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Biological systems—like ourselves—are constantly faced with uncertainty.

Despite noisy sensory data, and volatile environments, creatures appear to

actively maintain their integrity. To account for this remarkable ability

to make optimal decisions in the face of a capricious world, we propose a

generative model that represents the beliefs an agent might possess about

their own uncertainty. By simulating a noisy and volatile environment, we

demonstrate how uncertainty influences optimal epistemic (visual) foraging.

In our simulations, saccades were deployed less frequently to regions with a

lower sensory precision, while a greater volatility led to a shorter inhibition

of return. These simulations illustrate a principled explanation for some cardi-

nal aspects of visual foraging—and allow us to propose a correspondence

between the representation of uncertainty and ascending neuromodulatory

systems, complementing that suggested by Yu & Dayan (Yu & Dayan 2005

Neuron 46, 681–692. (doi:10.1016/j.neuron.2005.04.026)).
1. Introduction
In this paper, we address the computational basis for the representation of uncer-

tainty by the brain, and its consequences for epistemic (information gathering1)

behaviour. We focus on two sources of uncertainty: uncertainty concerning

the temporal evolution of environmental states, and uncertainty about the map-

ping from (hidden) states of the world to sensory observations. Both may arise

either from uncertainty inherent in the external world or from noise in neuronal

signalling [1]. The first source of uncertainty corresponds to the volatility of

state transitions, while the second corresponds to sensory noise and ambiguity.

The latter has previously been addressed in the context of predictive coding, in

which sensory precision (i.e. inverse variance) modulates the (possibly atten-

tional) gain of ascending prediction errors [2]. This modulatory effect is a

direct consequence of (Bayes) optimal evidence accumulation (cf. the Kalman

gain of Bayesian filters in engineering). This formulation of attention appeals

to the notion of the brain as a statistical organ: an organ that infers the

causes of its sensations using internal models of how sensory impressions are

generated by continuous states of the world [3,4]. Here, we consider the role

of precision in discrete state space models.

Both predictive coding and the (Bayesian) decision processes described in

this paper conform to the free energy principle. This principle states that, to pre-

vent its entropy (time average of surprise) growing indefinitely, an agent must

maintain an upper bound on surprise [5]. This upper bound is the variational

free energy of sensory samples [6,7]. The free energy is a function of beliefs

about hidden (latent) states, s, and a function of observations, ot, defined as

F ¼ �EQðsÞ[ln Pð~o, sÞ � ln QðsÞ]:

The notation ~o indicates a trajectory of observations through time; i.e.

½o1, o2, . . . oT �T. As written, this equation is very general. To establish its conse-

quences in concrete scenarios, it is necessary to specify a particular form of the
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Figure 1. MDP: this Bayesian network on the left illustrates the conditional dependencies, and independencies, between the variables in the generative model (see
the main text for a description of the variables). The panels on the right give the forms of the distributions in the generative model, in addition to defining the
expected free energy, and specifying the (mean-field) factorization of the approximate posterior distributions (beliefs) the agent possesses. (Online version in colour.)
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generative model, Pð~o, sÞ, and a factorization of the beliefs, Q(s),

an agent possesses. After the form of the generative model and

beliefs have been specified, standard schemes can be used to

simulate perception by changing beliefs about hidden or

latent states of the world to minimize free energy. This usually

involves variational filtering (i.e. Bayesian filtering) for con-

tinuous state space models and variational message passing

(i.e. belief propagation) for discrete state space models.

To simulate action and perception, both beliefs and action

minimize free energy. This is known as active inference. The

novel theoretical contribution of this paper is the inclusion of

explicit beliefs about uncertainty in a discrete state space

generative model.

