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Abstract: Magnesium lithospermate B (MLB) is a primary hydrophilic component of Danshen, the
dried root of Salvia miltiorrhiza used in traditional medicine, and its beneficial effects on obesity-
associated metabolic abnormalities were reported in our previous study. The present study investi-
gated the anti-muscle atrophy potential of MLB in mice with high-fat diet (HFD)-induced obesity.
In addition to metabolic abnormalities, the HFD mice had a net loss of skeletal muscle weight and
muscle fibers and high levels of muscle-specific ubiquitin E3 ligases, namely the muscle atrophy
F-box (MAFbx) and muscle RING finger protein 1 (MuRF-1). MLB supplementation alleviated those
health concerns. Parallel changes were revealed in high circulating tumor necrosis factor-α (TNF-α)
and interleukin-6 (IL-6), skeletal TNF receptor I (TNFRI), nuclear factor-kappa light chain enhancer
of activated B cells (NF-κB), p65 phosphorylation, and Forkhead box protein O1 (FoxO1) as well as
low skeletal phosphoinositide 3-kinase (PI3K) and protein kinase B (Akt) phosphorylation. The study
revealed that MLB prevented obesity-associated skeletal muscle atrophy, likely through the inhibition
of MAFbx/MuRF-1-mediated muscular degradation. The activation of the PI3K-Akt-FoxO1 pathway
and inhibition of the TNF-α/TNFRI/NF-κB pathway were assumed to be beneficial effects of MLB.

Keywords: magnesium lithospermate B; muscle atrophy; obesity; insulin resistance; inflammation

1. Introduction

Muscle atrophy occurs as a result of a net loss of muscle mass. In addition to its
devastating effects on human health, muscle atrophy is a highly recognized risk factor for
physical disabilities and a poor quality of life [1,2]. The majority of muscle mass depends
on the counterbalance between protein anabolism and catabolism. Insufficient protein
synthesis and overwhelmed protein degradation predispose people to muscle atrophy [3,4].
The prevalence of muscle atrophy is continually increasing because it is a complication of
many acute and chronic diseases [5]. Therefore, a more comprehensive understanding of
its pathogenic mechanism is necessary for the development of strategies to combat it and
its associated sequelae.

Autophagy, caspases, and particularly the ubiquitin-proteasome system are three fam-
ilies of proteolytic enzymes common to protein degradation [6]. The core of the ubiquitin-
proteasome system consists of three groups of enzymes, namely the ubiquitin E1 activating

Nutrients 2022, 14, 104. https://doi.org/10.3390/nu14010104 https://www.mdpi.com/journal/nutrients

https://doi.org/10.3390/nu14010104
https://doi.org/10.3390/nu14010104
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nutrients
https://www.mdpi.com
https://orcid.org/0000-0003-1123-0015
https://orcid.org/0000-0002-8991-6394
https://orcid.org/0000-0002-5105-5285
https://doi.org/10.3390/nu14010104
https://www.mdpi.com/journal/nutrients
https://www.mdpi.com/article/10.3390/nu14010104?type=check_update&version=1


Nutrients 2022, 14, 104 2 of 14

enzyme, ubiquitin E2 conjugating enzyme, and ubiquitin E3 ligase. Functional diversity
and targeted specificity of the ubiquitin-proteasome system rely on the introduction of
ubiquitin E3 ligase [7]. Muscle atrophy F-box (MAFbx)/atrogin-1 and muscle RING finger
protein 1 (MuRF-1) are two muscle-specific ubiquitin E3 ligases that are highly expressed
in the skeletal muscles under atrophy-prone conditions. Their transcriptional activation
is closely linked with muscle atrophy independent of etiologies, and the inhibition of
their expression reduces muscle mass loss [8]. Evidence has revealed the crucial roles of
nuclear factor kappa light chain enhancer of activated B cells (NF-κB) and the Forkhead box
protein O1 (FoxO) family transcription factor in the transcriptional activation of MAFbx
and MuRF-1 and the consequences of muscle atrophy [5,8,9]. The phenomena underscore
the roles of NF-κB and FoxO intervention as preventive or therapeutic options for patients
with muscle atrophy.

