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Catalytic atroposelective synthesis of
heterobiaryls with vicinal C�C and N�N
diaxes via dynamic kinetic resolution

Tian-Jiao Han,1,4 Chun-Yan Guan,1,4 Na Li,2 Rui Dong,1 Li-Ping Xu,2 Xiao Xiao,3 Min-Can Wang,1,*

and Guang-Jian Mei1,5,*

SUMMARY

Reported herein is a highly efficient dynamic kinetic resolution protocol for the atroposelective synthesis
of heterobiaryls with vicinal C�C and N�N diaxes. Atropisomers bearing vicinal diaxes mainly exist in
o-triaryls, while that of biaryls is highly challenging in terms of the concerted rotation and deplanarization
effects. The combination of C�C biaryl with N�N nonbiaryl delivers a novel class of vicinal-diaxis hetero-
biaryls. For their atroposelective synthesis, the dynamic kinetic resolution enabled by either quinine-cata-
lyzed allylation or isothiourea-catalyzed acylation has been developed, allowing the preparation of awide
range of vicinal-axis heterobiaryls in good yields with excellent enantioselectivities. Atropisomerization
experiments revealed that the C�C bond rotation led to diastereomers, and the N�N bond rotation
offered enantiomers. Besides, this protocol could be extended to kinetic resolution by employing sub-
strates with a more hindered axis.

INTRODUCTION

Atropisomeric biaryls arising from axially restricted aryl�aryl bond rotation are known for their wide prevalence in natural products, organo-

catalysts, chiral ligands, pharmaceuticals, and functional materials.1–5 The past decades have witnessed significant progress in the prepara-

tion of atropisomeric biaryls with a single stereogenic axis.6–11 Atropisomers bearing vicinal diaxes are particularly intriguing for materials

sciences, as theymainly exist in o-triaryls (Figure 1A).12 Nevertheless, the concerted rotation of 1,2-diaxes poses a daunting challenge to enan-

tiocontrol.13 To date, only a few successful catalytic asymmetric methods have been reported to access o-triaryls, which include the de novo

construction of (hetero)arenes,14–20 the central-to-axial chirality conversion,21 and the atroposelective C�H activation.22–24 Although one can

certainly design an o-triaryl atropisomer by merging two readily available biaryls, it is hard to imagine an atropisomeric biaryl with vicinal dia-

xes. To make that possible, the key is to find a suitable nonbiaryl system that can be merged. However, under equal conditions, the lower

rotation barrier induced by the deplanarization renders a less stable conformer of nonbiaryls.25–30 This is the case in the pioneering contri-

butions of the groups of Hsung building chiral ortho-disubstituted N,O-biaryls by combining the C�C and C�N axial chirality.31 Later, the

preparation of 1,2-diaxially chiral biaryl benzamides had been achieved by Tanaka.32 More recently, the He group accomplished the synthesis

of diaxially chiral B,N-heterobiaryls bearing vicinal C�B and C�N axes via a stepwise asymmetric allylic substitution-isomerization strategy.33

Although these creative studies showcased the concept of biaryl atropisomers with vicinal diaxes, the catalytic atroposelective synthesis is still

in its infancy and developing new structural types is highly desirable yet challenging.

The N�N bond is ubiquitous in natural products and bioactive compounds,33–35 while its atropisomerism has been largely overlooked.

Although the first consideration of N�N atropisomers can be traced back to 1931,36 catalytic asymmetric synthesis has not been reported

until recently.37,38 With the appropriate bulkiness and electronic properties, N�N heterobiaryls can be atropisomeric in analogy to C�C biar-

yls (Figure 1B). In this context, enantioselective synthetic approaches to access structurally diverse indole-pyrrole, indole-carbazole, bispyr-

role, and bisindole atropisomers with anN�Naxis has been reportedby Liu, Shi and others.39–49More importantly, nitrogen atom can assume

a stable planar geometry beyond the aromatic ring since the unpaired electrons could conjugate with a carbonyl group. As a result, N�Naxial

chirality can be found in nonbiaryl systems. The seminal work came from the Lu group, in which they accomplished the asymmetric synthesis of

N�N atropisomeric 1-aminopyrroles and 3-aminoquinazolinones.50–52 Furthermore, Bencivenni et al. described the catalytic stereoselective

synthesis of hydrazides containing a rotationally stable N–N axis by a sequential catalysis protocol.53 Inspired by these impressive
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achievements, we envision that a biaryl atropisomer bearing vicinal C�C and N�N diaxes is feasible and with a suitable synthetic strategy its

asymmetric synthesis can be achieved.

Dynamic kinetic resolution (DKR) represents a particularly appealing strategy for the synthesis of atropisomers from preformed racemic

biaryls.7,54 The dynamics of atropisomers well conform to the requirement of DKR for the racemization of starting materials during reaction

process. Consequently, DKR has been exploited with success in preparing various biaryls with a single stereogenic axis.55–64 However, when it

comes to multi-axis systems, especially the vicinal-axis system, the stereocontrol is problematic. To our knowledge, the Miller group has suc-

cessfully achieved theDKR of configurationally labile axes for atropisomerically enriched two-axis systems.13,65,66 DKR of racemic biaryls with a

configurationally stable axis remains challenging and elusive. Our group has a continuous interest in developing effective methods to access

structurally important axially chiral compounds.28,52,67 Along this line, we envision that the enantioselective synthesis of vicinal-axis

A

C

B

Figure 1. Enantioselective synthesis of atropisomers with vicinal diaxes

(A–C) (A) Vicinal-diaxis systems; (B) N-N Axial chirality in nonbiaryls; (C) This work.
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atropisomers could be enabled byDKR (Figure 1C). However, an effectiveDKR should fit the following criterions: (1) the catalystmust precisely

discriminate the two enantiomers of starting material (v2>v3); (2) the enantioselective transformation must be slower than the racemization of

the starting materials but faster than the racemization of the products (v1>v2>v4/v6 or v5/v7).

To address these issues, herein, we report in detail the catalytic atroposelective synthesis of heterobiaryls with vicinal C�C and N�N dia-

xes via DKR (Figure 1C). Notably, this DKR reaction can be enabled by either quinine-catalyzed allylation or isothiourea-catalyzed acylation,

allowing the formation of vicinal-axis biaryls 3 and 5 in good yields and with excellent enantioselectivities. Not only are the products a new

addition to atropisomeric biaryls with vicinal diaxes, but the protocol enriches the DKR strategy in atroposelective synthesis.

