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Abstract: Under physiological circumstances, there is an exquisite balance between reactive oxygen
species (ROS) production and ROS degradation, resulting in low steady-state ROS levels. ROS
participate in normal cellular function and in cellular homeostasis. Oxidative stress is the state
of a transient or a persistent increase of steady-state ROS levels leading to disturbed signaling
pathways and oxidative modification of cellular constituents. It is a key pathophysiological player
in pathological hypertrophy, pathological remodeling, and the development and progression of
heart failure. The heart is the metabolically most active organ and is characterized by the highest
content of mitochondria of any tissue. Mitochondria are the main source of ROS in the myocardium.
The causal role of oxidative stress in heart failure is highlighted by gene transfer studies of three
primary antioxidant enzymes, thioredoxin, and heme oxygenase-1, and is further supported by gene
therapy studies directed at correcting oxidative stress linked to metabolic risk factors. Moreover, gene
transfer studies have demonstrated that redox-sensitive microRNAs constitute potential therapeutic
targets for the treatment of heart failure. In conclusion, gene therapy studies have provided strong
corroborative evidence for a key role of oxidative stress in pathological remodeling and in the
development of heart failure.

Keywords: gene therapy; gene transfer; heart failure; oxidative stress; reactive oxygen species;
cardiac hypertrophy; cardiac remodeling; microRNA

1. Introduction
1.1. General Aim of the Review

Oxidative stress is assumed to play a key role in pathological cardiac hypertrophy and
remodeling and in the development of heart failure. Gene transfer intervention studies
provide a very suitable tool to prove the causal role of oxidative stress in these processes.
Following an introduction on the physiological and pathophysiological role of reactive
oxygen species (ROS) in the heart, we will analyze the causal role of oxidative stress in heart
failure from the angle of gene transfer studies of the three primary antioxidant enzymes
(superoxide dismutase (SOD), catalase, and glutathione peroxidase), of thioredoxin, and of
heme oxygenase-1.

Secondly, we will review the converging evidence from gene transfer studies demon-
strating that gene therapy directed at correction of metabolic risk factors results in a marked
reduction of systemic oxidative stress and of oxidative stress in the myocardium, in an
improved cardiac function, and in prevention or reversal of pathological remodeling and
heart failure. Thirdly, we will discuss gene transfer of microRNAs and modulation of
microRNA activity to reduce oxidative stress and to prevent heart failure. Taken together,
the general aim of this paper is to review this field both from a therapeutic perspective and
from the perspective of demonstrating the causal role of oxidative stress in pathological
hypertrophy, cardiac dysfunction, and heart failure.
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1.2. Reactive Oxygen Species

ROS are defined based on their higher reactivity than molecular oxygen (O2). The
intermediates of successive one-electron reductions of molecular oxygen are superoxide
anion radical (O2

.−), hydrogen peroxide (H2O2), and hydroxyl radical (HO.). All elec-
trons in hydrogen peroxide are paired, and this molecule is therefore not a free radical.
Nevertheless, hydrogen peroxide has a higher chemical reactivity than molecular oxygen
and therefore belongs to the ROS. ROS also include peroxyl (RO2

.), hydroperoxyl (HO2
.),

alkoxyl (RO.), peroxyl (ROO.), nitric oxide (NO.), nitrogen dioxide (NO2
.), lipid peroxyl

(LOO.), and the non-radicals hypochlorous acid (HOCl), ozone (O3), singlet oxygen (1O2),
and lipid hydroperoxide (LOOH). When O2

.− and NO. are produced simultaneously, both
radicals react with each other at a diffusion-limited rate to form peroxynitrite (ONOO−),
which is a good oxidant [1]. Peroxynitrite can induce tyrosine nitration and alter the
function of several proteins [2,3]. Moreover, peroxynitrite inactivates several antioxidant
enzymes, in particular, mitochondrial SOD by nitration and dityrosine formation [4] and
thiol-based antioxidant enzymes by sulfoxidation [5].

1.3. Role of ROS in Cardiac Physiology and Homeostasis

Under physiological circumstances, there is an exquisite balance between ROS pro-
duction and ROS degradation resulting in low steady-state ROS levels. ROS participate
in normal cellular function and in cellular homeostasis. They modulate physiological
functions by their role in cell signaling and by their effect on gene expression [5]. Redox-
sensitive signaling pathways play a key role in many homeostatic and stress-response
mechanisms in the heart [6,7]. Versatile redox modifications of key cysteine residues in
enzymes are a distinct class of modifications of enzymes. These cysteine-based redox
switches in enzymes regulate their activity at the posttranslational level [8].

