluster A, derived from MLST data, was congruent with one MLMT cluster, the equivalent

maxicircle cluster (S17 and S19 Figs paired trees). The isolate G41 (Atlantic Forest), grouped

with isolates from Amazonia for MLST but was grouped with Atlantic Forest isolates with

MLMT analysis. Similarly, topological positions for FRN26/26 were different for MLST and

maxcircle trees (S17 Fig paired trees)

Population genetic parameters were calculated for strains grouped a priori according to

their biome of origin, as well as a posteriori DAPC cluster assignments (Table 2 and S8 Table).

Consistent results are observed when strains are grouped according to DAPC-assigned clus-

ters. Table 2 shows high levels of genetic heterogeneity in Amazon (DAPC population 3), as

well as excess homozygosity, high numbers of private alleles per locus and a low standard devi-

ation associated with DAS value. T. cruzi strains from Atlantic Forest, Cerrado and Caatinga

displayed similar, but lower levels of diversity, with comparatively lower numbers of private

alleles per locus.

Fig 6. Unrooted neighbour-joining tree based on DAS values between multilocus genotypes generated for 92 sylvatic Brazilian TcI strains. DAS values were

calculated as the mean across 1000 random diploid re-samplings of the data set. Branch colors represent the biomes where samples were collected: Green, Amazon;

orange, Atlantic Forest; red, Cerrado; Bblue, Pantanal; gray, Caatinga. Symbols correspond to host/vector species: Triangle, Didelphis spp.; square, Chiroptera spp.;

circle, Triatomine; diamond, Primate; inverted triangle, rodent; pentagon, dog; hexagon, Raccoon.

https://doi.org/10.1371/journal.pntd.0006466.g006
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Three diverse populations (Atlantic Forest, Cerrado and Caatinga) were characterized by

elevated standard deviations associated with DAS values and positive FIS values (Table 2). A

hierarchical AMOVA demonstrated 83.1% of total genetic variation was present within popu-

lations, compared to 16.9%, among populations (p<0.0001 for both).

The observed subdivision between a priori populations suggests the existence of gene flow

between T. cruzi from the Atlantic Forest and those of the Cerrado biome (FST = 0.067)

(Table 3). Gene flow was also inferred to have occurred between T. cruzi populations of Caa-

tinga and Cerrado (FST = 0.0982) (Table 3). The admixed character of these isolates was also

supported by Bayesian assignment. More geographically-distant TcI populations display simi-

lar levels of subdivision, as observed between Caatinga and Pantanal, Caatinga and Atlantic

Forest, Cerrado and Pantanal and Pantanal and the Atlantic Forest. T. cruzi isolates from the

Amazon biome exhibited lower FST values than populations of all other biomes (Table 3). This

observation is also supported by FST values calculated for the a posteriori populations (S9

Table).

At a local-level structure analysis (i.e. when samples were grouped using the collection site

as prior information; Table 4), it is clear that some isolates from Atlantic Forest grouped with

others from Cerrado and Pantanal due to the genetic similarity between samples of Rio de

Janeiro and Possas, Goias (FST = 0.04), of Bahia and Tocantins (FST = 0.13), and of Santa Cata-

rina and Mato Grosso do Sul (FST = 0.09). Similarly, samples from Cerrado (Piaui) and Ama-

zon (Para) showed low levels of structure (FST = 0.09). The investigation of parasite population

structure based on host taxonomy suggests that Didelphis marsupialis might play a role as the

Table 2. Population genetic parameters for a priori sylvatic populations of TcI in Brazil.