RESULTS

The rational design of starting materials is crucial for an effective DKR. In our recent work on atroposelective synthesis of axially chiral C2-ar-

ylpyrrole-derived amino alcohols,67 we found that heterobiaryl 1a possesses an atropoisomeric C–C bond which can rotate dynamically at

room temperature (see the supplemental information for HPLC analysis on a chiral stationary phase). Considering that theN-functionalization

could introduce sufficient rotation constraint for C–C and N–N bonds, 1a was chosen as our model substrate for our development of DKR.

Asymmetric allylation of 1a with the Morita–Baylis–Hillman (MBH) adduct 2a in the presence of various quinolines was examined (Scheme 1)

and the results are summarized in Table 1. To our delight, the DKR of 1a occurred under the catalysis of C1 in CH2Cl2 at room temperature,

delivering the desired vicinal-axis product 3a as diastereoisomers in a moderate yield (entry 1). The screening of catalysts indicated that C4

was the best choice in terms of yield and stereoselectivity (entry 4). The solvent effect was then examined. Although toluene could increase the

ee value, the yield decreased significantly (entry 7). Acetonitrile and tetrahydrofuran failed to afford enhancements (entries 8 & 9). At �20�C,
the product 3a was obtained in a good enantioselectivity, however, the yield and the diastereoselectivity declined (entry 10).

Further improvements were achieved by utilizing variousMBH carbonates with different estermoieties (Scheme 2). The results implied that

the steric effect had some influence on the enantio-control (Table 2). Changing the small methyl group (2a) to the sterically bulky groups such

Scheme 1. Reaction optimization

Table 1. Reaction optimization

Entry Cat. Solvent Yield (%) dr ee (%)

1 C1 CH2Cl2 53 1.7:1 85/84

2 C2 CH2Cl2 32 2.5:1 86/83

3 C3 CH2Cl2 96 2.6:1 74/74

4 C4 CH2Cl2 94 3.2:1 86/80

5 C5 CH2Cl2 33 2.8:1 78/75

6 C6 CH2Cl2 67 2.7:1 75/75

7 C4 toluene 10 1.3:1 90/86

8 C4 CH3CN 84 2.4:1 72/66

9 C4 THF 77 2.4:1 69/66

10a C4 CH2Cl2 50 1.6:1 90/89

Reaction conditions: 1a (0.1 mmol), 2a (0.15 mmol), and Cat. (10 mol %) in the solvent specified (1 mL) at RT for 12 h; Yields refer to isolated yields; The ee values

were determined by HPLC analysis on a chiral stationary phase; The dr ratios were determined by 1H NMR.
aPerformed at �20�C.
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as ethyl (2b), benzyl (2c), and n-butyl (2d) resulted in enhanced enantioselectivities (entries 2�4). Notably, with the employment of t-butylMBH

carbonate (2e), the allylation product 3e was obtained in 96% yield with 2.8:1 dr and 95%/93% ee (entry 5).

With the best conditions established, thegenerality of the substratewas studied.As shown in Figure 2, thisN-alkylation enabledDKRprotocol

was applicable to a broad range of racemic heterobiaryls 1. Firstly, the N-protecting group (�CO2R
4) could be varied, giving the consistently

good yields and excellent enantioselectivities (3f�i). Among them, the bulky fluorenylmethyl ester group led to a higher diastereoselectivity

(3h). The tolerance of the ester group far from the central axis (�CO2R
2) was also investigated, while almost no influence on the reaction was

observed (3j�m). The ester group �CO2R
1 was supposed to have an impact on the C–C bond rotation. However, the small methyl group

(3n) and sterically bulky propyl groups (3o and 3p) gave the similar good results. Different R3 group (3q�t) at the pyrrole ringwere also well toler-

ated. In addition to the excellent yields and ee values, n-propyl (3r) and benzyl (3t) afforded the increaseddiastereoselectivities. Next, a variety of

heterobiaryls 1 bearing different substituents at the naphthyl ring were employed. From the excellent yields and ee values of the products

3u�3b0, it seems that both the electronic nature and the patterns of the substituents have little effect on the reaction efficiency and stereose-

lectivity. Remarkably, substrates with 5,7-dimethyl naphthyl group (3c0) or anthranyl group (3d0) were also compatible with this reaction.

Encouraged by the success ofN-allylation, we preliminarily attempted other asymmetric N-functionalization reactions for this DKR proto-

col (see the supplemental information for details). We were pleased to discover that the DKR of heterobiaryls 1 could also be achieved by the

isothiourea-catalyzed acylation. As shown in Figure 3, under the catalysis of chiral isothiourea C7 in CH2Cl2 at room temperature, racemic 1e

reacted with cinnamic anhydride 4a in a DKR manner, delivering the corresponding vicinal-diaxis product 5a in moderate enantioselectivity.

The subsequent reaction optimization revealed that the chiral isothiourea C9 was the best catalyst, affording the correspond product in 95%

yield with 1.3:1 dr and 90%/90% ee values. With the best conditions in hand, the substrate scope of this catalytic asymmetric acylation had

been investigated (Figure 4). Remarkably, in all the substrates tested, the asymmetric DKR reaction took place smoothly, affording the cor-

responding vicinal-diaxis heterobiaryls 5a�5l in good yields with excellent enantioselectivities.

Furthermore, the atropisomerization of 3b0 was conducted to investigate the configurational stability, which showed that the C–C andN–N

axes are of different rotational barriers (Figure 5A). Rotation over the lower-barrier axis determines the dr value and that of the higher-barrier

axis determines the ee value. The two diastereomers (R,S)-3b0 and (S,S)-3b0 are separable, and their interconversion over the C–C bond could

be readily observed at the ambient temperature. Given the difference of the two diastereomers in structural stability, their energy barriers for

interconversion should be slightly different. This analysis is consistent with experiments that complete erosion of dr values of themajor isomer

(R,S)-3b0 to equilibrium, requiring 24.0 kcal/mol, while that of the minor isomer (S,S)-3b0 only needs 23.5 kcal/mol. On the other hand, the

racemization over the both axes occurs at about 130�C. The rotation barrier is determined to be 31.8 kcal/mol, which is similar to that

31.2 kcal/mol of compound 6 with a single N–N axis (Figure 5B). Thus, the rotation over the N–N axis dominates the atropisomerization of