We show through simulation that epistemic foraging is

heavily influenced by the beliefs an agent has about the vola-

tility and sensory precision of their environment [8]. The

temporal dynamics of visual search, including the phenom-

enon of ‘inhibition of return’, follow naturally from this

formulation. The formal contribution of sensory precision to

salience dissolves the ‘dark room problem’ [9] associated

with active inference, without needing to invoke additional

prior beliefs [10]. In the following, we will briefly overview

the structure of the generative model we have used previously

[11–17]. This model is then supplemented with volatility and

precision parameters, to illustrate their role through simu-

lations of visual foraging. These simulations are used to build

an intuition behind the phenomenology of Bayes-optimal

searches under uncertainty. In the final section, we turn

to neuronal implementations of the ensuing ‘precision

engineered’ message passing and consider the implications

for—and predictions of—empirical studies of attention and

neurotransmitter function.
2. Markov decision process
A Markov decision process (MDP) is a form of probabilistic gen-

erative model [18], defined in a discrete state space. The latent

variables of an MDP are hidden states st, and policies, p. The

conditional dependencies in the model are expressed graphi-

cally in figure 1. Hidden states, st, generate observable sensory
data, ot, with probabilities expressed in a likelihood matrix

Pðot ¼ ijst ¼ jÞ ¼ Aij. It is this matrix that allows for ‘top-

down’ predictions analogous to those in many descriptions of

perception [3,4,19,20]. The states evolve through time according

to a transition probability matrix, Pðstþ1 ¼ ijst ¼ j,pÞ ¼ BðuÞij,
so they depend only on the state at the previous time, and on

the policy, p, pursued by an agent. It is important to note that,

although the first dependency renders the process ‘Markovian’,

the dependence on policies of arbitrary lengths breaks this prop-

erty. In other words, this form of generative model can account

for processes with ‘memory’, something that is further

enhanced in hierarchical extensions of this model [16,21]. Pol-

icies represent sequences of actions, u ¼ pðtÞ, that determine

the form of the state transition matrix. To complete the specifica-

tion of the model for active inference, it is necessary to introduce

prior distributions over outcomes, Pðot ¼ iÞ ¼ Cti, the initial

hidden state, Pðs1 ¼ iÞ ¼ Di, and the policy. Active inference

treats policy selection as a Bayesian model selection problem.

In other words, policies are selected based upon the free

energy, G(p) expected on pursuing that policy in question

[13]. This quantity is defined in figure 1. Using a softmax (nor-

malized exponential) function to convert the expected free

energy to a probability distribution, we can write a prior belief

over policies as

PðpÞ ¼ sð�g � GðpÞÞ:

In this equation, g is an inverse temperature parameter,

that corresponds to the confidence (or precision) of beliefs

about policies. This has been used extensively in previous for-

mulations of active inference, and has been proposed as a

computational homologue of dopamine signalling [12,14,15].
3. Precision and volatility
To equip the agent with beliefs about the uncertainty in both

the transitions of hidden states (i.e. state precision) and the like-

lihood mapping from hidden states to outcomes (i.e. sensory

precision), we now introduce precision parameters to the

agent’s generative model. These are inverse temperature par-

ameters, analogous to g used for the policy prior. We first
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Figure 2. Bayesian belief updates: the panel on the left shows the belief updates implied by variational free energy minimization (see appendix A for derivation). On
the right, these equations are mapped so that the dependencies between beliefs or expectations are shown as connections between neuronal populations. H is the
entropy of the likelihood matrix. (Online version in colour.)
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augment the likelihood distribution with a sensory precision, z:

Pðot ¼ ijst ¼ j, zðjÞÞ ¼
AzðjÞ

ijP
k AzðjÞ

kj

:

This is a Gibbs measure, commonly expressed as a softmax

function [22], for which the denominator is a normalizing con-

stant (partition function). In this equation, z is the analogue of

precision in predictive coding formulations of attentional gain

[2]. Note that each value st can take is associated with its own

precision. When zðjÞ ¼ 1,8j, this equation reduces to the formu-

lation in figure 1. The same approach can be followed to define

the precision of state transitions (i.e. inverse volatility), v:

Pðstþ1 ¼ ijst ¼ j,p,vÞ ¼
BðuÞvijP
k BðuÞvkj

:

It is simple to extend this, so that v( j ) is different for each

st, as z( j ) is, but this is not necessary for the simulations that

follow. For simplicity, we will assume vðjÞ ¼ v, 8j for the

remainder of this paper.

