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Abstract: Amplification of oxidative stress is present since the early stages of chronic kidney
disease (CKD), holding a key position in the pathogenesis of renal failure. Induction of renal
pro-oxidant enzymes with excess generation of reactive oxygen species (ROS) and accumulation of
dityrosine-containing protein products produced during oxidative stress (advanced oxidation protein
products—AOPPs) have been directly linked to podocyte damage, proteinuria, and the development
of focal segmental glomerulosclerosis (FSGS) as well as tubulointerstitial fibrosis. Vascular oxidative
stress is considered to play a critical role in CKD progression, and ROS are potential mediators of the
impaired myogenic responses of afferent renal arterioles in CKD and impaired renal autoregulation.
Both oxidative stress and inflammation are CKD hallmarks. Oxidative stress promotes inflammation
via formation of proinflammatory oxidized lipids or AOPPs, whereas activation of nuclear factor κB
transcription factor in the pro-oxidant milieu promotes the expression of proinflammatory cytokines
and recruitment of proinflammatory cells. Accumulating evidence implicates oxidative stress in
various clinical models of CKD, including diabetic nephropathy, IgA nephropathy, polycystic kidney
disease as well as the cardiorenal syndrome. The scope of this review is to tackle the issue of oxidative
stress in CKD in a holistic manner so as to provide a future framework for potential interventions.
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1. Introduction

The global burden of chronic kidney disease (CKD) is high and increases regardless of our
improved understanding of the disease-associated processes on molecular, cellular, and clinical
levels [1]. Aging of the population and the growing prevalence of diabetes mellitus appear to be the
main culprits responsible for the CKD epidemic, and appropriate treatment of the causes and risk
factors associated with disease progression is imperative yet currently not enough [1]. Several, large
studies have shown that patients with CKD carry a markedly increased morbidity and mortality risk,
and even mild-to-moderate elevations in serum creatinine levels are associated with high cardiovascular
and overall mortality, including ischemic heart disease and heart failure syndromes [1,2].

Accordingly, cardiovascular mortality rates appear to double in patients with stage 3 CKD
(estimated glomerular filtration rate (eGFR) 30–59 mL/min per 1.73 m2) in comparison to individuals
with normal renal function, and they even triple in stage 4 (15–29 mL/min per 1.73 m2) [3–5].

Abundant experimental and clinical evidence that has accumulated during the last 3 decades has
demonstrated that amplification of oxidative stress in CKD holds a key position as a central link of the
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intricate and intertwining pathways involved in the pathogenesis of CKD [6,7]. Excessive production
of reactive oxygen species (ROS) in the setting of the activation of several enzymatic systems such
as nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, lipoxygenase, xanthine oxidase,
uncoupled nitric oxide synthase (NOS), and the mitochondrial respiratory chain, together with impaired
antioxidant defense mechanisms (i.e., superoxide dismutase (SOD), catalase, selenium-containing
glutathione peroxidase, and the paraoxonases (PON)), are at the core of the imbalance between the
accentuated pro-oxidant and deficient antioxidant capacity that occurs in CKD, further leading to
oxidation of macromolecules, tissue damage, and dysfunction [6,7]. Thus, excess generation of ROS
has been directly linked to disease mechanisms and processes associated with CKD initiation and
progression, including proteinuria, arterial hypertension, and diabetes mellitus [5–8]. Additionally,
the triad of oxidative stress, chronic microinflammation (which implies a state of persistent, low-grade,
and subclinial augmentation of the inflammatory responses), and endothelial dysfunction as a CKD
hallmark, maintain and perpetuate the vicious circle where chronic kidney damage begets more kidney
injury and the systemic complications of CKD with cardiovascular dysfunction in particular [9–13].

Amplification of oxidative stress in CKD has been traditionally attributed to the loss of renal
function and the modality of renal replacement therapy (hemodialysis or peritoneal dialysis) in
patients with end-stage CKD. Thus, both higher ROS production and decreased clearance of
pro-oxidant substances in the setting of renal dysfunction together with impairment of the antioxidant
armamentarium are responsible for the pro-oxidant milieu that characterizes CKD [14–19].

However, it should be noted that oxidative stress is already present even in the early stages of
CKD with increased NADPH oxidase-dependent superoxide production by inflammatory cells in
the circulation [20,21]. Furthermore, research models of ischemia reperfusion injury suggest that
oxidative stress might also serve as a link between acute kidney injury (AKI) and progression to
CKD [22,23]. Biomarkers that characterize transition of AKI to CKD, such as urinary thioredoxin—a
redox regulating protein—or urinary serpinA3/alpha-1-antichymotrypsin and angiotensinogen, are the
subject of extensive, ongoing research [24,25].