3b0. In addition, the rotational barrier on the C-C bond of substrate 1f was calculated to be 22.9 kcal/mol, so, there was a slight increase

in the energy of the C-C bond after reaction. Substrate 7 with a Bn-protected naphthol motif caused a higher rotation barrier (32.8 kcal/

mol). The rotational energy barrier of 7was so high that it does not racemate at room temperature and results in a kinetic resolution. To verify

this hypothesis, hereobiaryl 7 was employed (Figure 5C). Under similar conditions, the catalytic asymmetric allylation occurred smoothly in a

kinetic resolution manner. The corresponding vicinal-diaxis compound 8 was obtained in 46% yield with 7.7:1 dr and 92%/94% ee values, and

the compound 7 was recovered in 43% yield and with 90% ee. In terms of the high s-factor (s = 95) achieved, this kinetic resolution is synthet-

ically useful and will be fully investigated in the future. Finally, kinetic experiments were performed to shed light on themechanism. As shown

Scheme 2. Further optimization by screening MBH carbonates

Table 2. Further optimization by screening MBH carbonates

Entry R/2 3 Yield (%) dr ee (%)

1 Me (2a) 3a 94 3.2:1 86/80

2 Et (2b) 3b 95 3.2:1 93/91

3 Bn (2c) 3c 93 3:1 93/91

4 nBu (2d) 3d 94 2.8:1 94/92

5 tBu (2e) 3e 96 2.8:1 95/93

Reaction conditions: 1a (0.1 mmol), 2 (0.15 mmol), andC4 (10 mol %) in CH2Cl2 (1 mL) at RT for 12 h; Yields refer to isolated yields; The ee values were determined

by HPLC analysis on a chiral stationary phase; The dr ratios were determined by 1H NMR.
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Figure 2. Substrate scope for allylation

Reaction conditions: 1a (0.1mmol), 2e (0.15mmol), andC4 (10mol %) in CH2Cl2 (1mL) at RT for 12 h; Yields refer to isolated yields; The ee values were determined

by HPLC analysis on a chiral stationary phase; The dr ratios were determined by 1H NMR.
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in Figure 5D, the dr value of the product underwent a reversal over time, and the ee value of the substrate 1b0 always remained at a low level.

At the beginning, the dr and ee values of the product were very high, indicating that the enantioselectivity was set under kinetic control. How-

ever, the dr value decreased over reaction time, and even reversed finally (from 1:10 to 1.9:1). So, the final dr was set under thermodynamic

control.

DISCUSSION

In conclusion, we have established a highly efficient DKR protocol for the atroposelective synthesis of heterobiaryls with vicinal C�C andN�N

diaxes. Atropisomers bearing vicinal diaxesmainly exist in o-triaryls, vicinal-diaxis biaryls has traditionally been regarded as challenging struc-

tural motifs. By using this protocol, a wide range of vicinal-axis heterobiaryls were readily prepared in good yields with excellent enantiose-

lectivities under mild conditions. Notably, this dynamic kinetic resolution reaction can be enabled by either quinine-catalyzed allylation or

isothiourea-catalyzed acylation. Atropisomerization experiments revealed that the C�C bond rotation led to diastereomers, while that of

N�N bond of enantiomers. Besides, this protocol could be extended to kinetic resolution by employing substrates with a more hindered

axis. Further investigation along this line is ongoing, and will be reported in due course.

Limitations of the study

The diastereoselectivities are relatively low, which can be attributed to the low rotational barrier at the C-C stereogenic axis in the products.

The limited configurational stability at the C-C axes may hinder the practical application of the obtained products.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
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B Materials availability

B Data and code availability
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B General procedures for asymmetric allylation

B (R,S)-Diethyl 1-((2-(tert-butoxycarbonyl)allyl)(ethoxycarbonyl)amino)-2-methyl-5-(naphthalen-1-yl)-1H-pyrrole-3,4-dicarboxylate: 3e

B General procedures for asymmetric acylation

B General procedure for asymmetric synthesis of compound 6

B General procedure for kinetic resolution of 7
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Supplemental information can be found online at https://doi.org/10.1016/j.isci.2023.107978.

Figure 3. DKR via acylation

Reaction conditions: 1e (0.1mmol), 4a (0.15mmol), and theCat. (0.01mmol) in CH2Cl2 (1mL) at 0�C for 12 h. Isolated yields. The dr and ee values were determined

by HPLC analysis on a chiral stationary phase.
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Figure 4. Substrate scope for acylation

Reaction conditions: 1 (0.1 mmol), 4a (0.15 mmol), and the C9 (0.01 mmol) in CH2Cl2 (1 mL) at 0�C for 12 h. Isolated yields. The dr and ee values were determined

by HPLC analysis on a chiral stationary phase.
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Figure 5. Atropisomerization and kinetic resolution

(A–D) (A) Racemization experiments; (B) Rotational energy barriers; (C) Kinetic resolution; (D) Mechanism considerations. After 4.5 h, 1b0 was fully consumed, the

de value was determined by HPLC.
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X-ray diffraction Bruker https://bruker.com
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Materials availability

All other data supporting the findings of this study are available within the article and the supplemental information or from the lead contact

upon reasonable request.

Data and code availability

� All data reported in this paper will be shared by the lead contact upon request. The crystallographic, catalysts and catalysis are provided

in supplemental information as referenced in themain text. All original crystal structures have been deposited at CCDC and are publicly

available as of the date of publication. CCDC numbers are listed in the key resources table.

� This paper does not report original code.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

METHODS DETAILS

General procedures for asymmetric allylation

Racemic axial chiral compound 1 (0.10 mmol), MBH carbonic ester 2e (0.15 mmol) were dissolved in CH2Cl2 (1 mL), and C4 (10 mol %) were

added. The reaction mixture was stirred for 12 h at room temperature. The solvent was removed in vacuo and the crude product was sepa-

rated by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 4:1–2:1) to afford the product 3.