Herbal plants are vital sources of biologically active compounds and are beneficial
to patients with metabolic disorders [10]. Danshen, the root of the medicinal plant Salvia
miltiorrhiza, is traditionally used to improve daily functioning and treat a wide variety of
diseases, including coronary heart disease, hepatitis, menstrual disorders, blood circulation
diseases, and cardiovascular diseases [11]. Magnesium lithospermate B (MLB), a derivative
of a caffeic acid tetramer metabolized in the liver and excreted through the bile, is the
primary hydrophilic component of Danshen [12]. It exerts pharmacological effects, such
as anti-ischemia reperfusion, and contains antioxidant, anti-inflammatory, and antitumor
properties [13–15]. Although the components of Danshen have indicated the promotion of
muscle anabolism and prevention of muscle wasting [16,17], a study focused on MLB has
not yet been conducted. MLB’s anti-inflammatory properties result from the inhibition of
NF-κB [18], and MLB promotes Akt activity, a critical negative regulator of the FoxO family
of transcription factors [19]. Its effects on NF-κB and Akt suggest that MLB may benefit the
treatment of muscle atrophy.

Skeletal muscle atrophy is a common complication of obesity, a metabolic disease
characterized by insulin resistance and inflammation, with poor outcomes [20–22]. Pro-
tein degradation appears to have a dominant role in obesity-associated skeletal muscle
atrophy [23]. Previous studies revealed that MLB diminishes high-fat diet (HFD)-induced
metabolic abnormalities through reducing obesity, fatty liver, glucose intolerance, and
insulin resistance [24], and aging and obesity-induced ER stress, insulin resistance, and
inflammasome formation in the liver [25]. To expand the study of MLB’s nutraceutical
potential, we hypothesized that MLB may weaken skeletal muscle atrophy through acting
on MAFbx and MuRF-1. To complete our working hypothesis, obesity-associated skeletal
muscle atrophy was modeled in mice through an HFD and daily administrations of MLB.

2. Materials and Methods
2.1. Animals

Seven-week-old male C57BL/6J mice were purchased from BioLasco, Taiwan Co., Ltd.
(Taipei, Taiwan). The mice were maintained on a 12:12 light–dark cycle with unrestricted
access to regular food (5008 Rodent LabDiet, PMI Nutrition International Inc., St. Louis,
MO, USA) and water. After a 1-week acclimation period, the mice were randomly divided
into three groups. The control group (n = 8) consisted of mice that continued to eat regular
food and the high-fat (HF) group (n = 8) comprised mice that ate high-fat food (high-fat
Rodent TestDiet, PMI Nutrition International Inc., St. Louis, MO, USA); 67% of calories
were obtained from fat. The HF + MLB group (n = 8) consisted of mice that consumed
HF food and daily MLB supplements (100 mg/kg body weight/day) that were dissolved
in water and administrated through oral gavage. MLB, purified from S. miltiorrhiza, was
purchased from KO DA Pharmaceutical Co., Ltd. (Taoyuan, Taiwan) with a purity of
approximately 85%.
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2.2. Fasting Blood Glucose Measurement

After 17 weeks of supplementation, the mice fasted overnight. A blood droplet from a
tail clipping and a glucometer with test strips (Roche Ltd., Basel, Switzerland) were used to
measure each mouse’s fasting blood glucose level.

2.3. Serum Analyses

Blood samples were collected through cardiac puncture and were centrifuged at
3000 rpm for 10 min to separate the serum. The serum levels of aspartate transaminase
(AST), alanine transaminase (ALT), total cholesterol, and triacylglycerol were measured
using a clinical chemistry analyzer (Hitachi Autoanalyzer 7070, Hitachi Ltd., Tokyo, Japan).
The levels of insulin (Crystal Chem Inc., Elk Grove Village, Illinois, USA), tumor necrosis
factor-α (TNF-α), and interleukin-6 (IL-6; Quantikine R&D Systems, Minneapolis, MN,
USA) were measured using enzyme-linked immunosorbent assay (ELISA) kits, following
the procedures provided by the respective manufacturers.

2.4. HOMA-IR

HOMA-IR, a method developed by Matthews et al. (1985) [26], is an index used to
quantify insulin resistance. The index is calculated as follows: HOMA-IR = fasting glucose
(mg/dL) × serum insulin (mU/L)/405.