Reversible oxidation of redox-sensitive cysteine residues also occurs in transcrip-
tion factors and alters their activities. The transcription factor nuclear factor-erythroid
2 p45-related factor 2 (NRF2) induces the expression of multiple antioxidant genes and
cytoprotective genes [9]. The NRF2 system is activated in response to increased H2O2
levels [10]. NRF2 and its target genes play a critical role in cardiovascular homeostasis via
the suppression of oxidative stress. Taken together, redox-sensitive pathways are essential
in normal cardiac physiology and homeostasis.

1.4. Oxidative Stress

Oxidative stress is the state of a transient or a persistent increase of steady-state ROS
levels leading to disturbed signaling pathways and oxidative modification of cellular
constituents. Protein oxidation, lipid peroxidation, DNA damage, and oxidative changes
of microRNAs may induce cellular dysfunction [5,11]. Myocardial cellular dysfunction
secondary to oxidative stress may manifest at the organ level as systolic and diastolic
dysfunction [12]. However, cellular dysfunction in the vascular compartment may also
lead to vascular/endothelial dysfunction, which impairs coronary perfusion and increases
afterload [12]. Oxidative stress may also cause cell death via necrosis or apoptosis [12].

Whereas low-level production of ROS is involved in adaptive processes such as mod-
ulation of excitation-contraction coupling, physiological cardiac growth and hypertrophy,
and cardiac homeostasis, generation of high levels of ROS and/or more potent oxidants
like HO. are involved in the activation of maladaptive processes such as impaired calcium
handling, cardiomyocyte hypertrophy, interstitial and perivascular myocardial fibrosis,
and apoptosis [6,13]. At the organ level, cardiac hypertrophy is classified as physiological
when it is associated with normal cardiac function or as pathological when associated with
cardiac dysfunction [14].

Myocardial fibrosis, apoptosis in the myocardium, and capillary rarefaction are in-
duced by oxidative stress and are features of pathological hypertrophy [13]. Oxidative
stress stimulates transforming growth factor-ß1 expression, promotes the transformation
of fibroblasts to myofibroblasts, and induces collagen synthesis leading to myocardial
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fibrosis [15,16]. Independent of structural and ultrastructural alterations, ROS have direct
functional effects by affecting proteins central to excitation-contraction coupling, includ-
ing L-type calcium channels, sodium and potassium channels, and the sodium-calcium
exchanger [17]. ROS can alter the activity of sarcoplasmic/endoplasmic reticulum Ca2+-
ATPase (SERCA) and may decrease myofilament calcium sensitivity [17,18]. All in all, the
role of ROS is either physiological or pathological, adaptive or maladaptive, dependent on
ROS levels (Figure 1).
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Figure 1. Role of ROS in cardiac physiology and pathophysiology. Under physiological condi-
tions, there is an exquisite balance between ROS production and ROS degradation resulting in
low steady-state ROS levels. Low levels of ROS have a physiological role in the modulation of
excitation-contraction coupling in adaptive processes like physiological cardiac hypertrophy, and in
cardiac homeostasis. Oxidative stress resulting from an increase of steady-state ROS levels results
in maladaptive processes such as detrimental effects on cardiomyocyte electrophysiology, capillary
rarefaction, interstitial and perivascular myocardial fibrosis, and apoptosis. Oxidative stress con-
tributes to pathological hypertrophy, pathological remodeling, and the development and progression
of heart failure.

1.5. Oxidative Stress and Heart Failure

Oxidative stress is a key pathophysiological player in pathological hypertrophy, patho-
logical remodeling, and the development and progression of heart failure. The classical
syndrome of heart failure is marked by sodium and water retention leading to pulmonary
congestion and peripheral edema (backward failure) and/or a decrease of cardiac output
(forward failure). There is direct evidence that H2O2 and ·OH are generated via O2

.- within
the failing myocardium [19]. Heart failure is often accompanied by myocardial injury
as defined by a rise of cardiac troponin levels above the 99th percentile [20–22], which
generally is due to cardiomyocyte apoptosis or cardiomyocyte necrosis [23].