(R,S)-Diethyl 1-((ethoxycarbonyl)(2-(methoxycarbonyl)allyl)amino)-2-methyl-5-(naphthalen-1-yl)-1H-pyrrole-3,4-dicarboxylate: 3a

A colorless oil; 50.4 mg; isolated yield = 94%; dr = 3.2:1. [a]31.0D = +7.00 (c 0.20, CH2Cl2); HPLC (IC column, i-propanol/n-hexane = 30/70, flow

rate 1.0mL/min, l= 254 nm), major product: t1 = 14.65min (major), t2 = 40.56min (minor), ee= 86%;minor product: t1 = 18.11min (major), t2 =

34.12 min (minor), ee = 80%; 1H NMR (400 MHz, CDCl3) d 8.02–7.59 (m, 3H), 7.60–7.30 (m, 4H), 6.27–5.62 (m, 1H), 5.36–5.16 (m, 1H), 4.46–4.22

(m, 4H), 4.22–3.67 (m, 4H), 3.66–3.49 (m, 3H), 2.30–2.20 (m, 3H), 1.42–1.20 (m, 6H), 0.74–0.56 (m, 3H). 13C NMR (100 MHz, CDCl3) d 165.6, 164.5,

164.3, 154.8, 136.4, 133.8, 133.5, 133.3, 132.9, 131.9, 130.9, 130.2, 129.7, 128.4, 128.3, 127.0, 126.7, 126.1, 126.1, 125.4, 125.0, 115.7, 110.7, 63.4,

60.4, 60.2, 52.0, 51.0, 14.7, 14.3, 13.3, 10.5. HRMS (ESI) m/z calcd for C29H32N2O8Na+ [M + Na]+ = 559.2051, found = 559.2053.

(R,S)-Diethyl 1-((ethoxycarbonyl)(2-(ethoxycarbonyl)allyl)amino)-2-methyl-5-(naphthalen-1-yl)-1H-pyrrole-3,4-dicarboxylate: 3b

A colorless oil; 52.3mg; isolated yield = 95%; dr = 3.2:1. [a]31.4D =�19.33 (c 0.30, CH2Cl2); HPLC (IC column, i-propanol/n-hexane = 30/70, flow

rate 1.0mL/min, l= 254 nm), major product: t1 = 13.07min (major), t2 = 33.40min (minor), ee= 93%;minor product: t1 = 15.20min (major), t2 =

25.06 min (minor), ee = 91%; 1H NMR (400 MHz, CDCl3) d 8.01–7.62 (m, 3H), 7.61–7.32 (m, 4H), 6.20–5.72 (m, 1H), 5.39–5.17 (m, 1H), 4.43–4.23

(m, 4H), 4.20–3.96 (m, 3H), 3.96–3.40 (m, 3H), 2.31–2.20 (m, 3H), 1.42–1.08 (m, 9H), 0.78–0.44 (m, 3H). 13C NMR (100 MHz, CDCl3) d 165.2, 164.5,

164.3, 154.8, 136.5, 134.1, 133.7, 133.5, 132.9, 131.9, 130.7, 130.6, 130.2, 129.7, 128.4, 128.3, 127.0, 126.7, 126.2, 126.1, 125.4, 125.1, 115.7, 110.6,

63.3, 61.0, 60.4, 60.2, 51.0, 14.7, 14.3, 14.0, 13.3, 10.6. HRMS (ESI) m/z calcd for C30H34N2O8Na+ [M + Na]+ = 573.2207, found = 573.2210.

(R,S)-Diethyl 1-((2-((benzyloxy)carbonyl)allyl)(ethoxycarbonyl)amino)-2-methyl-5-(naphthalen-1-yl)-1H-pyrrole-3,4-
dicarboxylate: 3c

A colorless oil; 56.9 mg; isolated yield = 93%; dr = 3.0:1. [a]31.5D =�59.20 (c 0.50, CH2Cl2); HPLC (IC column, i-propanol/n-hexane = 30/70, flow

rate 1.0 mL/min, l = 254 nm), major product: t1 = 11.28 min (major), t2 = 27.54 min (minor), ee = 93%; minor product: t1 = 13.07 min (major), t2 =

20.61 min (minor), ee = 91%; 1H NMR (400 MHz, CDCl3) d 7.90–7.82 (m, 2H), 7.74–7.56 (m, 1H), 7.56–7.25 (m, 9H), 6.23–5.98 (m, 1H), 5.43–4.85 (m,

3H), 4.48–4.21 (m, 4H), 4.17–3.33 (m, 4H), 2.36–2.07 (m, 3H), 1.43–1.05 (m, 6H), 0.78–0.48 (m, 3H). 13C NMR (100MHz, CDCl3) d 165.0, 164.5, 164.3,

154.8, 136.5, 135.4, 133.5, 133.4, 132.9, 131.9, 131.3, 130.2, 129.7, 128.6, 128.6, 128.4, 128.3, 127.0, 126.7, 126.1, 126.1, 125.4, 125.0, 124.7, 115.7,

110.7, 66.8, 63.4, 60.4, 60.2, 51.0, 14.7, 14.3, 13.3, 10.5. HRMS (ESI) m/z calcd for C35H36N2O8Na+ [M + Na]+ = 635.2364, found = 635.2369.

(R,S)-Diethyl 1-((2-(butoxycarbonyl)allyl)(ethoxycarbonyl)amino)-2-methyl-5-(naphthalen-1-yl)-1H-pyrrole-3,4-dicarboxylate: 3d

A colorless oil; 54.3 mg; isolated yield = 94%; dr = 2.8:1. [a]25D =�41.75 (c 0.40, CH2Cl2); HPLC (IC column, i-propanol/n-hexane = 30/70, flow

rate 1.0mL/min, l= 254 nm), major product: t1 = 11.60min (major), t2 = 27.15min (minor), ee= 94%;minor product: t1 = 12.93min (major), t2 =

19.85 min (minor), ee = 92%; 1H NMR (400 MHz, CDCl3) d 8.01–7.62 (m, 3H), 7.59–7.32 (m, 4H), 6.25–5.68 (m, 1H), 5.37–5.15 (m, 1H), 4.45–4.25

(m, 4H), 4.19–3.36 (m, 6H), 2.31–2.20 (m, 3H), 1.65–1.44 (m, 2H), 1.40–1.15 (m, 8H), 0.95–0.90 (m, 3H), 0.78–0.48 (m, 3H). 13C NMR (100 MHz,

CDCl3) d 165.3, 164.5, 164.3, 154.8, 136.6, 134.1, 133.6, 133.5, 132.9, 131.8, 130.7, 130.2, 129.7, 128.4, 128.3, 127.0, 126.7, 126.2, 125.4,

125.1, 115.7, 110.6, 64.9, 63.3, 60.4, 60.2, 51.0, 30.4, 19.1, 14.7, 14.3, 13.7, 13.3, 10.6. HRMS (ESI) m/z calcd for C32H38N2O8Na+ [M + Na]+ =

601.2520, found = 601.2522.