2.5. Histological Examination

At the end of the 17-week experimental period, the mice were euthanized under
anesthesia with Zoletil 50 (40 mg/kg, IP; Virbac Laboratories, Carros, France), and the
epididymal fat and gastrocnemius (GC), extensor digitorum longus (EDL), and soleus (SOL)
muscles were quickly removed and weighed. The resected tissues, namely the epididymal
fat and GC muscles, were fixed in 10% formalin and embedded with paraffin. Hematoxylin
and eosin (H&E) staining was performed according to standard procedures. Histological
images were captured with a light microscope (Olympus, BX43, Tokyo, Japan) equipped
with a digital camera (Canon EOS 600 D, Tokyo, Japan). The H&E-stained sections were
used for cross-sectional area (CSA) analyses. The numbers of adipocytes in the epididymal
adipose tissues and the numbers of fibers in the GC muscles were counted in a total number
of 100 per animal. Semiautomatic quantification of the minimal Feret’s diameter of fibers
was performed as described previously [27]. The variance coefficient of minimal Feret’s
diameter from each section was defined to evaluate the muscle fiber size variability among
the groups and then calculated as the ratio between the standard deviation (×1000) and
the mean of the diameter and was expressed as arbitrary units.

2.6. Tissue Preparation and Western Blot Analysis

The GC muscle tissues were homogenized with a lysis buffer (1% Triton X-100; 50 mM
Tris-HCl, pH 7.6; 150 mM NaCl) and 1% protease inhibitor cocktail for protein extraction.
The obtained proteins were separated through sodium dodecyl sulphate-polyacrylamide
gel electrophoresis (SDS-PAGE) and electrophoretically transferred to polyvinylidene diflu-
oride membranes. The blots were then incubated with antibodies, namely phosphatidyli-
nositol 3-kinase (PI3K) p85g (Cell Signaling Technology, Inc., Danvers, MA, USA), protein
kinase B (Akt; Thermo Fisher Scientific, Rockford, IL, USA), phospho-Akt (ser473; Cell Sig-
naling Technology, Inc., Danvers, MA, USA), MAFbx/Atrogin-1 (Santa Cruz Biotechnology,
Dallas, TX, USA), MURF-1 (Santa Cruz Biotechnology, Dallas, USA), FOXO1 (Protein-
tech, Rosemont, USA), phospho-FOXO1 (Cell Signaling Technology, Inc., Danvers, MA,
USA), TNF-α (PeproTech, East Windsor, Mercer County, NJ, USA), TNFRI (Santa Cruz
Biotechnology, Dallas, TX, USA), NF-κB p65 (Santa Cruz Biotechnology, Dallas, TX, USA),
phospho-NF-κB p65 (Santa Cruz Biotechnology, Dallas, TX, USA), IL-6 (Santa Cruz Biotech-
nology, Dallas, TX, USA), and GAPDH (Santa Cruz Biotechnology, Dallas, TX, USA). After
incubation with horseradish peroxidase-labeled IgG, the blots were developed using ECL
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Western blotting reagents and quantified with optical densitometry (Image Master ID) of
the developed autoradiographs.

2.7. RNA Isolation and Quantitative Real-Time Reverse Transcriptase Polymerase Chain Reaction
(RT-qPCR)

Total RNAs were isolated from excised epididymal adipose tissues using a TriZol
RNA isolation reagent (Invitrogen, Carlsbad, CA, USA) and subjected to conventional
cDNA synthesis and real-time PCR. The Ct values obtained were used to calculate relative
levels of gene expression based on the ∆∆CT method. Oligonucleotides for PCR were:
TNF-α, 5′-TCCCAACAAGGAGGAGAAGT and 5′-TGGTATGAAGTGGCAAATCG; IL-6,
5′-AGGTTCCATGTGCAAGTGTCT and 5′-GACAGCCCTGGTCAAAGGTT, and β-actin,
5′-AGAGGGAAATCGTGCGTGAC, and 5′-CAATAGTGATGACCTGGCCGT.

2.8. Statistical Analyses

One-way analysis of variance (ANOVA) was used for statistical analysis, and the
differences between the three groups were determined using Bonferroni’s post hoc test
(SPSS Statistics version 22). The results were deemed statistically significant at p < 0.05. All
data are presented as the mean ± SD.