Oxidative stress markers such as plasma F2-isoprostanes, 8-oxo-7,8-dihydro-2′-deoxyguanosine,
malonyldialdehyde (MAD), advanced oxidation protein products (AOPPs) and carbamylated proteins,
as well as asymmetric dimethylarginine (ADMA) and oxidized lipoprotein particles have been shown
to accumulate in CKD as renal dysfunction progresses [8,13,14,26].

The scope of this review is to address the role of oxidative stress in the pathogenesis and evolution
of CKD in a holistic manner and provide a future framework for potential interventions.

2. Implications of Oxidative Stress in Glomerular Injury and Albuminuria

Albuminuria is a well-established marker of kidney damage. It occurs early in many forms of CKD
and is a major contributor to disease progression via induction of both mesangial and tubular toxicity
as well as activation of intrinsic renal and systemic inflammatory pathways [27–29]. A dysfunctional
glomerular filtration barrier with podocyte injury are at the core of proteinuria development and
subsequent glomerulosclerosis [30]. Mature podocytes do not proliferate in vivo due to the highly
differentiated phenotype that they possess; thus, they respond to different patterns of injury through
detachment from the glomerular basement membrane, dedifferentiation, autophagy, and apoptosis [30].
The mechanisms underlying podocyte injury are complex and include hemodynamic and metabolic
pathways as well as the interplay of vasoactive molecules, growth factors, and cytokines [30,31].
Accumulating experimental and clinical evidence suggests that podocytes are quite vulnerable to
oxidative damage, and amplification of oxidative stress seems to be a final and common pathway
shared by different aggressors at the cellular level.

Accordingly, in early experimental models of minimal change disease progressing to focal
segmental glomerulosclerosis (FSGS) based on puromycin aminonucleoside, a podocyte toxin, showed
that glomerular injury was directly mediated by increased generation of ROS, such as H2O2, OH¯,
superoxide anion radicals, and lipid peroxidation products, by the podocytes themselves [32–35].
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ROS subsequently interacted with and modified intracellular molecules with detrimental consequences,
including ultrastructural changes in podocytes, defective anchoration via alteration of adhesion
molecule a3b1-integrin, and DNA damage [36–38].

The major glomerular generators of ROS are the p47phox-containing NAPDH oxidases NOX1,
NOX2, and NOX4, with the latter being selectively expressed in the kidney [39–41]. Both NOX1 and
NOX2 require the regulatory subunit p47phox in order to exert their function and catalyze electron
transfer from NADPH onto molecular oxygen, with superoxide as the end-product [39–42]. Deletion of
p47phox in an experimental model of integrin-a1 double-knockout mice was associated with reduced
basal levels of superoxide and collagen IV production and resulted in abolished podocyte injury,
macrophage infiltration, and ensuing albuminuria and fibrosis [43].

Markers of oxidative DNA and RNA damage have been related to albuminuria even among
apparently normal individuals. Accordingly, urinary levels of 8-oxo-7,8-dihydroguanosine (8-oxoGuo)
were shown to be independently associated with incident low-grade albuminuria during a median
follow-up of 5.6 years in 1591 participants in the Renal Iohexol Clearance Survey of the Sixth Tromsø
Study not reported to suffer from renal disease, diabetes, or cardiovascular disease [44].

The key event in the development and progression of FSGS is TGF-β activation in the
podocytes [45,46]. Recent data suggest that TGF-β activation is associated with accentuated crosstalk
between the podocytes and the glomerular endothelium via endothelin signaling [47]. In this
context, TGF-β signaling promotes synthesis of precursor molecules of endothelin in podocytes and
expression of endothelin receptors by the glomerular endothelium in cell cultures [47]. The result
of endothelin interaction with its receptors is suppressed mitochondrial function and induction of
oxidative stress in the glomerular endothelium, with mitochondrial oxidative DNA damage becoming
evident before podocyte injury [47]. Moreover, specific antagonists of endothelin-1 and its receptor or
mitochondria-targeted antioxidants appear to eliminate mitochondrial oxidative stress, dysfunction of
endothelial cells, and podocyte depletion in this experimental model of FSGS [47]. The mechanisms
through which endothelial mitochondrial damage and cellular dysfunction promote podocyte apoptosis
and progression of FSGS to overt renal failure remain to be elucidated; however, decreased levels of
NO might be implicated, as occurs in the setting of diabetic nephropathy [47,48].