The heart is the metabolically most active organ and is characterized by the highest
content of mitochondria of any tissue. Mitochondria comprise 25–30% of cell volume
across different mammalian species [24,25]. Mitochondria are the main source of ROS in
the myocardium. Between 0.2% and 2% of electrons may escape the respiratory chain
and react with O2 leading to the production of O2

.− during oxidative phosphorylation [5].
Other sources of ROS are NADPH oxidases, xanthine oxidase, cytochrome P450 enzymes,
and uncoupling of nitric oxide synthase-3 [5,18,26,27]. The oxidant and nitrating agent
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peroxynitrite oxidizes tetrahydrobiopterin, an important cofactor of nitric oxide synthase-3.
When deprived of its reducing cofactor tetrahydrobiopterin or of its substrate L-arginine,
nitric oxide synthase-3 uncouples to the monomeric form that generates O2

.− rather than
nitric oxide, a phenomenon known as uncoupling of nitric oxide synthase-3 [28]. Pressure
overload triggers nitric oxide synthase-3 uncoupling as a prominent source of myocardial
ROS that contributes to ventricular dilatation and cardiac dysfunction [29].

2. Antioxidant Enzyme Gene Transfer
2.1. Gene Transfer of the Primary Antioxidant Enzymes

The three primary antioxidant enzymes are superoxide dismutases (SODs), catalase,
and glutathione peroxidase. SODs are a family of isoenzymes involved in the scavenging
of O2− [30]. All mammalian cells possess three isoforms of SOD enzymes: the cytosolic
Cu, Zn dimeric form of SOD (SOD1), the mitochondrial tetrameric manganese superoxide
dismutase (SOD2), and the extracellular tetrameric Cu, Zn SOD (SOD3). All these enzymes
catalyze the same reaction converting O2

.− in O2 and H2O2 through the alternate reduction
and re-oxidation of Cu2+ for SOD1 and SOD3 and of Mn3+ for SOD2. The enzymes catalase
and glutathione peroxidase convert H2O2 into O2 and H2O. Enzymatic systems protecting
against hydroxyl radicals have never been described and apparently do not exist because of
the high reactivity of the hydroxyl radical (HO.) [12]. Cysteine disulfides, which constitute
an important component in biological redox buffer systems, are highly reactive toward the
hydroxyl radical (HO.) [31].

There is a relative paucity of studies evaluating the effect of gene transfer of the
primary antioxidant enzymes on the myocardium and on heart failure. This is regrettable
since gene transfer of the primary antioxidant enzymes is a very suitable tool to specifically
evaluate the causal role of oxidative stress in heart failure.

Targeted adeno-associated viral (AAV) serotype 9 gene transfer of SOD3 via the cardiac
troponin T-promoter protected against left ventricular remodeling following myocardial
infarction in a murine model [32]. The same group had previously demonstrated that a
single direct injection into the left ventricular wall of an AAV serotype 9 gene transfer
expressing SOD3 under control of the cardiac troponin T-promoter reduced the size of
myocardial infarction in mice [33]. Systemic adenoviral gene transfer of SOD3 improved
endothelial function in rats with chronic ischemic heart failure [34]. Finally, SOD3 gene
transfer improved skeletal muscle abnormalities, cachexia, and exercise intolerance in a
murine model of congestive heart failure [35].

Combined gene transfer of adenoviral vectors encoding SOD2 and human catalase via
intrapericardial delivery augmented antioxidant enzyme activity and minimized contractile
dysfunction after ischemic reperfusion in the isolated perfused neonatal mouse heart [36].

Overexpression of glutathione peroxidase in transgenic mice attenuated left ventricu-
lar remodeling and development of heart failure after myocardial infarction in mice [13].
Moreover, overexpression of glutathione peroxidase resulted in an improvement of left
ventricular diastolic function, attenuation of cardiomyocyte hypertrophy, a decrease of
interstitial fibrosis, and a reduction of apoptosis in a model of streptozotocin-induced
diabetes mellitus [37]. Conversely, glutathione peroxidase-1 deficiency accelerated cardiac
hypertrophy and dysfunction in a model of angiotensin II-induced hypertension [38]. Un-
fortunately, gene transfer intervention studies of glutathione peroxidase have not been
performed in experimental models of heart failure.

2.2. Thioredoxin Gene Transfer

Thioredoxin is a small 12-kDa redox-acting protein consisting of 105 amino acids
that are ubiquitously present in the human body [39]. The thioredoxin system comprises
thioredoxin, thioredoxin reductase, and NADPH. Thioredoxin reductase and NADPH
maintain the reducing activity of thioredoxin. In mammals, there are at least three members
in the thioredoxin family [40]. In the broad sense, the thioredoxin system also includes
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thioredoxin peroxidase (peroxiredoxin) [41]. Thioredoxin reduces peroxiredoxin, which
then catalyzes the conversion of H2O2 to H2O.