Given the structure of the MDP shown in figure 1, and the

precision parameters defined here, it is possible to express the

free energy explicitly, and to find its minimum with respect to

each factor in the approximate posterior distribution. In doing

so (appendix A), we arrive at the belief update equations in

figure 2 for expected states of the world, and expectations

about the policies currently being pursued. If these belief

update or belief propagation equations are interpreted in

terms of message passing in the brain, the resulting connectivity

closely resembles that of a cortical column, that participates in a

cortico-subcortical loop. Figure 2 illustrates this correspondence

by expressing the belief updates for expected states, outcomes

and policies ðsp, t,op, t,pÞ, in terms of auxiliary variables;

namely, prediction errors and log expectations ð1p,t, vp,tÞ that

play the role of neuronal depolarization.
4. Simulations
To illustrate the influence of beliefs about uncertainty on behav-

iour, the generative model of figure 3 was used to simulate

epistemic foraging. The generative model includes four stimuli,

whose identity can change stochastically. These stimuli are

mapped, noisily, to observable outcomes. Each stimulus is

associated with a hidden state that defines its identity. An

additional hidden state is the current eye position that deter-

mines which of the stimuli is observed. This is associated

with an identity mapping to a proprioceptive outcome indicat-

ing the current eye position, in a manner consistent with

previous MDP models of saccadic eye movements [17]. In

brief, this means that given the hidden states (namely, where

the agent looks and the states of the stimulus at that position),

one can generate probabilistic outcomes (proprioceptive infor-

mation about where the agent is looking and exteroceptive

outcomes reporting stimulus identity).

The behaviour observed in the simulations can be

explained by referring to the agent’s beliefs about policies. As

shown in figure 1, a system that engages in active inference

selects policies with a low expected free energy. A rearrange-

ment of the equation for expected free energy at a future time

gives the following

Gðp,tÞ ¼ �E~Q½ln PðotÞ� � EQðot jpÞ½DKL½Qðstjot,pÞjjQðstjpÞ��:

The first term here corresponds to prior preferences. These

are uniform across all outcomes in these simulations. The

second term corresponds to epistemic value or salience, and

it is this that drives the active sampling of a visual scene

[23,24]. The greater the change expected in beliefs with and

without future outcomes, the lower the expected free energy.

In other words, the salience reflects the expected information

gain or resolution of uncertainty about states of the world.

For a location associated with a low sensory precision, an

observation is unlikely to elicit a substantial change in the
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posterior, so a saccade to such a location is less likely to be

selected. This behaviour is illustrated in figure 4a, which

shows a simulated sequence of actions (i.e. saccadic eye

movements) over eight sensory samples.

Heuristically, this is why a well-lit room, with precise sen-

sory information, is preferable to a dark room; i.e. precise

sensory cues that resolve ambiguity have greater epistemic

affordance and are more likely to be sampled. More colloqui-

ally, this sort of behaviour recapitulates the joke about the

drunkard looking for a lost key under a streetlamp (the ‘Street-

light effect’) [25]. Notably, the drunkards ‘cognitive bias’ is

entirely Bayes optimal on an active inference view. The greater

frequency of saccades to stimuli with a higher volatility

(figure 4b) can be similarly explained. On making an obser-

vation concerning a stimulus, the expected posterior at the

next time step should be very close to the current belief, for

that stimulus. Recent observations are thus associated with a

lower salience that then gradually increases over time, as the

probability that the hidden state has transitioned to a new

value increases (figure 5). In other words, knowing the state

of a stimulus in a particular location means there is no further

information to be gained by sampling that location and it loses

its salience. Note that salience is an attribute of both the world

and the agent’s beliefs about the world. However, if the stimu-

lus can change, the salience of its location will increase slowly

over time with uncertainty about its current status.