AOPPs are dityrosine-containing byproducts of plasma proteins, produced during oxidative
stress [49,50]. AOPPs are carried in the plasma mainly by fibrinogen and albumin. They are considered
as markers of oxidative stress, while a proinflammatory role of these compounds has been suggested as
well [49–51]. Early studies showed that plasma levels of AOPPs were at the highest levels in patients
with end-stage CKD undergoing renal replacement therapy (RRT). Similarly, pre-dialysis CKD patients
and diabetic patients display significantly higher plasma levels compared to healthy controls [50,51].

Chronic plasma accumulation of AOPPs has been associated with podocyte loss, proteinuria,
and glomerulosclerosis. Induction of the p53–Bcl-2-associated X (Bax)–caspase-3 proapoptotic
pathway within the podocytes mediated by NADPH oxidase-dependent superoxide generation
has been suggested as the potential pathogenic mechanism [52]. Thus, experimental data
demonstrated that chronic administration of AOPPs in normal rats increased both urinary albumin
and 8-hydroxydeoxyguanosine excretion, a biomarker of oxidative stress in vivo [52]. Exposure of
podocytes to AOPPs induced protein kinase C (PKC)-mediated activation of total NADPH oxidase.
Accordingly, expression of the key subunits of NADPH oxidase, including that of p47phox, p22phox,
NOX 2, and NOX 4, was rapidly upregulated in cultured podocytes within hours of exposure to AOPPs.
On the other hand, apoptosis induced by AOPPs could be blocked by pretreatment of podocytes with
NADPH oxidase inhibitors and free-radical scavengers in vitro [52].

The plasma membrane receptor in podocytes, through which AOPPs induce their action, is the
receptor of advanced glycation end product (RAGE), a member of the IG superfamily and a
multiligand signal–transduction receptor, which has been implicated in diabetic nephropathy as
well as inflammation and ischemia/reperfusion injury [53–57].
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Furthermore, recent evidence has indicated that AOPPs promote overexpression of
glucose-regulated protein 78 and CCAAT/enhancer-binding protein-homologous protein in podocytes,
which is associated with production of ROS together with endoplasmic reticulum stress and, as a result,
podocyte apoptosis [58].

Wnts are a family of secretory proteins that, upon binding to their cell membrane receptor, induce
a series of downstream signaling events resulting in phosphorylation of β-catenin [59]. Following
stabilization and activation, β-catenin translocates to the nuclei and promotes the transcription of Wnt
target genes [59]. Wnt/β-catenin signaling is activated in glomerular podocytes in a wide variety of
proteinuric kidney diseases and is considered to be a significant mediator of podocyte dysfunction
and proteinuria [59]. Several target genes of Wnt/β-catenin that are involved in pathways of podocyte
dysfunction have been identified so far. Thus, activation of Wnt/β-catenin in glomerular podocytes
induces the expression of Snail1, a transcription repressor that inhibits the expression of nephrin, which
is a structural component of the podocyte slit diaphragm [59,60]. Additionally, Snail1 is considered to
play a key role in the epithelial–mesenchymal transition (EMT) [59,60]. As a result, these effects trigger
podocyte dedifferentiation and EMT, leading to disruption of the integrity of the glomerular filtration
barrier. Wnt/β-catenin suppresses Wilms tumor protein, a key transcription factor that protects the
differentiated state of podocytes, and its loss is considered a hallmark of proteinuric kidney diseases [61].
Wnt/β-catenin signaling might also cause podocyte dysfunction by inducing expression of the canonical
transient receptor potential cation channel 6 (TRPC6), a calcium channel that is expressed in podocytes
and associated with familial and acquired forms of nephrotic syndrome [59,62]. Expression of MMP-7,
an endopeptidase that degrades extracellular matrix substrates, is transcriptionally regulated by
Wnt/β-catenin [59,63]. In glomerular podocytes, MMP-7 has been found to proteolytically degrade
nephrin, and its expression is induced in the injured kidney [59]. Finally, in cultured podocytes, it has
been shown that Wnt/β-catenin and the renin–angiotensin system (RAS) can mutually stimulate each
other, maintaining a vicious cycle that leads to progressive proteinuria [59,64]. It should be noted that
angiotensin II is a major stimulant for the generation of ROS [59,65].