Thioredoxin exchanges disulfide to dithiol to maintain the reducing status of various
intracellular molecules. The active-site CXXC motif of this thiol: disulfide oxidoreductase
is essential for its catalysis of redox reactions. In the cytoplasm, thioredoxin acts as a radical
scavenger, either by itself or in cooperation with peroxiredoxin [39]. Human thioredoxin
is a powerful singlet oxygen quencher and hydroxyl radical (HO.) scavenger [42,43].
Thioredoxin is a multifunctional protein and has not only antioxidative effects but also
anti-inflammatory and antiapoptotic effects [39].

Intramyocardial gene transfer with an adenoviral vector encoding thioredoxin-1 im-
mediately after myocardial infarction in diabetic rats reduced oxidative stress in the my-
ocardium, decreased myocardial fibrosis, reduced cardiomyocyte and endothelial cell
apoptosis, increased capillary and arteriolar density in the myocardium, and resulted
in the preservation of myocardial function compared to control vector-treated rats [44].
These preclinical findings strongly suggest that a precisely balanced antioxidant system is
essential for the maintenance of cardiac function in the setting of diabetes.

2.3. Heme Oxygenase-1 Gene Transfer

Another enzyme with an antioxidative potential is heme oxygenase-1. This enzyme is
an inducible stress response protein that exerts pleiotropic cytoprotective effects, including
reduction of oxidative stress [45–47], inflammation [48], and apoptosis [49]. Heme can
be derived either from intracellular sources, such as hemoproteins and mitochondria, or
from extracellular sources, namely damaged tissues, and red blood cell hemolysis. Heme
oxygenase-1 converts heme to biliverdin [50]. This reaction also generates carbon monoxide
(CO) and induces the release of iron, which is stored within the iron-binding protein
ferritin [45,51]. Biliverdin is subsequently reduced to bilirubin by biliverdin reductase
(Figure 2). Bilirubin can scavenge ROS and is reconverted to biliverdin [50].

The global role of heme oxygenase-1 in the heart is complex. This enzyme is a master
protective sentinel [52]. Tissue damage results in the release of heme, and heme upregulates
heme oxygenase-1 [52]. Carbon monoxide produced by heme oxygenase-1 has multiple
effects on mitochondria. It modulates the enzymatic activity of cytochrome c oxidase,
results in the generation of ROS for signaling by mitochondrial oxidases, and induces
a mild mitochondrial uncoupling effect [53]. The carbon monoxide-induced increase
of ROS results in signaling leading to the expression of antioxidant genes (e.g., SOD2,
thioredoxins) as well as heme oxygenase-1 and the transcription factor NRF2 [52]. The
powerful antioxidant bilirubin generated from biliverdin by biliverdin reductase serves to
ultimately resolve the oxidative burden [52].

Intramyocardial injection of AAV vectors encoding human heme oxygenase-1 resulted
in a reduction of infarct size in a rat model of ischemia-reperfusion injury [54]. The
reduction in infarct size was accompanied by reductions in myocardial lipid peroxidation,
in proapoptotic BAX, also known as BCL-2-like protein 4, and in the proinflammatory
interleukin-1β protein abundance, concomitant with an increase in antiapoptotic BCL-2
protein level [54]. In a porcine model of ischemia-reperfusion injury, retrograde infusion
of AAV human heme oxygenase-1 vectors in the anterior ventricular vein resulted in
smaller infarct size, better preservation of ejection fraction, and in a markedly reduced
post-ischemic influx of myeloperoxidase-positive neutrophils and CD14(+) monocytes
compared to control animals [55].

Intramyocardial injection of AAV serotype 2 vectors encoding human heme oxygenase-
1 has also been investigated in a rat model of cardiac remodeling and development of
chronic heart failure [56]. Acute myocardial ischemia/reperfusion injury was induced six
weeks after gene transfer by ligation of the proximal left anterior descending coronary
artery for 30 min, followed by reperfusion. The heme oxygenase-1-treated animals were
characterized by preservation of left ventricular function and left ventricular dimensions
and structure one year after myocardial infarction, whereas the control vector-treated rats
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showed impaired left ventricular function, left ventricular dilatation, and overt signs of
heart failure [56].
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Figure 2. Catabolism of heme. Heme oxygenase is the rate-limiting enzyme in the catabolism of
heme. In connection with cytochrome P450 reductase and in the presence of NADPH and three
molecules of molecular oxygen (O2) per heme molecule, it catalyzes the oxidative cleavage of heme to
render equimolar amounts of biliverdin, ferrous iron (Fe2+), and carbon monoxide. Ferrous iron (Fe2+)
is sequestered into ferritin for storage. In the second reaction, the green pigment biliverdin is reduced
to the yellow pigment bilirubin by biliverdin reductase. Bilirubin can serve as an antioxidant and
reverts back to biliverdin. The biliverdin–bilirubin–biliverdin cycle is very powerful to detoxify ROS.