3. Results
3.1. MLB Supplementation Attenuated HFD-Induced Adiposity

The results revealed that an HFD increased the mice’s weight (Figure 1A), but had no
clear effect on their average food intake (Figure 1B), compared with the mice that were fed
a regular diet. Daily MLB supplementation limited the mice’s weight gain (Figure 1A). The
percentage of the epididymal fat weight of the total weight of the HFD mice was signifi-
cantly higher than that of the control group (Figure 1C). MLB supplementation reduced
the HFD-induced increase in epididymal fat weight (Figure 1C). H&E staining revealed
larger adipocytes (Figure 1D), macrophage infiltration, and increased CSAs (Figure 1D,E)
in the epididymal fat pads of the HFD mice compared with those in the control group, and
MLB supplementation decreased the size of the adipocytes in the HFD mice. These results
suggested that MLB supplementation alleviated HFD-induced adiposity.

3.2. MLB Supplementation Reduced HFD-Induced Insulin Resistance, Dyslipidemia, and Liver Injury

Several parameters reflecting the insulin action, lipid profile, and liver function were
assessed to examine the effects of MLB on insulin resistance, lipid metabolism, and liver
injury. At the end of the 17-week experiment, the HFD mice exhibited increased levels of
fasting blood glucose, serum insulin, serum cholesterol, serum triglycerides, serum AST
and serum ALT, all of which were alleviated by MLB supplementation (Figure 2A,B,D–G),
indicating that MLB can induce hypoglycemia, hypoinsulinemia, and hypolipidemia, and
improve liver function. A parallel HOMA-IR assessment indicated that the HFD mice
exhibited impaired insulin sensitivity, and MLB supplementation reduced their HFD-
induced insulin resistance (Figure 2C). These results indicated that MLB supplementation
may have reduced hyperglycemia, hyperinsulinemia, insulin resistance, dyslipidemia, and
liver injury in HFD mice.
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Figure 1. MLB supplementation attenuated HFD-induced adiposity. Over the course of 16 weeks,
the mice’s body weight and food intake were recorded. Weekly changes in body weight (A) and
food intake (B) are depicted and summarized. At the end of the experiment, the excised epididymal
adipose tissues were weighed (C) and subjected to histological examination. Representative photomi-
crographs of H&E stain are displayed (D) and the relative epididymal adipose cross-sectional area
(CSA) data are illustrated (E). * p < 0.05 vs. control group. # p < 0.05 vs. HFD group. n = 8. Scale bar:
200 µm.



Nutrients 2022, 14, 104 6 of 14
Nutrients 2022, 14, x FOR PEER REVIEW 6 of 14 
 

 

 

Figure 2. MLB supplementation improved HFD-induced insulin resistance, dyslipidemia, and liver injury. At the end of 

the experiment, serum samples were subjected to analyses to measure fasting glucose (A), insulin (B), cholesterol (D), 

triglycerides (E), AST (F), and ALT (G). The value of HOMA-IR is depicted in (C). * p < 0.05 vs. control group. # p < 0.05 vs. 

HFD group. n = 8. 

3.3. MLB Supplementation Reduced HFD-Increased Proinflammatory Cytokines 

Inflammation is a result of muscle wasting, and an elevated expression of proinflam-

matory cytokines correlates with several clinical disorders, including obesity and insulin re-

sistance [28,29]. In our study, the ELISA data illustrated the effects of MLB supplementation 

on IL-6 and TNF-α levels in the serum of mice with HFD-induced obesity. A significant in-

crease was noted in the IL-6 and TNF-α levels in the serum of the HFD mice compared with 

the control group (Figure 3A,B). MLB supplementation significantly decreased the produc-

tion of HFD-induced IL-6 and TNF-α (Figure 3A,B). These findings revealed that MLB sup-

plementation could attenuate an inflammatory response in mice with HFD-induced obesity 

by lowering the levels of circulating proinflammatory cytokines. 

Figure 2. MLB supplementation improved HFD-induced insulin resistance, dyslipidemia, and
liver injury. At the end of the experiment, serum samples were subjected to analyses to measure
fasting glucose (A), insulin (B), cholesterol (D), triglycerides (E), AST (F), and ALT (G). The value of
HOMA-IR is depicted in (C). * p < 0.05 vs. control group. # p < 0.05 vs. HFD group. n = 8.