Accumulating evidence suggests that the action of Wnt/β-catenin is dependent on the activation
of RAGE by AOPPs. This triggers a cascade of reactions, including induction of NADPH oxidase,
generation of ROS, and nuclear factor-κB activation, which finalizes into induction of Wnt ligands,
Wnt1 and Wnt7a, and activation of β-catenin [66]. More specifically, Nox2 and p47phox, the major
subunits of the NADPH oxidase complex, were upregulated in cultured podocytes after treatment
with AOPPs, whereas pretreated podocytes with antioxidant compounds such as N-acetyl cysteine
D abolished AOPP-mediated Wnt/β-catenin activation [66]. Blockage of Wnt signaling by Klotho or
genetic ablation of β-catenin also protected podocytes from AOPPs [66]. In conclusion, considering
that Wnt/β-catenin controls key pathways implicated in podocytopathies, targeting Wnt/β-catenin
signaling might prove to be an effective approach for the development of treatment strategies in
proteinuric CKD.

On the other hand, oxidative stress pathways appear to be implicated not only in the process of
the initial podocyte damage and development of proteinuria, but during the chronic phase of kidney
injury as well, where persisting proteinuria begets more kidney injury and progressive renal failure.
Examination of the tubulointerstitial changes that occur in nephrectomized kidneys from children
with congenital nephrotic syndrome of the Finnish type (NPHS1) during infancy has shown strong
interstitial expression of myeloperoxidase (MPO) [67]. This enzyme is mainly produced by interstitial
mononuclear cells and generates hypoclorous acid (HOCl), a potent oxidant causing irreversible
tissue damage [67]. On the other hand, very low levels of free glutathione were observed in the
cortex of the NPHS1 kidneys [67]. These findings together further support the fact that proteinuric
kidneys are heavily submitted to oxidative stress. Additionally, severe proteinuria has been associated
with increased glomerular filtration of plasminogen, which is activated to plasmin by urokinase-type
plasminogen activator (uPA). Human podocytes express receptors for plasminogen and uPA. Treatment
of podocytes with plasminogen has been shown to upregulate NADPH oxidase isoforms NOX2
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and NOX4, and it increases production of free radicals, specifically the superoxide anion, by the
mitochondria [9]. The superoxide anion promotes endothelin-1 synthesis and the expression of the β

scavenger receptor CD36, resulting in podocyte apoptosis [9].
Moreover, urinary albumin undergoes endocytosis in the proximal tubule via the scavenger

receptors megalin, cubilin, and CD36. Internalization of receptor–albumin complexes activates PKC
and subsequently NADH oxidase-mediated ROS generation [68–70].

There is little evidence regarding the role of the antioxidant enzymatic system in proteinuric
CKD [71–73]. A recent study showed that the presence of extracellular superoxide dismutase (EC-SOD)
had beneficial effects in a murine model of Adriamycin-induced glomerular injury, characterized by
albuminuria and renal dysfunction. EC-SOD decreased oxidative stress and inhibited NADPH oxidase
upregulation and pathologic β-catenin signaling [73]. On the other hand, EC-SOD deficiency was
associated with proteinuria in the setting of chronic angiotensin II infusion or increased amounts of
daily albumin administration [73].

3. Oxidative Stress, Interstitial Fibrosis, and Chronic Kidney Disease (CKD) Progression

Renal fibrosis is the final common pathological denominator in the setting of chronic kidney injury,
which occurs regardless of the primary underlying insult [74]. The extent of tubulointerstitial fibrosis
is the best predictor for kidney survival in patients with CKD [74]. Renal fibrosis is characterized
by excessive deposition of the extracellular matrix, which disrupts and replaces the normal kidney
parenchyma and, as a result, leads to progressive loss of kidney function. The process of renal scarring,
better understood in recent years, involves a complex interaction of molecular pathways, growth
factors, cytokines, and cells [75–78].

Kidney myofibroblasts originating from resident renal fibroblasts and hematopoietic cells migrating
into the kidney are the key collagen-producing cells involved in fibrosis [79]. TGF-β1 is the key molecule
responsible for myofibroblast differentiation to a profibrotic phenotype, characterized by expression
of α-smooth muscle actin (αSMA) and contractile properties [80,81]). Accordingly, TGF-β1 binds to
TGF-β receptor type II on the cell surface, and subsequent TGF-β receptor type I phosphorylation of
Smad2/3, which complexes with Smad4, leads to the formation of a heterodimer that translocates and
binds to the promoter region of the α-SMA gene in the nucleus [80,81]. There is now firm evidence that
TGFβ1 upregulates Nox2 and Nox4, which are both expressed by kidney fibroblasts [80,81]. Thus, both
isoforms of NADPH oxidase and their byproducts such as superoxide appear to have a predominant
role in the phenotypic transition of fibroblasts to myofibroblasts and fibrogenesis [80,81]). Upon TGFβ
activation, it appears that Nox4 expression levels greatly exceed those of Nox2, whereas inhibition of
Nox4 has been shown to substantially inhibit α-SMA and extracellular matrix production [80,81].