These results are further corroborated by investigations in transgenic animals. Trans-
genic mice with cardiomyocyte-specific overexpression of heme oxygenase-1 under control
of α-myosin heavy chain promoter exhibited significantly improved cardiac ejection fraction
and survival following ligation of the left anterior descending coronary artery [57]. Fur-
thermore, cardiac hypertrophy, interstitial fibrosis, and oxidative stress were reduced in
this model of chronic ischemic heart failure [57]. Moreover, long-term induction of heme
oxygenase-1 by chronic hemin administration exerted protective effects in a rat model of
chronic heart failure induced by permanent ligation of the left anterior descending coronary
artery [58]. The ischemic hearts of the hemin-treated Sprague-Dawley rats showed a reduc-
tion of oxidative stress and a decrease of apoptosis compared to non-treated animals, as
evidenced by the decreased levels of lipid peroxidation, free-radical-induced DNA damage,
caspase-3 activity, and BAX expression [58].

3. Metabolic Risk Factors, Oxidative Stress, and Heart Failure: Impact of
Gene Therapy

The thiobarbituric acid reactive substances (TBARS) assay is widely used as a generic
metric of lipid peroxidation in biological samples. Plasma TBARS expressed as plasma
malondialdehyde equivalents, constitute a good indicator of the levels of systemic oxidative
stress. Several metabolic risk factors are associated with prominent systemic oxidative
stress [59–62] and are also linked with an increased risk of heart failure. Multiple gene
transfer prevention and intervention studies have demonstrated that cardiac function
is improved and heart failure prevented or reversed following gene therapy directed at
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correction of these metabolic risk factors [63,64]. Gene therapy directed at correction of
metabolic risk factors also resulted in a marked reduction of systemic oxidative stress and of
oxidative stress in the myocardium [63,64]. These studies do not prove an obligatory cause-
and-effect relationship between the decrease of oxidative stress and cardiac phenotype.
However, the consistency of the data suggests that reduction of oxidative stress in these
studies is an important mediator of the observed effects of metabolic gene therapy on
cardiac structure and function.

Homocysteine contains a highly reactive thiol group that can undergo disulfide ex-
change reactions with cysteine residues in different proteins [65] or results in auto-oxidation
and the formation of ROS [66]. Selective homocysteine-lowering gene transfer with an
E1E3E4-deleted adenoviral vector AdCBS, which induces hepatocyte-specific expression of
cystathionine-β-synthase (CBS), in a murine model of hyperhomocysteinemia, attenuated
pressure overload-induced cardiomyopathy via reduced oxidative stress [67]. Gene therapy
in this model strikingly reduced plasma TBARS levels and the myocardial 3-nitrotyrosine-
positive area (%) following transverse aortic constriction. Left ventricular hypertrophy,
apoptosis in the myocardium, and interstitial myocardial fibrosis induced by pressure
overload were markedly lower following AdCBS gene transfer. Homocysteine-lowering
gene transfer significantly improved diastolic function in mice with pressure overload and
congestive heart failure was reduced by pre-emptive AdCBS gene transfer as evidenced
by the decrease of the wet lung weight [67]. Based on a similar gene therapy approach,
beneficial effects of selective homocysteine-lowering gene therapy were also manifest in
a model of chronic ischemic heart failure induced by permanent ligation of the left ante-
rior descending coronary artery [68]. Taken together, these studies strongly suggest that
reduction of oxidative stress contributes to inhibition of the pathological remodeling of
the heart.

Hypercholesterolemia is associated with oxidative stress [59,69,70]. Mitochondria
from hypercholesterolemic low-density lipoprotein (LDL) receptor (LDLr)-deficient mice
have preserved oxidative phosphorylation efficiency but a higher net production of
ROS [71]. AAV serotype 8 (AAV8)-mediated low-density lipoprotein receptor (LDLr)
(AAV8-LDLr) gene transfer potently reduced plasma cholesterol levels in C57BL/6 LDLr−/−

mice [72,73]. AAV8-LDLr gene transfer attenuated left ventricular hypertrophy induced by
transverse aortic constriction. Moreover, interstitial myocardial fibrosis and perivascular
myocardial fibrosis were significantly reduced in mice with pressure overload following
AAV8-LDLr gene transfer. Cholesterol-lowering gene therapy also improved systolic and
diastolic cardiac function after transverse aortic constriction and counteracted heart failure,
as indicated by the pronounced reduction of wet lung weight. AAV8-LDLr gene transfer
decreased the myocardial 3-nitrotyrosine-positive area and systemic TBARS levels. Taken
together, reduction of oxidative stress may be an important mediator of the observed favor-
able effects of cholesterol-lowering gene therapy in models of pressure overload-induced
cardiomyopathy [72,73]. Similar results have been demonstrated in a model of chronic
ischemic heart failure [74].