3.3. MLB Supplementation Reduced HFD-Increased Proinflammatory Cytokines

Inflammation is a result of muscle wasting, and an elevated expression of proinflam-
matory cytokines correlates with several clinical disorders, including obesity and insulin
resistance [28,29]. In our study, the ELISA data illustrated the effects of MLB supplementa-
tion on IL-6 and TNF-α levels in the serum of mice with HFD-induced obesity. A significant
increase was noted in the IL-6 and TNF-α levels in the serum of the HFD mice compared
with the control group (Figure 3A,B). MLB supplementation significantly decreased the pro-
duction of HFD-induced IL-6 and TNF-α (Figure 3A,B). These findings revealed that MLB
supplementation could attenuate an inflammatory response in mice with HFD-induced
obesity by lowering the levels of circulating proinflammatory cytokines.



Nutrients 2022, 14, 104 7 of 14
Nutrients 2022, 14, x FOR PEER REVIEW 7 of 14 
 

 

 

Figure 3. MLB supplementation reduced HFD-induced proinflammatory cytokines. At the end of 

the experiment, serum samples were subjected to measurements of IL-6 (A) and TNF-α (B) with 

commercially available enzyme immunosorbent assay kits. * p < 0.05 vs. control group. # p < 0.05 

vs. HFD group. n = 8. 

3.4. MLB Supplementation Attenuated HFD-Induced Muscle Atrophy 

Skeletal muscle atrophy is a common complication of obesity [30,31]. The potential 

effects of MLB on skeletal muscle atrophy were investigated in mice that had 

HFD-induced obesity. The percentage of the weights of the GC (Figure 4A), SOL (Figure 

4B), and EDL muscles (Figure 4C) of total body weight decreased in the HFD mice. His-

tological examination revealed a reduced CSA and an increased variance coefficient of 

the GC muscle fibers (Figure 4D–F) in the HFD mice compared with the other groups of 

mice. Those muscular changes were alleviated by MLB supplementation (Figure 4), 

which, according to the results, could attenuate HFD-induced muscle atrophy. 

Figure 3. MLB supplementation reduced HFD-induced proinflammatory cytokines. At the end of
the experiment, serum samples were subjected to measurements of IL-6 (A) and TNF-α (B) with
commercially available enzyme immunosorbent assay kits. * p < 0.05 vs. control group. # p < 0.05 vs.
HFD group. n = 8.

3.4. MLB Supplementation Attenuated HFD-Induced Muscle Atrophy

Skeletal muscle atrophy is a common complication of obesity [30,31]. The potential
effects of MLB on skeletal muscle atrophy were investigated in mice that had HFD-induced
obesity. The percentage of the weights of the GC (Figure 4A), SOL (Figure 4B), and
EDL muscles (Figure 4C) of total body weight decreased in the HFD mice. Histological
examination revealed a reduced CSA and an increased variance coefficient of the GC muscle
fibers (Figure 4D–F) in the HFD mice compared with the other groups of mice. Those
muscular changes were alleviated by MLB supplementation (Figure 4), which, according to
the results, could attenuate HFD-induced muscle atrophy.
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Figure 4. MLB supplementation attenuated HFD-induced muscle atrophy. At the end of the experi-
ment, the skeletal muscles, namely the gastrocnemius (GC), extensor digitorum longus (EDL), and
soleus (SOL) muscles, were removed and weighed. The ratios of the weight of the GC, SOL, and EDL
muscles to the body weight are depicted (A–C). The representative hematoxylin and eosin (H&E)
staining of GC muscles from each group are presented (D), and the relative muscle cross-sectional
area (CSA) data are illustrated (E). Measurement of variance coefficients of the fiber size in the cross-
sectional samples of three groups using Feret’s diameter as the geometrical parameter (F). Values are
expressed as the mean ± SD. * p < 0.05 vs. control group. # p < 0.05 vs. HFD group. n = 8.



Nutrients 2022, 14, 104 9 of 14

3.5. MLB Supplementation Attenuated HFD-Increased E3 Ligases

To further examine the effects of MLB on HFD-induced muscle atrophy, we investi-
gated the changes in the muscle-specific ubiquitin E3 ligases in the mice’s skeletal muscles.
The representative blots of the Western blot analysis are presented in Figure 5A. Quan-
titative results revealed that an HFD significantly increased the expression of MAFbx
(Figure 5B) and MuRF-1 (Figure 5C), and the changes were attenuated by MLB supple-
mentation. The results indicated that MLB attenuated muscle atrophy in HFD mice, likely
through the inhibition of the ubiquitin E3 ligase expression.
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Figure 5. MLB supplementation attenuated HFD-induced muscle atrophy through inhibiting protein
degradation in skeletal muscles. Proteins were isolated from skeletal muscles and subjected to a
Western blot with antibodies against MAFbx, MURF-1, and GAPDH. Two representative samples
from each group are presented (A), and the quantitative data are depicted (B,C). Values are expressed
as the mean ± SD. * p < 0.05 vs. control group. # p < 0.05 vs. HFD group. n = 8.