This phenomenon is consistent with the ‘forgetting slopes’

determined by calculating the error in reports about a stimulus

at different times following presentation [29], and with theor-

etical analyses of the properties of the attractor networks
used to explain the maintenance of working memory signals

[30]. The concept of ‘inhibition of return’ [31,32] naturally

emerges from this formulation, as an agent becomes less

likely to return to the same location for a temporally limited

period following a fixation. A stimulus with high volatility

(figure 4b) would then have a shorter inhibition of return, lead-

ing to a greater frequency of fixation. Formulating volatility

in this way means that the v parameter can be estimated

from real subjects simply by measuring the length of the

inhibition of return.

In summary, using a very simple but plausible formu-

lation of active inference in the context of searching a

simple visual scene, we find a natural explanation for two

key phenomena in visual search; namely the attractiveness

of salient, uncertainty reducing target locations and inhi-

bition of return that depends upon the volatility of a visual

scene. Crucially, both of these phenomena rest on encoding

the uncertainty or precision of state transitions and the gener-

ation of (visual) outcomes from hidden states. In what

follows, we now consider the neuronal encoding of precision

and the intimate relationship between salience, attention and

epistemic affordance.
5. The neurobiology of precision
We have presented some elementary simulations to illustrate

fairly straightforward phenomena that emerge under active

(Bayesian) inference; namely, that the encoding of uncer-

tainty or precision nuances perception and action in a
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fundamental but sensible way. In what follows, we revisit the

encoding of uncertainty from the point of view of plausible

neuromodulatory transmitter systems, the implicit compu-

tational anatomy and implications for neuropsychology.

This treatment is not a review of the psychology of predic-

tion under uncertainty but a selective survey of empirical

findings that speak to the computational architecture of the

preceding sections.
5.1. The pharmacology of uncertainty
While we have contrasted sensory uncertainty with volatility,

other authors have emphasized the difference between

‘expected uncertainty’ and ‘unexpected uncertainty’ [33].

These two dimensions of classification align more closely

than might initially appear. ‘Expected uncertainty’ is framed

in terms of a belief that a cue has low validity. In other

words, the mapping from a task context (hidden states) to an

informative observation is believed to be imprecise. This exactly

corresponds to imprecision z21. ‘Unexpected uncertainty’ is

described in terms of stochastic changes to the task context.

Such changes are necessarily determined by a probability tran-

sition matrix, so this form of uncertainty is associated with v21.

Just as g has been associated with dopaminergic signalling [15],

these two forms of uncertainty correspond to the activity in

neuromodulatory systems; specifically, the cholinergic [34,35]

and noradrenergic systems [36].

Nicotinic acetylcholine receptors are expressed presynapti-

cally at thalamocortical synapses in cortical layers 3 and 4

[37,38], the laminar targets of first-order thalamic nuclei [39].

These have been shown to modulate sensory gain [40,41]

in the visual system. This is consistent with z in both the anat-

omy shown in figure 2, in which it modulates the synapses

carrying sensory data to the cortex, and in the functional role

implied by the update equations. Acetylcholine receptors are

also found in other cortical layers [42,43], including deeper

layers, which is again consistent with figure 2. Muscarinic

receptors also appear to have an important role in attentional

gain mechanisms [44].

Noradrenaline [33,36] has been proposed to signal uncer-

tainty about state transitions. It has also been implicated in

modulation of the balance between exploitative and exploratory

(epistemic) behaviours [45]. Our simulations demonstrate the

consistency of these propositions, as a greater transition uncer-

tainty means that the salience or epistemic affordance of a

particular sampling of the environment increases at a faster

rate in a volatile context. Pupillary data, associated with cat-

echolamine signalling [46], provide additional support to the

hypothesis that noradrenaline is involved in signalling v, as

dilatation occurs during the delay period of working memory

tasks [47]. Such tasks require the maintenance of beliefs about

a given stimulus identity, that correspond to the belief that

the stimulus identity will not change throughout the delay
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period (i.e. that the precision of state transitions v is high).

The relationship between pupillary diameter and central

noradrenaline offers a means to test the predictions of this

neurochemical model of precision signalling. By manipulating

the volatility of stimulus transitions, we can test the hypothesis

that increases in v are associated with pupillary constrictions,

and that increases in v are accompanied by dilatations.