(R,S)-Diethyl 1-((2-(tert-butoxycarbonyl)allyl)(ethoxycarbonyl)amino)-2-methyl-5-(naphthalen-1-yl)-1H-pyrrole-3,4-

dicarboxylate: 3e

A colorless oil; 55.5 mg; isolated yield = 96%; dr = 2.8:1. [a]31.1D = �49.71 (c 0.35, CH2Cl2); HPLC (IE column, i-propanol/n-hexane = 30/70,

flow rate 1.0mL/min, l= 254 nm),major product: t1 = 21.74min (major), t2 = 32.15min (minor), ee= 95%;minor product: t1 = 16.05min (major),
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t2 = 17.42 min (minor), ee = 93%; 1H NMR (400 MHz, CDCl3) d 7.96–7.61 (m, 3H), 7.59–7.32 (m, 4H), 6.27–5.61 (m, 1H), 5.42–5.09 (m, 1H), 4.54–

4.26 (m, 4H), 4.18–3.08 (m, 4H), 2.44–2.14 (m, 3H), 1.47–1.39 (m, 9H), 1.38–1.20 (m, 6H), 0.85–0.44 (m, 3H). 13C NMR (100 MHz, CDCl3) d 164.5,

164.5, 164.3, 154.7, 137.0, 135.5, 134.9, 133.5, 132.9, 131.7, 130.2, 130.1, 129.8, 128.4, 128.3, 127.1, 126.7, 126.2, 125.4, 125.1, 115.7, 110.4, 81.4,

63.3, 60.4, 60.2, 50.9, 27.9, 14.8, 14.3, 13.3, 10.7. HRMS (ESI) m/z calcd for C32H38N2O8Na+ [M + Na]+ = 601.2520, found = 601.2530.

(R,S)-Diethyl 1-((2-(tert-butoxycarbonyl)allyl)(methoxycarbonyl)amino)-2-methyl-5-(naphthalen-1-yl)-1H-pyrrole-3,4-
dicarboxylate: 3f

A colorless oil; 50.1mg; isolated yield = 89%; dr = 2.7:1. [a]31.4D =�42.67 (c 0.45, CH2Cl2); HPLC (IE column, i-propanol/n-hexane = 20/80, flow

rate 1.0mL/min, l= 254 nm), major product: t1 = 21.74min (major), t2 = 32.15min (minor), ee= 95%;minor product: t1 = 16.05min (major), t2 =

17.42 min (minor), ee = 93%; 1H NMR (400 MHz, CDCl3) d 7.99–7.59 (m, 3H), 7.58–7.28 (m, 4H), 6.18–5.92 (m, 1H), 5.46–5.10 (m, 1H), 4.59–4.18

(m, 3H), 4.11–3.11 (m, 6H), 2.36–2.16 (m, 3H), 1.48–1.38 (m, 9H), 1.37–1.33 (m, 3H), 0.74–0.57 (m, 3H). 13C NMR (100 MHz, CDCl3) d 164.5, 164.5,

164.3, 155.3, 136.9, 134.9, 133.5, 133.4, 132.9, 131.6, 130.3, 130.1, 129.8, 128.4, 128.2, 127.0, 126.7, 126.2, 126.0, 125.4, 125.2, 124.6, 115.8, 110.5,

81.5, 60.4, 60.2, 54.1, 51.0, 27.9, 14.3, 13.3, 10.7. HRMS (ESI) m/z calcd for C31H36N2O8Na+ [M + Na]+ = 587.2364, found = 587.2369.

(R,S)-Diethyl 1-(((benzyloxy)carbonyl)(2-(tert-butoxycarbonyl)allyl)amino)-2-methyl-5-(naphthalen-1-yl)-1H-pyrrole-3,4-
dicarboxylate: 3g

A colorless oil; 55.5 mg; isolated yield = 91%; dr = 3.0:1. [a]31.6D =�38.25 (c 0.40 CH2Cl2); HPLC (IE column, i-propanol/n-hexane = 30/70, flow

rate 1.0 mL/min, l = 254 nm), major product: t1 = 12.87 min (major), t2 = 16.93 min (minor), ee = 94%; minor product: t1 = 9.29 min (major), t2 =

10.97 min (minor), ee = 94%; 1H NMR (400 MHz, CDCl3) d 8.00–7.56 (m, 3H), 7.52–6.85 (m, 9H), 6.15–5.89 (m, 1H), 5.49–4.64 (m, 3H), 4.53–3.04

(m, 6H), 2.32–2.23 (m, 3H), 1.55–1.29 (m, 12H), 0.72–0.56 (m, 3H). 13C NMR (100 MHz, CDCl3) d 164.5, 164.4, 164.2, 154.6, 136.9, 135.3, 134.9,

133.4, 132.8, 131.9, 130.2, 130.0, 129.6, 129.1, 128.8, 128.7, 128.9, 128.6, 128.5, 128.5, 128.4, 128.0, 126.8, 126.6, 126.1, 125.4, 125.1, 124.6, 115.7,

110.6, 81.4, 68.7, 60.4, 60.1, 51.0, 27.8, 14.3, 13.3, 10.7. HRMS (ESI) m/z calcd for C37H40N2O8Na+ [M + Na]+ = 633.2677, found = 633.2672.

(R,S)-Diethyl 1-((((9H-fluoren-9-yl)methoxy)carbonyl)(2-(tert-butoxycarbonyl)allyl)amino)-2-methyl-5-(naphthalen-1-yl)-1H-pyrrole-
3,4-dicarboxylate: 3h

A colorless oil; 69.2 mg; isolated yield = 95%; dr = 4.5:1. [a]31.8D = +30.71 (c 0.28, CH2Cl2); HPLC (IE column, i-propanol/n-hexane = 20/80, flow

rate 1.0mL/min, l= 254 nm), major product: t1 = 23.83min (major), t2 = 31.33min (minor), ee= 92%;minor product: t1 = 18.75min (major), t2 =

22.28 min (minor), ee = 95%; 1H NMR (400 MHz, CDCl3) d 7.93–7.62 (m, 5H), 7.58–7.26 (m, 9H), 7.22–6.55 (m, 1H), 6.20–5.73 (m, 1H), 5.53–4.84

(m, 1H), 4.78–4.06 (m, 6H), 3.97–3.01 (m, 3H), 2.33–1.91 (m, 3H), 1.50–1.29 (m, 12H), 0.77–0.54 (m, 3H). 13CNMR (100MHz, CDCl3) d 164.4, 164.2,

164.2, 154.4, 143.2, 143.0, 141.6, 141.4, 136.8, 134.7, 133.3, 132.8, 131.3, 130.2, 129.5, 128.5, 128.4, 128.1, 127.9, 127.2, 127.1, 126.8, 126.6, 126.0,

125.2, 125.2, 124.5, 124.2, 120.5, 120.3, 115.8, 110.2, 81.4, 68.8, 60.2, 60.0, 50.6, 46.7, 27.9, 14.4, 13.4, 10.3. HRMS (ESI) m/z calcd for

C44H44N2O8Na+ [M + Na]+ = 751.2990, found = 751.2982.