Populations G/N PL PA/L±SE Ar±SE DAS ± SD Ho He % PL He % PL Hd FIS±SE

Atlantic Forest 26/26 23 0.44 ± 0.12 3.61 ± 0.35 0.388 ± 0.188 0.37 0.46 26.1 43.5 0.212 ± 0.08

Amazon 32/32 25 0.97 ± 0.17 4.24 ± 0.38 0.457 ± 0.0846 0.42 0.51 0 36 0.194 ± 0.04

Pantanal 11/11 17 0.27 ± 0.14 2.46 ± 0.36 0.198 ± 0.157 0.35 0.31 23.1 5.9 -0.004± 0.16

Cerrado 09/09 19 0.36 ± 0.16 3.72 ± 0.74 0.482 ± 0.166 0.39 0.53 0 26.3 0.279 ± 0.12

Caatinga 14/14 20 0.13 ± 0.07 3.14 ± 0.46 0.341 ± 0.118 0.34 0.40 0 5 0.206 ± 0.09

N: number of isolates in population; G: number of multilocus genotypes (MLGs) per population based on microsatellite data of 25 loci analyzed; PL: number of

polymorphic loci out of 25 loci analysed; PA/L: mean number of private alleles per locus ± SE, calculated in HP-Rare (Kalinowski, 2005); Ar: allelic richness as a mean

over loci ± SE, calculated in FSTAT 2.9.3.2 (Goudet, 1995); DAS: mean pairwise allele sharing ± SD, calculated in MICROSAT v1.5d (Minch, 1997); Ho: mean observed

heterozygosity across all loci, calculated in Arlequin v3.11 (Excoffier, 2005); He: mean expected heterozygosity across all loci, calculated in Arlequin v3.11 (Excoffier,

2005); %PL He: proportion of polymorphic loci showing a significant excess in heterozygosity after a sequential Bonferroni correction (Rice, 1989), calculated in

Arlequin v3.11 (Excoffier, 2005); %PL Hd: proportion of polymorphic loci showing a significant deficit in heterozygosity after a sequential Bonferroni correction (Rice,

1989), calculated in Arlequin v3.11 (Excoffier, 2005); FIS: mean fixation index ± SE, calculated in FSTAT 2.9.3.2 (Goudet, 1995).

https://doi.org/10.1371/journal.pntd.0006466.t002

Table 3. Pairwise FST values in a five-way comparison between a priori populations.

Atlantic Forest Amazon Pantanal Cerrado Caatinga

Atlantic Forest �

Amazon 0.146 �� �

Pantanal 0.227 �� 0.172 �� �

Cerrado 0.067(p = 0.0156 ± 0.0037) 0.114 �� 0.267 �� �

Caatinga 0.216 �� 0.142 �� 0.347 �� 0.0982 �� �

� 0.000

��P<0.001

https://doi.org/10.1371/journal.pntd.0006466.t003
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main disperser of TcI (S10 Table), since its overall pairwise FST values were lower than the oth-

ers (FST� 0.2; median = 0.15).

Finally, to determine the extent of spatial genetic structure, a Mantel test was conducted,

demonstrating significant parasite isolation by distance across the sampled geographical range

(RXY = 0.384; P = 0.01). (S20 Fig).

Discussion

In this study we explored the genetic diversity of Brazilian TcI isolates, obtained from different

vectors and mammal hosts, spanning 5 different ecological biomes. To this end, we analyzed

data from six protein coding genes (MLST), 25 microsatellite loci and one mitochondrial

locus. We observed substantial genetic diversity with no strict association of clusters with par-

ticular host/vector species or biomes. However, some degree of association to a cluster from

MLMT was present in isolates from Amazon. No other noticeable relation between clusters

and biomes was identified; nevertheless, statistical tests are consistent with the possibility of

some form of association. In addition, we observed mitochondrial introgression events and

evidence of intra-DTU genetic exchange. Previous works [29, 41, 81, 82] have studied the

genetic diversity within DTU I using different methods encompassing nuclear and mito-

chondrial markers. However, this constitutes the first instance in which MLST analyses in

combination with two other high resolution genetic markers (microsatellite and maxicircle

sequencing) have been used to evaluate intra TcI diversity of isolates from Brazil.

The criteria for justifying the selection of MLST markers used were based broadly on Dios-

que et al. [18], and fragments were assessed, in order of importance, in terms of intra-DTU

diversity (TE), genotype discrimination (DP) and statistical support in phylogenetic trees.