Crucially, we would not expect modulations in other precision

parameters to induce these changes.
5.2. The neuroanatomy of uncertainty
Having parametrized both sensory precision and volatility,

we are now in a position to derive Bayes optimal updates

for these parameters (see appendix A). This means that the

agent can infer the precision of its environment, in terms of

both likelihood mappings and state transitions. The resulting

update equations are shown in figure 6. This figure addition-

ally shows how the Bayesian updates for z and v could map

onto the connectivity between the cortex and the noradren-

ergic and cholinergic systems. These are related to cortical

areas via the cingulum, and the dorsal noradrenergic

bundle. Damage to the latter has been linked to deficits in

epistemic behaviour [48,49] and attentional set-shifting [50].

Disruption of the dorsal noradrenergic bundle has also

been associated with impaired extinction of a conditioned

stimulus [51], perhaps reflecting a representation of very

low volatility.

If volatility is signalled by noradrenaline, the networks

computing this quantity should interact with the locus coeru-

leus, a noradrenergic brainstem nucleus that projects too

much of the cortex [52]. Anterograde tracing has demonstrated

that the prefrontal cortex is a source of projections to the locus

coeruleus [53]. Pharmacological manipulations [54] show that

these projections influence the activity of brainstem
noradrenergic neurons. Specifically, inactivation of frontal

regions causes a sustained increase in locus coeruleus firing.

This makes these regions good candidate sites for the compu-

tation of volatility. In figure 6, volatility is determined using

volatility prediction errors in the prefrontal cortex, making

use of projections from sensory areas (that carry state predic-

tion errors). The locus coeruleus then sends a precision

(inverse volatility) signal to the cortex. Given the close associ-

ation between central noradrenaline and pupillary diameter

[46], the dynamics of the Bayesian updates given here could

be incorporated into an MDP-based generative model of pupil-

lary data, first to establish the validity of the updates as a

description of noradrenergic signalling, and then as part of

an generative model of empirical responses that can be elicited

experimentally [55].

Prefrontal regions also project to the basal forebrain [56],

the primary source of cholinergic projections to the cortex. To

reach the cortex, fibres from the basal forebrain pass the

corpus callosum rostrally, before joining the cingulum [43].

Cholinergic axons leave this white matter bundle to diffusely

innervate the cerebrum. Figure 6 shows that sensory pre-

cision can be calculated in a manner analogous to volatility.

Outcome prediction errors in sensory areas are propagated

to frontal regions that calculate a precision-related prediction

error. This is used to generate a signal to the nucleus basalis

of Meynert; a forebrain nucleus that provides a cholinergic

signal to sensory cortices.
5.3. The neuropsychology of uncertainty
The disruption of the dopaminergic modulation of policy pre-

cision can result in disease states, including Parkinson’s disease

[15,57,58], and schizophrenia [59–61]. Similarly, the neuro-

transmitter systems associated here with sensory precision

and volatility are disrupted in a range of neuropsychiatric



Table 1. Summary of the functional anatomy of precision.

precision functional role
neurotransmitter
system neuroanatomy

z encoding the precision of outcomes given hidden states (cf.

attention and expected uncertainty [34,35])

cholinergic nucleus basalis of Meynert

v encoding the precision of state transitions (cf. volatility and

unexpected uncertainty [36])

noradrenergic locus coeruleus

g Encoding the precision of beliefs about policies (cf. action

selection [15])

dopaminergic substantia nigra pars compacta,

ventral tegmental area
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disorders. Depletion of acetylcholine is associated with

Alzheimer’s disease [62,63], while disruptions of noradrena-

line signalling are thought to contribute to anxiety [64],

post-traumatic stress disorder [65], depression [66] and

Wernicke–Korsakoff encephalopathy [67,68]. Additionally,

the lateral asymmetry of noradrenergic projections in the fore-

brain [69], reflected in pupillary responses [70], hints at a role in

hemineglect [71]. A formal description of the computational

processes that are disrupted in these disorders allows for the

development of a computational phenotyping [55] of patients.