Nox4 has been recognized as a significant mediator in uremic toxin induced injury of the proximal
kidney tubule epithelium. More specifically, experimental models indicate that p-cresyl sulfate, a
uremic toxin that accumulates with CKD progression, enhances the activity of Nox4-, p22phox-NADPH,
and ROS production in renal tubular cells, which in turn induces the expression of inflammatory
cytokines and profibrotic factors, leading finally to reduced cell viability [80]. Likewise, indoxyl
sulfate, another uremic toxin that accumulates as early as stage 3–4 CKD, has been linked not only to
progression of glomerulosclerosis and interstitial renal fibrosis but to cardiac fibrosis as well [82,83].

However, it should be noted that the role of NOX4 in the generation of kidney fibrosis is not
straightforward. In an experimental model of unilateral ureteral obstruction (a well-described model
of renal tubular stress leading to kidney fibrosis) of wild-type and NOX4 knockout mice, deletion
of NOX4 was associated with TGF-β1-mediated tubular cell apoptosis, defective hypoxia-inducible
factor-1a (HIF-1a) oxygen sensing and NRF2 antioxidant pathways as well as accentuation of kidney
fibrosis in obstructed kidneys [84]. In this case the antioxidant beneficial role of NOX4 might be indirect
through regulation of the NRF2 pathway in kidney tubular cells. The Nrf2/Keap1 system regulates
the transcription of antioxidant genes, including catalase and superoxide dismutase, through direct
Nrf2 binding to responsive elements in the promoter region of target genes or via Keap1-induced
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NF-κB inhibition [85]. Nrf2 activity is associated with antioxidant and renoprotective effects in CKD
animal models [86,87]. NRF2 under normal conditions is degraded and inactivated in proteasomes by
the oxidative-stress sensor molecule Kelch-like ECH-associated protein 1 (KEAP1) [85,88]. ROS alter
the conformation of KEAP1 and inactivate the interaction between KEAP1 and NRF2 [85,88]. NRF2
avoids degradation in cells exposed to oxidative stress, and after translocating into the nucleus, it
activates the transcription of its target genes by binding to NRF2 recognition sequences [85,88]. It has
been suggested that NOX4-related hydrogen peroxide production is an important regulator of NRF2
stability via oxidation of KEAP1 in kidney tubular cells [84–88].

Autophagy is the physiological process that involves degradation and recycling of intracellular
components and serves as a housekeeping mechanism to remove damaged or aged macromolecules or
organelles [89]. Autophagy is considered to play a protective role in both acute and chronic kidney
disease [89,90]. Emerging data suggest that oxidative stress and autophagy are interconnected, and
ROS together with reactive nitrogen species (RNS) induce autophagy and vice versa [89,90].

4. Oxidative Stress, Microvascular Dysfunction, and Chronic Inflammation in CKD

The endothelium is an essential component in the regulation and maintenance of normal renal
function [91]. It is well known that the vascular endothelium is especially vulnerable to oxidative stress,
and vascular oxidative stress is considered to play a critical role in CKD progression [91–93]. One of the
most important functions of the endothelium is to secrete nitric oxide (NO), a relatively unstable diatomic
free radical, involved in several biological processes including vasodilatation mediated by cyclic
guanosine monophosphate (cGMP) in smooth muscle cells, inflammation, and immune responses [92].
NO is synthesized from arginine by the enzyme nitric oxide synthase (NOS), which is expressed in
various isoforms—inducible (iNOS), constitutive (cNOS), neuronal (nNOS), and endothelial (eNOS)—in
the endothelial cells and several other cell types [94]. Accordingly, in the renal tissue, cNOS is
expressed in the vessels, glomeruli, and tubules; the iNOS isoform is mainly found in vascular smooth
muscle cells (VSMCs) and the mesangium; whereas eNOS is specifically associated with the vascular
endothelium [92,93,95]. In endothelial cells, eNOS is present on the cell membrane and on the cytosolic
surface of the outer mitochondrial membrane [95]. NO is considered as a key molecule directly
involved in the pathogenesis of oxidative stress mediated renal disease [92,93]. The relationship
between NO and ROS is bidirectional, with low levels of NO in the endothelium inducing the expression
of antioxidative genes and protecting renal endothelial and mesangial cells from apoptosis and fibrosis,
whereas on the other hand, increased level of ROS reduce the production of endothelium-derived
NO via inhibition and/or uncoupling of NOS enzymes [92,93,95]. Under normal conditions, NO
within cells is suggested to inhibit cytochrome C oxidase, a mitochondrial membrane-bound terminal
enzyme in the electron transfer chain, thus potentially altering mitochondrial ROS generation. The
synthesis of NO in the kidney can be blocked by inhibition of the NOS with guanidine-substituted
analogues of l-arginine, such as asymmetric dimethylarginine (ADMA), which accumulates in the
plasma of CKD patients since the early phases of renal disease, even before glomerular filtration is
significantly reduced [93,94]. The inhibition of NO synthesis in the kidney causes decreased NO
bioavailability and increased production of ROS, whereas reaction of NO with superoxide generates
peroxynitrites [94,96,97]. Subsequently, renal endothelial dysfunction and increased vascular resistance
ensue, with loss of the ability of NO to induce vasodilation and counterbalance vasoconstrictors such
Angiotensin II, endothelin-1, and sympathetic nervous system outflow. Additionally, peroxynitrites
cause further tissue damage by interacting with various target molecules, including thiols, lipids, and
proteins containing aromatic amino acids [94,96–98].