Obesity, the metabolic syndrome, and diabetes mellitus are characterized by chronic
low-grade inflammation with permanently increased oxidative stress [61,62,75]. In a
murine model of diabetic cardiomyopathy induced by feeding a high-sugar/high-fat
diet in LDLr−/− mice, cholesterol-lowering AAV8-LDLr gene therapy potently reduced
oxidative stress and plasma tumor necrosis factor-α levels [76]. AAV8-LDLr gene transfer
prominently counteracted pathological remodeling and preserved cardiac function in mice
fed this high-sugar/high-fat diet [76].

High-density lipoproteins (HDL) have a strong antioxidative potential [77–80]. Apolipopro-
tein (apo) A-I is the main apolipoprotein of HDL. Gene transfer with an E1E3E4-deleted
human apo A-I gene transfer vector, which selectively increases HDL, reduces oxidative
stress, inflammation, and myocardial fibrosis in a rat model of diabetic cardiomyopa-
thy [81]. Increased HDL following human apo A-I gene transfer has also been shown
to prevent endothelial nitric oxide synthase uncoupling in diabetes mellitus, which may
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contribute to a decrease in ROS production [82,83]. Moreover, selective HDL-raising AAV
serotype 8-human apo A-I (AAV8-A-I) gene transfer resulted in a potent reduction of oxida-
tive stress and prevented pathological remodeling following transverse aortic constriction
in mice [84]. The HDL receptor scavenger receptor class B, type I (SR-BI), mediates the
selective uptake of HDL lipids, including lipid hydroperoxides [85,86]. Scarb1-deficient
mice, lacking SR-BI protein expression, are characterized by increased plasma cholesterol
comprising predominantly enlarged HDL enriched in free cholesterol and apolipoprotein
E [87] and by HDL dysfunction including a reduced antioxidative potential resulting in
increased oxidative stress [86,88]. Dysfunctional HDL in Scarb1−/− mice augmented oxida-
tive stress, potentiated cardiac hypertrophy induced by transverse aortic constriction, and
aggravated pressure overload-induced cardiomyopathy [89]. Increased oxidative stress in
Scarb1−/− mice was rescued by gene transfer with an E1E3E4-deleted adenoviral vector
containing a hepatocyte-specific SR-BI-encoding expression cassette [89,90]. Gene transfer
with this vector also potently counteracted pathological remodeling and development of
heart failure in mice subjected to transverse aortic constriction.

All in all, gene therapy prevention and intervention studies directed at correcting
metabolic risk factors are broadly robust in demonstrating a plausible link between reduced
oxidative stress and prevention or reversal of heart failure.

4. Gene Transfer of MicroRNAs and Modulation of MicroRNA Activity to Reduce
Oxidative Stress and to Prevent Heart Failure
4.1. MicroRNAs and Oxidative Stress

MicroRNAs are natural, endogenous and single-stranded molecules consisting of
approximately 22 non-coding nucleotides and constitute a very important family of gene
regulators [91]. They derive from longer RNA transcripts that frequently originate from
genomic sequences embedded in introns. MicroRNAs bind to complementary target
sequences on the 3′ untranslated region of specific mRNAs and regulate their expression.
This silencing effect occurs by either repressing translation of the transcript or promoting
the degradation of the transcript. A recent estimation of the total number of microRNAs
in the human genome yielded a value of 2300, but this is an extrapolated value based on
a number of assumptions [92]. MicroRNAs are estimated to affect up to 60% of protein-
coding genes [93].

Oxidative stress may alter the expression levels of many microRNAs in cardiovas-
cular disease and heart failure [94,95]. Redox-sensitive microRNAs constitute potential
therapeutic targets for oxidative-stress-related heart diseases and heart failure. Manipula-
tion of gene expression using microRNA gene transfer, microRNA mimics, or microRNA
antagomirs can at least theoretically be applied to reduce oxidative stress in heart failure.
MicroRNA mimics are applied to induce gene silencing of genes that directly or indirectly
increase oxidative stress. MicroRNA mimic technology is an approach for gene silencing
based on the introduction of artificial, non-natural double-stranded microRNA-like RNA
fragments [96]. Unlike endogenous microRNAs, microRNA mimics act in a gene-specific
fashion [96]. In contrast, microRNA antagomirs are chemically designed oligonucleotides
that specifically inhibit target microRNA molecules by complementary binding to them,
which results in an upregulation of genes.