3.6. MLB Supplementation Attenuated HFD-Activated FoxO1 Signaling

The PI3K/Akt/FoxO axis signaling played a substantial role in the regulation of the
MAFbx and MuRF-1 expression [3]. The HFD mice exhibited decreased PI3K protein
content (Figure 6A,B), Akt phosphorylation (Figure 6A,C), and FoxO1 phosphorylation
(Figure 6A,D), and increased FoxO1 protein content (Figure 6A,E) in their skeletal muscles.
The changes in the PI3K/Akt/FoxO signaling molecules were attenuated through MLB
supplementation (Figure 6). The results indicated that MLB attenuated HFD-induced
FoxO1 activation through the promotion of Akt signaling.

3.7. MLB Supplementation Attenuated HDF-Activated TNF-α/NF-κB Signaling

TNF-α is a cachectic factor that induces MAFbx and MuRF-1 expressions, which leads
to the induction of muscle atrophy in an NF-κB-dependent mechanism [32,33]. Although
the TNF-α levels were not significantly altered (Figure 7A,B) in the skeletal muscles of the
HFD mice, an elevated TNF-RI protein content (Figure 7A,C) and p65 phosphorylation
(Figure 7A,D) were noted. An elevated expression of IL-6 protein was also revealed
(Figure 7A,E). Intriguingly, HFD mice elevated TNF-α mRNA expression (Figure 7F) in the
epididymal adipose tissues, while having little effect on IL-6 mRNA (Figure 7G). Those
changes were attenuated by MLB supplementation (Figure 7). The results indicated that
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MLB attenuated HFD-activated TNF-α/NF-κB and IL-6 signaling through different modes
of action.
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Figure 6. MLB supplementation attenuated HFD-induced muscle atrophy through the upregulation
of PI3K/Akt/FOXO1 signaling. Proteins were isolated from skeletal muscles and subjected to
a Western blot with antibodies against PI3K, pAkt, Akt, pFOXO1, FOXO1, and GAPDH. Two
representative samples from each group are presented (A), and the quantitative data are depicted
(B–E). Values are expressed as the mean ± SD. * p < 0.05 vs. control group. # p < 0.05 vs. HFD group.
n = 8.
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Figure 7. MLB supplementation attenuated HFD-induced muscle atrophy through the downregula-
tion of TNF-α/NF-κB signaling. Proteins were isolated from the skeletal muscles and subjected to a
Western blot with antibodies against TNF-α, TNFRI, NF-κB/p65, p-NF-κB/p65, IL-6, and GAPDH.
Two representative samples from each group are presented (A), and the quantitative data are depicted
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measurement of TNF-α (F) and IL-6 (G) mRNA levels. Values are expressed as mean ± SD. * p < 0.05
vs. control group. # p < 0.05 vs. HFD group. n = 8.
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4. Discussion

MLB reduced obesity, aging, and diabetes by reducing hepatic inflammation and
insulin resistance [24,25]. This study demonstrated that MLB supplementation attenuated
obesity-associated skeletal muscle atrophy in HFD mice through the regulation of the
PI3K/Akt/FoxO1 and TNF-α/NF-κB signaling pathways, leading to the inhibition of
muscle-specific ubiquitin E3 ligase expression.

Muscle atrophy is a serious health concern, and the majority of the skeletal muscular
protein structure is governed by protein synthesis and degradation. Under insufficient
nutrition or malnutrition, the impaired IGF-1-mediated macromolecular synthesis creates
an obstacle to muscle mass maintenance. However, abnormal protein degradation has
caused most cases of muscle atrophy [34]. Consistent with relevant studies [35,36], the
HFD mice exhibited signs of skeletal muscle atrophy with concurrent activation of MAFbx
and MuRF-1. This study presented the first evidence that daily MLB supplementation
diminished skeletal muscle atrophy, and the improvement correlated with the reduction in
skeletal MAFbx and MuRF-1 expression. The results revealed that the ubiquitin-proteasome
system played a substantial role in obesity-associated skeletal muscle atrophy, and MLB had
an anti-atrophy effect through negatively affecting skeletal MAFbx and MuRF-1 expression.