Serum ADMA and oxidative stress markers, including plasma, erythrocyte superoxide dismutase,
and glutathione peroxidase, were studied in a population of patients with CKD stages 1–5,
and their levels were shown to be directly associated with the stage of CKD. Glomerular filtration
rate (GFR) correlated negatively with malondialdehyde and ADMA levels and positively with
erythrocyte superoxide dismutase and glutathione peroxidase. Additionally, ADMA, superoxide
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dismutase, and oxidized low-density lipoprotein (LDL) levels were independently related to brachial
artery endothelium dependent vasodilatation, implying that levels of oxidative stress and ADMA
independently affect endothelial function [93].

ROS are directly involved in the signaling process that controls sodium reabsorption in the
renal tubular cells and are associated with increased renal vascular resistance. Accordingly, NADPH
oxidase-induced superoxide production in vascular smooth muscle cells (VSMCs) has been shown to
cause vasoconstriction and increased vascular tone in the medullary circulation of mice [99,100].

Impairment of renal autoregulation, which is determined by the tubuloglomerular feedback
response and myogenic contraction of the VSMC of the afferent arteriole in response to an increase in
perfusion pressure, has been related to CKD progression, as impaired autoregulation augments the
pressure in the glomerular capillaries and causes renal parenchymal damage with accelerated loss
of kidney function. ROS, as shown by experimental studies, might mediate the impaired myogenic
responses of afferent arterioles from the kidneys in CKD models [101–105]. Both Nox2 and Nox4 are
expressed in renal resistance arteries, and accumulating data in the literature has shed light on the role
of Nox2-derived ROS in the regulation of afferent arteriolar tone and renal hemodynamics [101,102].
An increase in perfusion pressure of individual afferent arterioles isolated from normal mouse kidneys
increases vascular superoxide from NADPH oxidase, resulting in myogenic contraction of the afferent
arteriole [101,102]. On the other hand, myogenic contractions of afferent arterioles have been found to
be significantly impaired in 5/6 nephrectomized mice by hydrogen peroxide (H2O2), generated through
upregulated arteriolar expression of POLDIP2/NOX4, thus counteracting the effects of superoxide
and causing impaired renal autoregulation [102–104]. Specifically, increases in perfusion pressure of
arterioles of CKD mice doubled superoxide generation while simultaneously expressing over 40%
more mRNA and protein for NOX4 and POLDIP2, thus leading to a sevenfold increase in H2O2

production [103–105].
Oxidative stress and inflammation, as well as their interaction, are considered as the main pillars

in the pathogenesis and progression of CKD [106–108]. Oxidative stress promotes inflammation via
formation of proinflammatory oxidized lipids, AOPPs and AGEs, (advanced glycation end-products)
whereas activation of nuclear factor κB (NFκB) transcription factor in the pro-oxidant milieu promotes
the expression of proinflammatory cytokines as well as recruitment and activation of leukocytes and
other resident proinflammatory cells [106–110]. Likewise, proinflammatory cytokines, such as tumor
necrosis factor-α (TNFα), bind to their receptors on tubular and other renal cells and trigger signaling
pathways that activate nuclear factor κB (NFκB) transcription factors [109,110]. Additionally, in the
setting of chronic inflammation, activated leukocytes generate ROS, chlorine, and nitrogen species, thus
accentuating and perpetuating oxidative stress [106–108]. Indeed, the initial ROS-mediated kidney
injury triggers the ensuing renal and systemic inflammatory response.