Alternatively, microRNA sponges are applied to induce microRNA loss-of-function.
These sponges contain multiple tandem complementary microRNA antisense binding sites
for the microRNA of interest and therefore sequester microRNAs from their endogenous
targets [97,98]. Viral gene therapy vectors may be an adequate tool for microRNA sponge-
based therapy by inducing a high level of the sponge and by inducing prolonged expression
of the sponge [99]. Limitations of these strategies are that a single microRNA may target
many different genes limiting the specificity of these interventions. Secondly, individual
mRNAs are targeted by multiple microRNAs, which may attenuate the effect of targeting
one single microRNA.

Since the field of microRNAs, oxidative stress, and gene transfer is very broad, the
discussion in the next paragraphs is restricted to key studies and concepts.
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4.2. Impact of Oxidative Changes of MicroRNAs on Cardiac Hypertrophy and Heart Failure:
Direct Evidence for a Causal Role of Oxidative Stress

The oxidation of guanine within nucleic acids produces 8-oxoguanine (o8G), which
can pair with adenine and induce guanine-to-thymine (G > T) mutations in DNA. RNA
is more vulnerable than DNA to this modification [100]. MicroRNAs may be oxidatively
modified by ROS, leading to misrecognition of target mRNAs. ROS-induced oxidized
guanine (o8G) appears to play a key role in this respect. ROS could induce a shift in
the pool of target microRNAs, depending on the oxidation state of the microRNAs [11].
Cardiac hypertrophy is a major contributor to the development of heart failure and has long
been associated with oxidative stress [101]. In in vitro and in vivo models of hypertrophic
stimulation by adrenergic receptor agonists, position-specific o8G modifications were
generated in seed regions (positions 2–8) of selective microRNAs, which resulted in the
regulation of other mRNAs through o8G•A base pairing [11]. The authors demonstrated
that o8G is induced predominantly at position 7 of miR-1 (7o8G-miR-1) by treatment
with adrenergic agonists. The pathogenic importance of this oxidation of guanine is
underscored by experiments showing that introducing 7o8G-miR-1 or 7U-miR-1 (in which
G at position 7 is substituted with U) alone is sufficient to cause cardiac hypertrophy
in mice. Furthermore, 7o8G-miR-1 globally redirects target repression [11]. Causality
was further demonstrated by experiments showing that the specific inhibition of 7o8G-
miR-1 in mouse cardiomyocytes by use of microRNA sponges was found to attenuate
hypertrophy [11]. Finally, the authors demonstrated that o8G-miR-1 is also implicated
in patients with cardiomyopathy [11]. Taken together, these experimental approaches
underscore that oxidative changes of microRNAs play a causal role in cardiac hypertrophy.

4.3. MiR-152 Gene Transfer to Reduce Oxidative Stress and to Improve Cardiac Function in a
Model of Doxorubicin-Induced Cardiomyopathy

Doxorubicin is the most frequently prescribed anticancer chemotherapeutic and is
administered as a single agent or in combination with other antitumor drugs [102]. Admin-
istration of doxorubicin can induce both short- and long-term cardiotoxic effects, which
range from subclinical alterations of myocardial structure and function to severe cardiomy-
opathy and heart failure [102]. Oxidative stress plays a major role in doxorubicin-induced
cardiotoxicity [102,103].

As already stated in Section 1, NRF2 is a transcription factor that regulates the ex-
pression of antioxidant proteins [9]. NRF2 binds to the antioxidant responsive element
(ARE) [104]. Activation of this pathway protects cells from oxidative stress-induced cell
death [104]. Under physiological conditions, NRF2 binds Kelch-like ECH-associated pro-
tein 1 (KEAP1) and the Cullin 3 (CUL3)-based E3 ubiquitin ligase [105,106]. Following
stimulation, NRF2 is released from KEAP1 and can bind to the ARE, which results in the
transcription of NRF2-dependent antioxidant genes [105,106].

Downregulation of miR-152 was observed following doxorubicin treatment in mice [105].
AAV serotype 9 gene transfer of miR-152 under control of the cardiac troponin T promoter
protected doxorubicin-treated mice against oxidative stress and resulted in an attenuation of
doxorubicin-induced cardiac injury and an improvement of cardiac function [105]. Cardiac
protection was conferred via activation of NRF2. MiR-152 targets the 3′-UTR of KEAP1 and
decreases KEAP1 levels. Increased NRF2 activity as a result of decreased KEAP 1 levels
increased expression of the NRF2-dependent genes heme oxygenase-1, NAD(P)H quinone
dehydrogenase 1, and SOD. NRF2 activation appeared to be essential for miR-152-induced
cardioprotection [105].