MLST analysis using all six concatenated gene fragments discriminated 55 genotypes out of 60

isolates. The use of a combination of five fragments of concatenated genes (CoAr, GTP, LAP,

RHO1 and RB19) also proved to be a viable alternative to the six genes, discriminating 53 of a

possible 60 isolates. However, in light of the slightly reduced discriminatory power, we recom-

mend the use of all six gene fragments.

There was significant variation in TE and DP among tested loci (Table 1). The most variable

loci were RHO1 and GTP which possessed 17 and 13 polymorphic sites, respectively. This is in

Table 4. Pairwise FST values for microsatellite data grouped according to the collection site.

RJ SC MG BA MS APGO POGO TO CE PI PA ITPA

RJ

SC 0.26

MG 0.29 0.56

BA 0.24 0.57 0.56

MS 0.24 0.09 0.47 0.48

APGO 0.35 0.50 0.45 0.51 0.48

POGO 0.04 0.39 0.46 0.33 0.35 0.43

TO 0.28 0.58 0.52 0.13 0.50 0.49 0.41

CE 0.22 0.39 0.42 0.31 0.34 0.34 0.22 0.39

PI 0.18 0.28 0.32 0.27 0.23 0.35 0.23 0.31 0.20

PA 0.16 0.25 0.27 0.25 0.22 0.30 0.20 0.26 0.16 0.09

ITPA 0.17 0.37 0.31 0.33 0.33 0.39 0.23 0.37 0.23 0.19 0.13

AM 0.22 0.45 0.5 0.41 0.44 0.45 0.31 0.37 0.23 0.19 0.13 0.30

False Discovery Rate (FDR) = 0,016. Yellow cells denote 0,016<p<0,05, blue cells denote 0,001<p<0,016 and, grey cells denote p<0,001

https://doi.org/10.1371/journal.pntd.0006466.t004
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line with the observations made previously by Diosque et al. [18] and Ramirez et al. [36]. The

LAP locus contained the least number of SNPs (4 polymorphic sites), in accordance with

Ramirez et al. [36]. Some previous works have assessed RB19, GPI, LAP and TR and considered

them non-informative when applied to typing schemes for cohorts spanning all six DTUs [18,

19, 36]. However, in the context of Brazilian isolates, RB19 proved to be a highly informative

marker for investigating intra-TcI diversity (TE = 1.9). Variation in TE is likely the result of

selective pressures on individual loci, genetic drift or differences in mutation rates. Addition-

ally, non-synonymous SNPs in MLST fragments, contributing to amino acid alterations, have

previously been reported in T. cruzi [36, 37]. Here all gene fragments met the criteria for stabi-

lizing selection (<1) for conservation of metabolic function. FEL analyses provided evidence

that 10 sites in four of the six gene fragments are under purifying selection.

Bayesian and NJ analyses of the trees generated with each individual gene showed the pres-

ence of polytomies (S1–S6 Figs). One possible explanation for the existence of polytomies is

the relatively small number of informative polymorphisms in the markers analyzed. This type

of structure (Genetic Structure Type 2) was previously observed by Tomasini et al [64] when

studying A. fumigatus through the application of MLST.

We generated phylogenetic trees with NJ to assess the robustness of our findings, since

Bayesian analyses with SNP duplication can lead to artificially high bootstrap values [64].

Indeed, the support values were higher in the Bayesian analysis with SNP duplication; never-

theless, the clusters in the concatenated tree were mainly consistent between both analyses.

Concatenation across loci by MLST has been successfully applied to many prokaryotic and

eukaryotic organisms [22, 61, 63, 83, 84–86]. Nevertheless, when using this methodology, high

levels of inbreeding or genetic exchange at particular loci may confound true phylogenetic

relationships; therefore, in the presence of these effects, results must be interpreted cautiously.

In this study, concatenation of six genes resulted in two main groups: the first included all iso-

lates from Amazon and some representatives from Cerrado and Atlantic Forest (Fig 2, clusters

B and C), and the second group included the remaining isolates from Atlantic Forest, Cerrado

and part of Pantanal (Fig 2, cluster A). The epizootiological significance of these findings are

discussed below.