(R,S)-Diethyl 1-((tert-butoxycarbonyl)(2-(tert-butoxycarbonyl)allyl)amino)-2-methyl-5-(naphthalen-1-yl)-1H-pyrrole-3,4-
dicarboxylate: 3i

A colorless oil; 57.6mg; isolated yield = 95%; dr = 2.6:1. [a]31.6D =�16.18 (c 0.34, CH2Cl2); HPLC (IE column, i-propanol/n-hexane = 20/80, flow

rate 1.0mL/min, l= 254 nm), major product: t1 = 20.67min (major), t2 = 22.65min (minor), ee= 96%;minor product: t1 = 12.94min (major), t2 =

13.56 min (minor), ee = 96%; 1H NMR (400 MHz, CDCl3) d 7.99–7.66 (m, 3H), 7.61–7.34 (m, 4H), 6.27–5.72 (m, 1H), 5.42–4.94 (m, 1H), 4.48–3.10

(m, 6H), 2.32 (s, 3H), 1.55–1.43 (m, 9H), 1.42–1.29 (m, 12H), 0.67–0.57 (m, 3H). 13C NMR (100 MHz, CDCl3) d 164.6, 164.5, 164.3, 153.3, 137.2,

136.8, 135.5, 135.1, 133.5, 133.4, 133.0, 132.0, 129.8, 129.7, 129.6, 128.9, 128.5, 128.4, 127.4, 126.6, 126.1, 126.0, 125.5, 125.0, 124.9, 115.4,

110.2, 82.8, 81.3, 60.3, 60.1, 50.3, 28.2, 27.9, 14.3, 13.3, 10.7. HRMS (ESI) m/z calcd for C34H42N2O8Na+ [M+Na]+ = 629.2833, found = 629.2837.

(R,S)-3-ethyl 4-methyl 1-((2-(tert-butoxycarbonyl)allyl)(ethoxycarbonyl)amino)-5-methyl-2-(naphthalen-1-yl)-1H-pyrrole-3,4-
dicarboxylate: 3j

A colorless oil; 53.6 mg; isolated yield = 95%; dr = 2.7:1. [a]30.8D =�32.00 (c 0.50 CH2Cl2); HPLC (IE column, i-propanol/n-hexane = 30/70, flow

rate 1.0mL/min, l= 254 nm), major product: t1 = 15.13min (major), t2 = 26.82min (minor), ee= 96%;minor product: t1 = 11.29min (major), t2 =

13.48 min (minor), ee = 95%; 1H NMR (400 MHz, CDCl3) d 7.99–7.60 (m, 3H), 7.57–7.32 (m, 4H), 6.16–5.90 (m, 1H), 5.43–5.09 (m, 1H), 4.60–4.00

(m, 3H), 4.00–3.11 (m, 6H), 2.38–2.20 (m, 3H), 1.45–1.41 (m, 9H), 1.35–1.19 (m, 3H), 0.72–0.57 (m, 3H). 13C NMR (100 MHz, CDCl3) d 165.1, 164.5,

164.2, 154.7, 137.1, 135.5, 134.9, 133.5, 132.9, 132.0, 130.2, 130.1, 129.8, 128.5, 128.3, 127.1, 126.7, 126.2, 125.4, 125.1, 115.5, 110.2, 81.4, 63.3,

60.2, 51.5, 50.8, 27.9, 14.7, 13.3, 10.7. HRMS (ESI) m/z calcd for C31H36N2O8Na+ [M + Na]+ = 587.2364, found = 587.2363.

(R,S)-3-benzyl 4-ethyl 1-((2-(tert-butoxycarbonyl)allyl)(ethoxycarbonyl)amino)-2-methyl-5-(naphthalen-1-yl)-1H-pyrrole-3,4-
dicarboxylate: 3k

A colorless oil; 56.3mg; isolated yield = 88%; dr = 2.8:1. [a]31.9D = +17.00 (c 0.50, CH2Cl2); HPLC (IC column, i-propanol/n-hexane = 30/70, flow

rate 1.0 mL/min, l = 254 nm), major product: t1 = 10.21 min (major), t2 = 34.60 min (minor), ee = 98%; minor product: t1 = 8.99 min (major), t2 =

14.28 min (minor), ee = 96%; 1H NMR (400 MHz, CDCl3) d 7.98–7.61 (m, 3H), 7.59–7.27 (m, 9H), 6.15–5.90 (m, 1H), 5.47–5.05 (m, 3H), 4.50–3.13
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(m, 6H), 2.32–2.31 (m, 3H), 1.44–1.37 (m, 9H), 1.35–1.18 (m, 3H), 0.63–0.49 (m, 3H). 13CNMR (100MHz, CDCl3) d 164.5, 164.4, 164.3, 154.7, 137.5,

136.2, 135.5, 134.9, 133.5, 132.8, 131.6, 130.2, 130.2, 129.8, 128.4, 128.4, 128.0, 126.9, 126.7, 126.2, 125.4, 125.1, 116.0, 110.0, 81.4, 66.4, 63.3,

60.2, 50.9, 27.9, 14.8, 13.2, 10.8. HRMS (ESI) m/z calcd for C37H40N2O8Na+ [M + Na]+ = 663.2677, found = 663.2672.