Accordingly, in a cohort of 176 patients with CKD stage 1 to 5, serum levels of hs-CRP, interleukin-6,
and malondialdehyde were significantly increased and inversely related to the GFR, whereas serum
levels of superoxide dismutase and glutathione peroxidase were significantly decreased. It should
be noted that IL-6 and hs-CRP were positively correlated with malondialdehyde and negatively
associated with superoxide dismutase and glutathione peroxidase, further supporting the relationship
between inflammation and oxidative stress in CKD [108]. It has been also shown that at high
uremic concentrations, TNFα induces leukocyte oxidative bursts and increases the percentage of
ROS-producing monocytes and granulocytes in the whole blood of healthy controls [111].

As already noted above, Nrf2 has a critical role for the coordinated induction of several genes
encoding antioxidant enzymes, thus maintaining a redox balance in the organism. Additionally,
several studies have demonstrated the anti-inflammatory properties of Nrf2 through suppression of
inflammatory genes such as those encoding TNF-alpha-induced monocyte chemoattractant proteins
(MCP)-1 and VCAM-1. Dysfunctional Nrf2 activation as occurs in CKD renders the kidney vulnerable
to the effects of oxidative stress and, at the same time, potentiates intra-renal inflammation by promoting
accumulation of hydroperoxides and lipoperoxides, which are potent activators of NF-κB [112–114].
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Studies conducted in animals with 5/6 nephrectomy-induced CKD have shown a prominent reduction
in nuclear Nrf2 content together with marked elevation of the repressor molecule Keap1, suggesting
an impaired regulation of this antioxidant mechanism despite the presence of oxidative stress and
inflammation, which should have induced Nrf2 activation [112–115].

5. Oxidative Stress and Clinical Models of CKD

Diabetic kidney disease continues to be on the rise and represents the leading cause of end-stage
kidney disease [116]. It is the interplay between metabolic and hemodynamic factors that sets in
motion a set of intertwining signals and pathways, involving, among others, amplification of oxidative
stress and inflammation [116–118]. An elaborate description of the intricate mechanisms operating in
the pro-oxidant environment created by hyperglycemia is beyond the scope of this review. However,
it should be noted that the clinical and experimental evidence regarding amplification of oxidative
stress in diabetic nephropathy is immense and has provided the main matrix upon which we base our
current knowledge about the molecular mechanisms involved in oxidative stress induction and its
adverse consequences in patients with kidney disease.

Hyperglycemia, AGEs together with activation of RAAS, and the ensuing glomerular
hyperfiltration promote increased generation of ROS by upregulation of Nox4 as well as TGF-β1
expression in the glomerular cells of diabetic kidneys [118].

ROS, in return, induce signaling pathways, including the nuclear factor-kappaB (NF-κB) pathway,
p38 mitogen-activated protein kinase (MAPK), Jun N-terminal kinases/stress activated protein kinases,
as well as eNOS uncoupling together with increased expression of vascular endothelial growth factor
(VEGF) and of inflammatory cytokines [42,119–124]. In diabetic rats, augmented oxidative stress
has been demonstrated to significantly increase monocyte chemotactic protein-1 (MCP-1) levels and
stimulate macrophage recruitment, mainly through activation of the PKC pathway [125].

Recent data indicate that mitochondria of diabetic patients display increased fragmentation, the
so-called mitochondrial fission, which has been associated with mitochondrial dysfunction, increases
in ROS production, and subsequent endothelial damage [126–128]. Additionally, ROS cause DNA
modifications leading to further mitochondrial and cellular damage, triggering of apoptotic pathways
through the activation of caspases as well as expression of p53 proteins, and eventually cell death [129,130].
Accordingly, early studies have indicated that urinary excretion of hydroxy-2-deoxyguanosine (8-OHdG),
a marker of oxidative DNA damage, is increased in patients with diabetic nephropathy [129,130].

IgA nephropathy (IgAN), the most common glomerular disease globally, is a leading cause
of CKD and renal failure. A systemic pro-oxidant environment—marked by increased serum
levels of lipoperoxide or malondialdehyde and reduced activity of superoxide dismutase, catalase,
and glutathione peroxidase, as detected in sera of patients with IgAN—has been associated with
disease activity and progression [131–133]. Markedly, circulating AOPP have been shown to correlate
with proteinuria and be a potent risk marker of decline in the renal function and disease progression
since early in the clinical course of IgAN. AOPPs, apart from podocyte injury, can activate NF-κB and
trigger transcription of iNOS, a powerful mediator of oxidative stress in mesangial cells [134].