Nuclear genes, phylogenies and genetic exchange

The BPP values supporting those clusters that show incongruences varied widely between indi-

vidual gene phylogenies. Similar patterns of incongruence have been previously observed in

nuclear genes [37, 87]. Such incongruence, where isolates differ in topological positions, are a

classical marker in populations that have undergone genetic exchange. To investigate further,

haplotypic phylogenies were constructed for each genetic locus in order to define heterozygous

isolates and their potential homozygous allelic donors. (Fig 3, S12–S16 Figs) The results indi-

cate potential allelic recombinants in 3 of the 6 loci. Putative recombinant isolates possessed

heterozygous allelic profiles, each present in two different homozygous putative donor isolates,

situated in different phylogenetic clusters. Potential allelic recombinant isolates across 3 genes

is suggestive of multiple genetic exchange events. PHASE is a Bayesian method for the recon-

struction of haplotypes. It is generally considered one of the most accurate haplotype recon-

struction methodologies. However, there are potential confounders, for example, population

size and frequency of recombination have the potential to skew outcomes. Furthermore, one

must be cautious when using PHASE to infer frequency of genetic exchange, as this is one of

the assumptions of the method. Nevertheless, the presence of recombinants and potential

“donor” genotypes inferred in three independent nuclear markers is confirmed by heterozy-

gous and homozygous SNPs derived from nuclear sequences (S4–S6 Tables). Together, these
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observations constitute evidence for the presence of genetic exchange at the nuclear level. Pop-

ulation structure of T. cruzi is frequently regarded as clonal [88]. This model does not exclude

genetic exchange, but considers it to be infrequent [89]. However, exchange across DTUs has

been demonstrated using MLST [18, 36]; and intra-TcI genetic exchange in a single isolate has

been observed in a cohort of Colombian samples [36]. Similarly, Messenger et al. [41] and

Ramirez et al [82] observed multiple incongruence and introgression events within TcI on the

basis of MLMT, MLST and maxicircle phylogenies, concluding that genetic exchange within

DTU I is frequent. Genetic exchange is inferred in the current data set, however the frequency

of genetic exchange is presently unknown and a topic of enthusiastic debate.

Mitochondrial analysis

In comparison with nuclear genes, remarkably low levels of intra DTU COII diversity were

observed. Paradoxically, the mutation rate of mitochondrial genes is generally considered one

order of magnitude higher than that of nuclear genes [90]. The spectrum of reduced diversity

observed in maxicircle clades is consistent with introgression events as also reported in different

TcI populations in South America [36, 41]. Two major clades were observed, the first consisting

of all samples from the Amazon biome, together with a few samples from other biomes. The

second clade grouped all of the remaining samples. This pattern was congruent across both

nuclear and mitochondrial loci, and is indicative of genetically discrete populations. MLMT

analysis (below) suggests limited gene flow (FST) between the Amazon biome and other studied

areas. Although nuclear and mitochondrial phylogenies shared some topological characteristics,

there were substantial incongruences between them. For example, isolate G41 clustered with

Amazonian isolates at the nuclear level, but associated in mitochondrial phylogenies with iso-

lates of non-Amazonian origin (S17 Fig). In the context of introgression, the discordance

between nuclear and mitochondrial phylogenies is indicative of a prolonged and continuous

association between populations from very distant localities [41]. This is consistent with the sug-

gestion that genetic exchange in T. cruzi involves the independent exchange of kinetoplasts and

nuclear genetic material [41]. Reciprocal nuclear genetic exchange among parasite strains

undergoing mitochondrial introgression has not yet been detected, which may support an

asymmetric, cryptic hybridization mechanism, or perhaps more likely, reflect the minor amount

of nuclear genetic information sampled [81]. However, without the resolution of whole nuclear

genome sequences, it is only possible to define the contributions of elements of meiosis, mito-

chondrial introgression and/or parasexual fusion [15, 82, 91]. The results presented here,

include isolates from geographically distant sites (approximately 1790 km) and imply multiple

introgression events occurring between different clades encompassing a large geographical area.