(R,S)-3-allyl 4-ethyl 1-((2-(tert-butoxycarbonyl)allyl)(ethoxycarbonyl)amino)-2-methyl-5-(naphthalen-1-yl)-1H-pyrrole-3,4-
dicarboxylate: 3l

A colorless oil; 55.5 mg; isolated yield = 94%; dr = 4.0:1. [a]30.8D = +25.88 (c 0.34 CH2Cl2); HPLC (IE column, i-propanol/n-hexane = 20/80, flow

rate 1.0mL/min, l= 254 nm), major product: t1 = 23.83min (major), t2 = 34.54min (minor), ee= 97%;minor product: t1 = 16.41min (major), t2 =

17.77 min (minor), ee = 96%; 1H NMR (400 MHz, CDCl3) d 7.99–7.61 (m, 3H), 7.59–7.30 (m, 4H), 6.23–5.73 (m, 2H), 5.53–4.98 (m, 3H), 4.79–4.78

(m, 2H), 4.48–3.16 (m, 6H), 2.33–2.32 (m, 3H), 1.45–1.41 (m, 9H), 1.36–1.19 (m, 3H), 0.73–0.58 (m, 3H). 13C NMR (100 MHz, CDCl3) d 164.5, 164.3,

164.2, 154.7, 137.3, 135.5, 134.9, 133.5, 132.9, 132.5, 131.8, 130.2, 130.1, 129.8, 128.5, 128.3, 127.0, 126.7, 126.2, 125.4, 125.1, 118.0, 115.8, 110.0,

81.4, 65.2, 63.3, 60.3, 50.8, 27.9, 14.8, 13.3, 10.8. HRMS (ESI) m/z calcd for C33H38N2O8Na+ [M + Na]+ = 613.2520, found = 613.2522.

(R,S)-3-(tert-butyl) 4-ethyl 1-((2-(tert-butoxycarbonyl)allyl)(ethoxycarbonyl)amino)-2-methyl-5-(naphthalen-1-yl)-1H-pyrrole-3,4-
dicarboxylate: 3m

A colorless oil; 54.5 mg; isolated yield = 90%; dr = 2.3:1. [a]31.6D =�46.67 (c 0.48 CH2Cl2; HPLC (IE column, i-propanol/n-hexane = 20/80, flow

rate 1.0mL/min, l= 254 nm), major product: t1 = 11.77min (major), t2 = 28.54min (minor), ee= 95%;minor product: t1 = 10.11min (major), t2 =

10.86 min (minor), ee = 91%; 1H NMR (400 MHz, CDCl3) d 7.99–7.62 (m, 3H), 7.62–7.30 (m, 4H), 6.16–5.89 (m, 1H), 5.41–5.08 (m, 1H), 4.46–3.83

(m, 4H), 3.81–3.25 (m, 2H), 2.31–2.30 (m, 3H), 1.60–1.54 (m, 9H), 1.45–1.41 (m, 9H), 1.37–1.19 (m, 3H), 0.72–0.47 (m, 3H). 13C NMR (100 MHz,

CDCl3) d 164.5, 164.5, 163.7, 154.8, 136.5, 135.6, 134.9, 133.5, 133.4, 132.9, 131.2, 130.1, 129.9, 129.6, 128.4, 128.3, 127.2, 126.6, 126.1,

126.0, 125.9, 125.5, 125.1, 124.6, 116.0, 111.7, 81.4, 80.7, 63.2, 60.1, 50.9, 28.2, 27.9, 14.8, 13.3, 10.6. HRMS (ESI) m/z calcd for C34H42N2O8Na+

[M + Na]+ = 629.2833, found = 629.2835.

(R,S)-3-ethyl 4-methyl 1-((2-(tert-butoxycarbonyl)allyl)(ethoxycarbonyl)amino)-2-methyl-5-(naphthalen-1-yl)-1H-pyrrole-3,4-
dicarboxylate: 3n

A colorless oil; 54.1mg; isolated yield = 96%; dr = 2.6:1. [a]31.7D =�33.78 (c 0.45, CH2Cl2); HPLC (IE column, i-propanol/n-hexane = 30/70, flow

rate 1.0mL/min, l= 254 nm), major product: t1 = 15.78min (major), t2 = 28.43min (minor), ee= 99%;minor product: t1 = 11.03min (major), t2 =

18.67 min (minor), ee = 90%; 1H NMR (400 MHz, CDCl3) d 7.95–7.61 (m, 3H), 7.59–7.32 (m, 4H), 6.14–5.89 (m, 1H), 5.40–5.06 (m, 1H), 4.47–4.24

(m, 4H), 4.23–3.18 (m, 5H), 2.33–2.31 (m, 3H), 1.44–1.41 (m, 9H), 1.38–1.19 (m, 6H). 13CNMR (100MHz, CDCl3) d 165.1, 164.5, 164.4, 154.7, 137.1,

135.5, 134.9, 133.5, 133.5, 132.7, 131.6, 130.1, 129.9, 128.5, 128.4, 126.7, 126.2, 125.2, 125.1, 115.5, 110.2, 81.4, 63.3, 63.0, 60.3, 51.6, 27.9, 14.7,

14.3, 10.7. HRMS (ESI) m/z calcd for C31H36N2O8Na+ [M + Na]+ = 587.2364, found = 587.2368.

(R,S)-3-ethyl 4-propyl 1-((2-(tert-butoxycarbonyl)allyl)(ethoxycarbonyl)amino)-2-methyl-5-(naphthalen-1-yl)-1H-pyrrole-3,4-
dicarboxylate: 3o

A colorless oil; 57.2mg; isolated yield = 97%; dr = 2.6:1. [a]31.7D =�38.37 (c 0.43, CH2Cl2); HPLC (IE column, i-propanol/n-hexane = 30/70, flow

rate 1.0mL/min, l= 254 nm), major product: t1 = 13.06min (major), t2 = 18.69min (minor), ee= 95%;minor product: t1 = 10.11min (major), t2 =

10.74 min (minor), ee = 96%; 1H NMR (400 MHz, CDCl3) d 7.95–7.63 (m, 3H), 7.58–7.33 (m, 4H), 6.24–5.84 (m, 1H), 5.42–5.07 (m, 1H), 4.46–4.25

(m, 4H), 4.24–3.20 (m, 4H), 2.32–2.31 (m, 3H), 1.45–1.41 (m, 9H), 1.37–1.32 (m, 5H), 1.23–1.19 (m, 3H), 0.45–0.32 (m, 3H). 13C NMR (100 MHz,

CDCl3) d 164.6, 164.5, 164.4, 154.7, 136.8, 135.6, 134.9, 133.5, 132.9, 131.6, 130.1, 130.0, 129.8, 128.4, 128.3, 127.1, 126.7, 126.2, 125.4,

125.1, 115.7, 110.6, 81.4, 66.0, 63.2, 60.4, 50.9, 27.9, 21.3, 14.8, 14.3, 10.7, 10.0. HRMS (ESI) m/z calcd for C33H40N2O8Na+ [M + Na]+ =

615.2677, found = 615.2684.