The etiologies of muscle atrophy are multifactorial. Obese people often develop muscle
atrophy [22,23], and those with excessive caloric intakes and deposition of fat are prone
to develop insulin resistance and chronic inflammation [20,21]. At the molecular level,
obesity is associated with impaired Akt activity, enhanced NF-κB and FoxO1, and increased
TNF-α and IL-6 levels [37], all of which are related to muscle atrophy [37]. We reported
that MLB reduced obesity, fatty liver, glucose intolerance, and insulin resistance in HFD
mice [24]. In this study, the HFD mice that received MLB supplements exhibited activated
skeletal Akt, inhibited skeletal NF-κB and FoxO1, and reduced circulating TNF-α and IL-6.
Thus, MLB contains diverse pharmacological properties that are attributed to diminished
obesity-associated biochemical and molecular changes.

The FoxO family transcription factors have integrative roles in glucose and lipid
metabolism. FoxO1, a typical FoxO family member, regulates hepatic gluconeogenesis,
glycogenolysis, and lipogenesis in response to the insulin signal. The insulin-PI3K-Akt
pathway negatively regulates FoxO1 transcription factors. Conversely, decreased PI3K-Akt
activity prevents the degradation of FoxO1 and enforces FoxO1 transcriptional activity [3].
Furthermore, FoxO1 actively participates in the transcriptional activation of MAFbx and
MuRF-1 expression [3]. An inhibited PI3K-Akt pathway and FoxO1 phosphorylation and
increased FoxO1 protein content were observed in the skeletal muscles of the HFD mice,
and MLB reversed the inactivation of the PI3K-Akt pathway. MLB’s improvement of
the HFD mice’s insulin resistance strongly suggested that the restoration of the PI3K-Akt
pathway not only played a role in glucose metabolism but also had an inhibitory effect on
the FoxO1/MAFbx and MuRF-1 pathways and reduced obesity-associated muscle atrophy.

Skeletal muscle atrophy is highly associated with inflammatory responses and cy-
tokines [38,39]; particularly, TNF-α is a recognized cachetic factor [40,41]. Evidence indi-
cated that the tissue expressions of MAFbx and MuRF-1 messenger ribonucleic acid (mRNA)
correlated with elevated TNF-α levels in an inflammatory catabolic state [42,43]. The pres-
ence of TNF-α promoted MAFbx/MuRF-1 mRNA expression, in vivo and in vitro [44,45].
TNF-α increased the effectiveness of the ubiquitin-proteasome pathway and caused mus-
cular degradation in the C2C12 myotubes and skeletal muscles through the activation
of NF-κB signaling [32,33]. By contrast, anti-TNF treatments reduced rat skeletal muscle
wasting [40]. Upon activation, TNF-α transduced intracellular signals through engagement
with TNF Receptor I (TNFRI) and converged onto NF-κB [40,41]. In this study, the HFD
mice exhibited an increased circulating TNF-α level, adipose TNF-α mRNA level, skeletal
TNFRI expression, and skeletal NF-κB p65 phosphorylation. Parallel elevation was demon-
strated in the skeletal MAFbx and MuRF-1 expressions and muscle atrophy, and MLB
supplementation alleviated those TNF-α-related inflammatory changes. Therefore, MLB’s
inhibition of the TNF-α/TNFRI/NF-κB pathway represented an alternative means of de-
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creasing the MAFbx and MuRF-1 expression and muscle atrophy. However, the levels of
skeletal TNF-α remained consistent with no remarkable change among groups. Moreover,
MLB alleviated metabolic abnormality and hepatic inflammation in obese mice [24,25]. All
aforementioned data indicate that the anti-atrophy effect of MLB is probably secondary to
the reduction in tissue inflammation, such as hepatic and adipose tissues.

5. Conclusions

This study revealed that daily MLB supplements reduced obesity-associated skeletal
muscle atrophy, likely through the inhibition of MuRF-1- and MAFbx-mediated muscular
degradation. The activation of the PI3K-Akt-FoxO1 pathway and inhibition of the TNF-
α/TNFRI/NF-κB pathway were assumed to be attributed to MLB. In addition to improving
obesity-associated metabolic abnormalities, as reported in our previous study [24], the data
presented in this study further highlights MLB’s potential to combat obesity-associated
muscle atrophy.
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