Microsatellite analysis

MLMT, the most sensitive method for assessing diversity, identified 4 groups when collection

sites were used to group TcI specimens (Fig 5) or 5 clusters when no prior clustering was

imposed. Three groups draw attention, one with isolates originating from Caatinga (gray

branch), another from Pantanal (blue branch) and a third, consisting of an admixture of Atlan-

tic Forest and Cerrado (Fig 6, orange and red branch). The third group contained genotypes

that occurred in primates, bats, Didelphis and Rhodnius spp., in agreement with mitochondrial

phylogenetic topology. There was a tendency for TcI isolates to cluster with other locally

obtained isolates, which may reflect a sampling bias or clonal expansion. However, when sam-

ples were grouped according to their collection sites (Table 4), the analysis revealed specific

examples of similar genotypes present across nearby states. Examples include Santa Cata-

rina (Atlantic Forest) and Mato Grosso do Sul (Pantanal), Bahia (Atlantic Forest) and
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Tocantins (Cerrado), and Piaui (Caatinga) and Pará (Amazon). In stark contrast, Amazon

demonstrated significant intraspecific heterogeneity (Table 2 and Table 3) and clustering

indices suggest that parasites from Amazon (DAPC population 3) have undergone long-

term, undisturbed, sylvatic diversification. The relative lack of human impact, particularly

in some municipalities in the state of Para, may account for allelic richness evolving over

time in a biome with an abundance of host species. [39]. Interestingly, DAS values from

three diverse populations (Atlantic Forest, Cerrado and Caatinga) suggest the presence of

intra-population sub-clusters, which is likely a consequence of the fragmentation due to

intense human activity in these areas. Significant gene flow is observed over vast distances,

for example between Cerrado and Atlantic Forest (Fig 1 and Table 3). The most parsimoni-

ous explanation is host movement, particularly aerial dispersion with bats, as exemplified

over large distances in African clades of Trypanosoma sp. [92]. In South America, bats are

known to harbor diverse trypanosome genotypes [92, 93], but their role in biogeography

and dispersion is not fully understood. Unfortunately, TcI samples from Chiroptera species

were collected from a single location (in Cerrado). A much more comprehensive effort to

study Tc1 isolates in Chiroptera would be of interest to adequately address the nature of

their role in dispersal in Brazil. Notwithstanding, we observed that D. marsupialis acts as a

disperser of TcI genotypes across different biomes [94], this is evidenced by generally low

FST values in pairwise comparisons with samples obtained from other hosts (FST� 0.2, S10

Table). Isolates from Atlantic Forest, Amazon and Cerrado showed significantly low hetero-

zygosity levels, which may be due to gene conversion or under sampling used in the study.

In this case, processes such as inbreeding are expected to shape the genetic background of

populations [94]. Indeed, isolates from the Amazon biome presented low gene flow and

moderate levels of inbreeding (FIS = 0.194 ± 0.04), relatively to other biomes, indicating a

degree of genetic isolation. (Table 2).

Epizootiology of Brazilian TcI

Our analyses of three classes of genetic markers revealed broadly similar patterns of intra-

DTU diversity in Brazil. MLST and maxicircle marker analysis yielded two principal phyloge-

netic groups. One included all isolates from the Amazon region, with representatives from

Cerrado and Atlantic Forest (Fig 2, clusters B and C). The second group included all other iso-

lates from Atlantic Forest, Cerrado and part of Pantanal (Fig 2, cluster A). MLMT analysis

comprising fast evolving markers, as expected, revealed the most diversity, five discrete popu-

lations and variable amounts of gene flow and fragmentation indicators. Among all biomes it

is evident that Amazon harbors the most extensive diversity and comparatively low gene flow.