4.4. MicroRNA-132 Inhibition Using Antagomirs

MiR-132 is a prognostic biomarker in heart failure patients [107] and has a significant
impact on oxidative stress in the myocardium. Sirtuin 1 expression is a direct target of
miR-132 [108,109]. The sirtuins are a family of nicotinamide adenine dinucleotide (NAD)-
dependent histone deacetylases (HDACs) that play key roles in histone deacetylation and
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protein deacetylation [110,111]. The sirtuin family of seven enzymes is involved in cellular
antioxidant and redox signaling pathways. The sirtuins promote antioxidant defense and
reduce oxidative stress-related processes [112]. In this regard, their deacetylase activity is
dependent on NAD+, a key redox signaling molecule. Sirtuin 1 significantly enhances the
activity of the KEAP1/NRF2/ARE pathway by decreasing KEAP1 expression [113]. Sirtuin
1 induces deacetylation of peroxisome proliferator-activated receptor-γ coactivator (PGC)-
1α and stimulates PGC-1α transcriptional activity [114]. PGC-1α is a master regulator
of mitochondrial biogenesis and function, including oxidative phosphorylation and ROS
detoxification [115]. MiR-132 also directly targets the anti-hypertrophic and pro-autophagic
Forkhead box O3 (FOXO3) transcription factor [116]. FOXO3 also protects cells from
oxidative stress [117,118]. Since microRNA-132 negatively regulates the expression of
Sirtuin 1, pharmacological inhibition of miR-132 by an antagomir increases Sirtuin1 and
activates PGC-1α and NRF2 signaling.

Pharmacological inhibition of miR-132 also enhances FoxO3 activity. These effects
lead to an inhibition of oxidative stress [119,120]. Antisense therapy targeting miR-132
has been evaluated in several preclinical models of heart failure [121,122]. CDR132L, a
specific antisense oligonucleotide targeting miR-132, has also been evaluated in phase 1b,
randomized, double-blind, placebo-controlled study in humans [123]. CDR132L was safe
and well-tolerated. Treatment induced significant narrowing of the QRS complex. More-
over, preliminary data suggest positive effects on relevant cardiac fibrosis biomarkers [123].
Reduction of oxidative stress is likely an important mediator of the effect of CDR132L.
Nevertheless, it should be kept in mind that miR-132 also targets other important genes
involved in cardiac function and remodeling. MiR-132 downregulates the expression of
genes involved in intracellular calcium handling and contractility, e.g., SERCA2A [96].

5. Conclusions

Gene transfer studies have provided strong corroborative evidence for a key role of ox-
idative stress in pathological cardiac hypertrophy and remodeling and in the development
of heart failure. Since the heart is the metabolically most active organ and is character-
ized by the highest content of mitochondria of any tissue, this organ is very susceptible
and vulnerable to oxidative stress. Oxidative stress not only causes protein oxidation,
lipid peroxidation, and DNA damage but also oxidative changes of microRNAs [5,11].
The key pathogenetic role of oxidative changes of microRNAs has been unequivocally
demonstrated [11].

Furthermore, the cellular levels of redox-sensitive microRNAs are altered in response
to oxidative stress, and increasing evidence indicates that these redox-sensitive microRNAs
constitute potential therapeutic targets for the treatment of heart failure [105,121–123]. The
causal role of oxidative stress in heart failure is also supported by gene transfer studies
of the three primary antioxidant enzymes (SODs, catalase, and glutathione peroxidase),
of thioredoxin, and of heme oxygenase-1. Finally, multiple gene transfer prevention and
intervention studies have demonstrated that gene therapy directed at the correction of
metabolic risk factors resulted in a marked reduction of systemic oxidative stress and oxida-
tive stress in the myocardium [63,64]. This correction of metabolic risk factors also resulted
in improved cardiac function and prevention or reversal of pathological remodeling and
heart failure [63,64]. The broad robustness of the strong link between reduction of oxidative
stress and prevention and treatment of heart failure suggests that reduction of oxidative
stress is an important mediator of the observed effects of metabolic gene therapy on cardiac
structure and function.

Heart failure is the cardiovascular epidemic of this century and has a rather dismal
prognosis [124]. The development of gene transfer strategies that result in an improved
cellular redox state remains an important research area in the generation of new treatments
for heart failure.
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