This may aid in the characterization of defective neurophysiol-

ogy, making use of the process theory [12] associated with

active inference.
6. Discussion
In order to act optimally in an ambiguous and volatile world,

it is necessary to possess a generative model that incorporates

key forms of uncertainty. Through their influence on sal-

ience—a component of the expected free energy of a

policy—uncertainty can have a profound influence on episte-

mic behaviour. For example, volatile contingencies call for a

shorter inhibition of return, while imprecise sensory infor-

mation is inherently less epistemically valuable. The

parametrization in this paper facilitates the derivation of

Bayesian updates for precision parameters—that could be

implemented by a network of sensory, prefrontal and subcor-

tical structures. Functionally and anatomically, the ascending

cholinergic and noradrenergic systems are plausible neuro-

biological substrates for the computational processes

described in this paper.

The story on offer here provides a coherent and formal

account of neuromodulation in the brain that is broadly con-

sistent with previous neurobiological accounts of perception

and decision-making [8,72,73]. In brief, there are three funda-

mental sorts of beliefs that determine behaviour: (i) beliefs

about outcomes given hidden or latent states of the world,

(ii) beliefs about states of the world, and (iii) beliefs about

policies given states of the world. Each of these sets of beliefs

is equipped with an uncertainty or precision that may be

encoded by specific modulatory neurotransmitter systems.

The evidence reviewed above—and in [8,33]—speaks to the

following (summarized in table 1): (i) cholinergic systems

encode the precision of beliefs about outcomes given states

of the world (cf. attention and expected uncertainty); (ii) nor-

adrenergic systems encode the precision of state transitions

(cf. volatility and unexpected uncertainty); and (iii)
dopaminergic systems encode the precision of beliefs about

policies (cf. action selection). The coherent aspect of this

account rests on the fact that all three systems play the

same computational role; namely, an encoding of precision.

Furthermore, all three neurotransmitter systems have the

same basic effects on synaptic transmission; namely, a

neuromodulatory gain control.
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Endnote
1As opposed to epistemic in the philosophical sense.
Appendix A
A.1. Belief update equations
The variational free energy for the MDP model described in

the main text is

F ¼ �EQ½ln Pð~o,~s,pÞ � ln Qð~s,pÞ�:

Here, the � notation denotes sequences of outcomes and

hidden states over time. Treating policy selection as a process

of Bayesian model selection, we can consider the free energy

of each policy

FðpÞ ¼ �EQ[ln Pð~o,~sjpÞ � ln Qð~sjpÞ]:

Using the mean-field approximation Qð~sjpÞ ¼
Q

t QðstjpÞ,
and factorizing the joint distribution using the conditio-

nal independencies in the generative model, this can be

written as:

FðpÞ ¼

�EQ ln Pðs1Þ þ
X
t

ðln PðotjstÞ þ ln Pðstþ1jst,pÞ � ln QðstjpÞÞ
" #

:

http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/
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Taking the variational derivative of this with respect to

beliefs about hidden states at a particular time we have,

dFðpÞ
dQðstjpÞ

¼ �EQ
t=t

Qðst jpÞ ln Pðs1Þ þ
X
t

ðln PðotjstÞ þ ln Pðstþ1jst,pÞÞ
" #

þ ln QðstjpÞ:

Setting the variational derivative to zero, the variational

solution is

ln Q�ðstjpÞ ¼ ln PðotjstÞ þ EQ(st�1jp)[ln Pðstjst�1,pÞ]
þ EQðstþ1jpÞ[ln Pðstþ1jst,pÞ]� ln Z:

Where Z is a partition function (i.e. a constant). In terms

of the model parameters and expectations

ln s�p, t ¼ z ln A � ot þv ln Bp, t�1 � sp, t�1 þv ln Bp, t � sp, tþ1

� ln Z:

To express this as a gradient ascent, we define an error

term as the difference between the current belief and the vari-

ational solution, and change the current belief to minimize

this error:

1p, t ¼ ln s�p, t � ln sp, t

and _np, t ¼ 1p, t; sp, t ¼ sðnp,tÞ:

To determine the form of 1p,t, we have specified the form

of the distributions contributing to the variational solution. In

the above, the log transition probability takes the form

v ln Bp,t, while the log likelihood is ðln AÞz, where

z ¼
z(1)

z(2)

. .
.