High diversity and low fragmentation indicate a biome exposed to less ecological pressure and

undisturbed sylvatic diversification. Generally, there was no clear evidence of specific host/vec-

tor associations. In particular, similar genotypes were represented in different vector/host spe-

cies. For example, genotypes represented in cluster A (Fig 2) consisted of closely related

genotypes observed in a diversity of hosts species including didelphids, rodents, chiroptera,

primates and triatomines scattered across diverse municipalities within the Atlantic Forest,

Cerrado and Pantanal biomes. Additionally, this cluster included hosts whose habitat is princi-

pally arboreal, with Didelphis spp occupying all strata. The presence of Didelphis spp. in all

clades and low associated FST values (S10 Table) is compatible with the hypothesis that they

are bioaccumulators of multiple genotypes [83, 94], they are highly permissive to infection and

are known to move between all ecological strata from terrestrial to arboreal. The genealogical

relationship of isolates in cluster A in MLST was preserved across MLMT and mitochondrial

analyses (S17 and S19 Figs).
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Evidence from all markers reveals that similar genotypes are found across vast geo-

graphical distances, over ecological barriers, diverse habitats, and different hosts species.

Noticeably, isolates G41 (Atlantic Forest) and 2896, from Belem in the Amazon biome

(Figs 1 and 2), have identical genotypes. Other examples include isolates 10272 and 11609,

which possess identical genotypes despite being separated by the Marajo bay (a distance of

4500 km); and isolates from Belem (2855) and Abaetetuba (11606), which are genetically

homogenous despite vast geographic separation. Human activity is likely to have an impact

on the dispersal of genotypes. A case in point is provided by Combu and Murucutu, which

are two island localities situated in the municipality of Belem (Amazon) that are sparsely

occupied by humans and used primarily for açaı́ production [53]. They form a robust enzo-

otic transmission cycle, and remote human infections are acquired by unwitting transport

of infected triatomines in açai baskets [53]. Comparatively high indicators of gene flow

between other biomes inferred by MLMT analysis are also compatible with the influence of

human activity that may facilitate gene flow. Lima and collaborators [42] using MLMT,

applied to Brazilian TcI, observed that isolates from Atlantic Forest and the Amazon

formed distinct and separate clusters. Their proposition was that geographic distance sepa-

rating biomes was the likely explanation for topological features. However, in this work,

through the application of MLST, MLMT and maxicircle analysis, we find not only local-

ized diversity but also genetic homogeneity over large distances. In summary, this study

included a large number of samples and revealed extensive intra DTU diversity, an absence

of strict associations to host/vector species, and similar genotypes circulating over vast

areas. We provide evidence of genetic exchange based on phylogenetic incongruence

among loci, haplotypic analysis of nuclear markers and also mitochondrial introgression. It

is likely that gene flow between biomes is influenced by the movement of mammals and

also facilitated by human activity.
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10. Xavier SCC, Roque ALR, Bilac D, de Araújo VAL, Neto SFC, Lorosa ES, Ferreira da Silva LFC, et al.

Distantiae transmission of Trypanosoma cruzi: a new epidemiological feature of acute Chagas disease

in Brazil. PLoS Negl. Trop. Dis.2014; 8(5), e2878. https://doi.org/10.1371/journal.pntd.0002878 PMID:

24854494

11. Andrade DV, Gollob KJ, Dutra WO. Acute Chagas disease: new global challenges for an old neglected

disease. PLoS Negl. Trop. Dis. 2014; 8(7), e3010. https://doi.org/10.1371/journal.pntd.0003010 PMID:

25077613

12. Coura JR, Junqueira ACV. Surveillance, health promotion and control of Chagas disease in the Amazon

Region-Medical attention in the Brazilian Amazon Region: a proposal. Mem. Inst. Oswaldo Cruz, Rio de

Janeiro. 2015; 110(7): 825–830.

13. Chagas C. Nova tripanozomiaze humana: estudos sobre a morfolojia e o ciclo evolutivo do Schizotrypa-

num cruzi n. gen., n. sp., ajente etiolojico de nova entidade morbida do homem. Mem Inst Oswaldo

Cruz. 1909; 1:159–218.

14. Tibayrenc M, Ward P, Moya A, Ayala FJ. Natural populations of Trypanosoma cruzi, the agent of Chagas

disease, have a complex multiclonal structure. Proc Natl Acad Sci USA. 1986; 83:115–9. PMID: 3510428

15. Zingales B, Andrade SG, Briones MR, Campbell DA, Chiari E, Fernandes O, et al. A new consensus for

Trypanosoma cruzi intraspecific nomenclature: a second revision meeting recommends TcI to TcVI.
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