Autosomal dominant polycystic kidney disease (ADPKD) is the most common genetic disease
leading to end-stage CKD. Experimental and clinical data suggest that oxidative stress may be
involved in the progression of CKD in the setting of ADPKD [135–138]. Upregulation of heme
oxygenase-1 mRNA and accumulation of lipid peroxidation products, such as malondialdehyde and
4-hydroxy-2(E)-nonenal, in the plasma and kidneys together with downregulation of antioxidant
enzyme mRNA expression, including glutathione peroxidase, catalase, glutathione S-transferase,
and superoxide dismutase, have been observed in animal models of PKD, which also correlated with
disease severity [135].

Markedly elevated markers of oxidative stress, such as plasma 8-epi-prostaglandin F2α,
and attenuated antioxidant mechanisms represented by diminished SOD have been demonstrated in
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subjects with ADPKD since early in the disease process, before manifestation of arterial hypertension
or impairment of renal function becomes evident [136].

Oxidative stress-responsive kinase-1 (OSR-1), which is associated with regulation of Na+ transport
and cell volume during oxidative stress, has recently been shown to play a role in the regulation of
blood pressure in ADPKD [139]. Thus, serum OSR-1 gene expression has been found to be significantly
increased in hypertensive ADPKD patients in comparison with normotensive ADPKD counterparts,
non-ADPKD hypertensive subjects, as well as healthy individuals [139].

Cardiorenal syndrome refers to the reciprocal pathophysiological interaction between heart
disease and kidney disease where acute or chronic dysfunction of either organ causes acute or chronic
dysfunction of the other [140]. Specifically, type 4 cardiorenal syndrome is defined as CKD causing left
ventricular hypertrophy (LVH) and congestive heart failure [140].

LVH is a prevalent trait of CKD, becoming more common with CKD progression, and is significantly
associated with cardiovascular events and mortality in these patients [141]. Amplification of oxidative
stress has recently come into the spotlight as a potential mediator implicated in the pathogenesis
of LVH and cardiorenal syndrome [13,142–144]. Activation of cardiac and renal NADPH oxidases,
dysfunctional mitochondrial chain, xanthine oxidase, eNOS uncoupling, and nitrosative stress are
the main pathways implicated in production of ROS leading to inflammation, apoptosis, and fibrosis
in both the heart and the kidney [145–150]. ROS activate a broad variety of hypertrophy signaling
kinases and transcription factors, such as MAP kinase (MAPK) and nuclear factor-κB (NF-κB), as well
as proliferation and activation of matrix metalloproteinases (MMPs) [151]. A positive correlation has
been shown between serum levels of oxidized LDL and protein carbonyl groups and left ventricular
mass in children with CKD, whereas serum carbamylated albumin has been strongly associated with a
four-year risk of death from congestive HF in diabetic patients with end-stage CKD [152,153]. A recent
study demonstrated that polymorphisms in the silent information regulator gene 1 (Sirt1), which act as
a fundamental mediator in the response to oxidative stress and inflammation, is associated with LV
concentric growth in CKD patients [154]. On the other hand, dysfunctional antioxidant defenses may
aggravate oxidative stress-related cardiovascular dysfunction in CKD. Thus, genetic polymorphism of
the PON1 gene have been significantly related to the severity of LVH and LV dysfunction in patients
with CKD [155].

6. The Future of Therapeutic Strategies for Oxidative Stress Modulation

Considering the implication of oxidative stress as a causative factor in CKD progression as well
as the associated spectrum of systemic complications, especially cardiovascular morbidity, it could
be expected that targeted therapies would translate into overt clinical benefits. Nevertheless, except
for the multipotential benefits of RAS blockade, results for the antioxidant therapies utilized until
now, as shown by a Cochrane database systematic review (vitamin E, coenzyme Q, acetylcysteine,
bardoxolone methyl, human recombinant superoxide dismutase), have been disappointing [156].

Recently, new medications have come into the spotlight, which apart from offering
evident nephroprotection and cardioprotection are also suggested to exert antioxidant effects.
Thus, sacubitril/valsartan, an angiotensin-receptor neprilysin inhibitor, as well as sodium–glucose
cotransporter 2 (SGLT2) inhibitors have been shown to possess antioxidant, anti-inflammatory, and
antifibrotic properties [157,158]. Future clinical trials will determine the efficacy of these or other new
drugs in modulating the pro-oxidant milieu of CKD.
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