2
64

3
75:

There are partition functions associated with these distri-

butions; however, these are constant with respect to the belief

about the current state. This means they can be omitted in the

derivation of the Bayesian belief updates for hidden states.

Substituting the log probability distributions into the above,

the error can be written,

1p,t ¼ z ln A � ot þv ln Bp,t�1 � sp,t�1 þv ln Bp,t � sp,tþ1

� ln sp,t:

This is the form used for belief updating in figure 1.
A.2. Derivation of Bayesian updates for precision
parameters

In deriving belief updates for precision parameters, the

partition functions cannot be omitted, as they are functions

of the parameters being updated. We assume that the pre-

cision parameters are distributed according to gamma

distributions, and follow a similar line of reasoning to that

used to derive updates for policy precisions in previous

papers. The prior distribution over the precision parameters

is then:

PðzðiÞÞ/ bze�bzz
ðiÞ

, PðvÞ/ bwe�bwv:
The approximate posterior distributions have the same

(gamma distribution) form and we will use a bold b hyper-

parameter to distinguish between the sufficient statistics of

the posterior and prior above. A useful property of the

gamma distribution, when parametrized in this way, is the

following

z ¼ EQðzÞ½z� ¼ b�1
z , v ¼ EQðvÞ½v� ¼ b�1

w :

Having defined these distributions, we can write the vari-

ational free energy

F ¼ FðpÞ þDKL½QðpÞjjPðpÞ� þDKL½QðvÞjjPðvÞ�

þ
X

i

DKL½QðzðiÞÞjjPðzðiÞÞ�:

Which can be expressed in terms of sufficient statistics

(omitting constants),

F ¼ �p �
X
t

sp,t � ln �A � ot þ ln �Bp,t � sp,tþ1

� �
þ lnbw � lnbw

þvbw þ lnbz � lnbz þ zðiÞbz,

where

�Aij ¼
AzðjÞ

ijP
k AzðjÞ

kj

and �Bp,t,ij ¼
Bv

ijP
k Bv

kj
,

correspond to normalized probability matrices. Taking the

partial derivative with respect to the expected precision of

state transitions gives:

@F
@v
¼ �p �

X
t

sp,t � @v ln �Bp,t � sp,tþ1 þ bw � bw:

Solving for zero gives the volatility expectations:

bw ¼ bw � p �
X
t

sp,t � @v ln �Bp,t � sp,tþ1:

The updates for the sensory precision are obtained in the

same way:

bz ¼ bz �
X
t

st � @z(i) ln �A � ot:

Expressing these updates as biologically plausible gradi-

ent ascents, the resulting equations are

_bz¼ 1(i)
z ; z(i) ¼ b�1

z

and _bw¼ 1w ; v ¼ b�1
w ,

where the errors are

1ðiÞz ¼ bz �
X
t

st � @zðiÞ ln �A � ot � bz

and 1w ¼ bw � p �
X
t

sp,t � @v ln �Bp,t � sp,tþ1 � bw:

The partial derivatives here can be expressed explicitly in

terms of weighted prediction errors

st � @zðiÞ ln �A � ot ¼ ln A�,i � 1ðiÞo,t ; 1ðiÞo,t ¼ ðot � �A�,iÞst,i

and sp,t � @v ln �Bp,t � sp,tþ1 ¼
X

i

ln Bp,t,�,i � 1ðiÞs,t ; 1ðiÞs,t

¼ ðsp,tþ1 � �Bp,t,�,iÞsp,t,i:

These are equivalent to the forms in figure 6, which are

expressed to emphasize the plausibility of their neuronal

implementation.
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