(R,S)-3-ethyl 4-isopropyl 1-((2-(tert-butoxycarbonyl)allyl)(ethoxycarbonyl)amino)-2-methyl-5-(naphthalen-1-yl)-1H-pyrrole-3,4-
dicarboxylate: 3p

A colorless oil; 54.5mg; isolated yield = 92%; dr = 2.8:1. [a]31.6D =�35.31 (c 0.32, CH2Cl2); HPLC (IC column, i-propanol/n-hexane = 20/80, flow

rate 1.0mL/min, l= 254 nm), major product: t1 = 14.22min (major), t2 = 20.54min (minor), ee= 97%;minor product: t1 = 11.03min (major), t2 =

18.67 min (minor), ee = 97%; 1H NMR (400 MHz, CDCl3) d 7.97–7.62 (m, 3H), 7.60–7.31 (m, 4H), 6.17–5.91 (m, 1H), 5.43–5.10 (m, 1H), 4.77–4.64

(m, 1H), 4.53–3.21 (m, 6H), 2.32–2.31 (m, 3H), 1.45–1.41 (m, 9H), 1.39–1.17 (m, 6H), 0.81–0.36 (m, 6H). 13C NMR (100 MHz, CDCl3) d 164.6, 164.5,

163.7, 154.7, 136.9, 135.6, 135.0, 133.5, 133.0, 131.6, 130.1, 129.9, 129.6, 128.8, 128.3, 127.3, 126.1, 125.6, 125.0, 116.1, 110.4, 81.4, 67.5, 63.2,

60.4, 50.9, 27.9, 21.3, 20.7, 14.8, 14.2, 10.7. HRMS (ESI) m/z calcd for C33H40N2O8Na+ [M + Na]+ = 615.2677, found = 615.2676.

(R,S)-Diethyl 1-((2-(tert-butoxycarbonyl)allyl)(ethoxycarbonyl)amino)-2-ethyl-5-(naphthalen-1-yl)-1H-pyrrole-3,4-dicarboxylate: 3q

A colorless oil; 56.8mg; isolated yield = 96%; dr = 2.7:1. [a]31.2D =�17.81 (c 0.32, CH2Cl2); HPLC (IE column, i-propanol/n-hexane = 30/70, flow

rate 1.0 mL/min, l = 254 nm), major product: t1 = 11.14 min (major), t2 = 14.10 min (minor), ee = 97%; minor product: t1 = 9.09 min (major), t2 =

9.54min (minor), ee= 93%; 1HNMR (400MHz, CDCl3) d 8.00–7.64 (m, 3H), 7.63–7.30 (m, 4H), 6.13–5.84 (m, 1H), 5.33–5.00 (m, 1H), 4.55–4.26 (m,

4H), 4.22–3.26 (m, 4H), 2.93–2.45 (m, 2H), 1.49–1.38 (m, 9H), 1.39–1.14 (m, 9H), 0.69–0.58 (m, 3H). 13C NMR (100 MHz, CDCl3) d 164.4, 164.4,
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164.3, 155.1, 142.0, 134.9, 133.5, 133.1, 132.6, 131.5, 130.1, 129.8, 129.5, 129.2, 128.4, 128.4, 127.2, 126.7, 126.2, 125.8, 125.4, 125.0, 116.0, 110.2,

81.3, 63.3, 60.4, 60.2, 51.4, 27.9, 18.3, 14.6, 14.2, 13.4, 13.3. HRMS (ESI) m/z calcd for C33H40N2O8Na+ [M + Na]+ = 615.2677, found = 615.2680.

(R,S)-3-ethyl 4-methyl 1-((2-(tert-butoxycarbonyl)allyl)(ethoxycarbonyl)amino)-2-(naphthalen-1-yl)-5-propyl-1H-pyrrole-3,4-
dicarboxylate: 3r

A colorless oil; 55.1 mg; isolated yield = 93%; dr = 4:1. [a]31.1D =�49.00 (c 0.30, CH2Cl2); HPLC (IC column, i-propanol/n-hexane = 10/90, flow

rate 1.0mL/min, l= 254 nm), major product: t1 = 21.99min (major), t2 = 41.20min (minor), ee= 92%;minor product: t1 = 19.64min (minor), t2 =

24.37 min (major), ee = 92%; 1H NMR (400 MHz, CDCl3) d7.92–7.83 (m, 2H), 7.75–7.66 (m, 1H), 7.65–7.33 (m, 4H), 6.26–5.72 (m, 1H), 5.28–4.97

(m, 1H), 4.59–4.08 (m, 3H), 3.96–3.75 (m, 5H), 3.72–3.33 (m, 1H), 2.92–2.30 (m, 2H), 1.66–1.59 (m, 2H), 1.47–1.40 (m, 9H), 1.37–1.12 (m, 3H), 0.99–

0.95 (m, 3H), 0.67–0.57 (m, 3H). 13C NMR (100 MHz, CDCl3) d 165.1, 164.4, 164.3, 155.1, 140.7, 134.8, 133.4, 133.1, 132.0, 130.0, 129.8, 129.1,

128.9, 128.4, 128.3, 127.2, 126.8, 126.2, 125.3, 125.0, 115.6, 110.4, 81.3, 63.3, 60.2, 51.6, 27.9, 26.9, 22.4, 14.6, 14.4, 13.3. HRMS (ESI) m/z calcd for

C33H40N2O8Na+ [M + Na]+ = 615.2677, found = 615.2685.

(R,S)-4-ethyl 3-methyl 1-((2-(tert-butoxycarbonyl)allyl)(ethoxycarbonyl)amino)-2-butyl-5-(naphthalen-1-yl)-1H-pyrrole-3,4-
dicarboxylate: 3s

A colorless oil; 52.1mg; isolated yield = 86%; dr = 2.8:1. [a]31.7D =�27.33 (c 0.30, CH2Cl2); HPLC (IC column, i-propanol/n-hexane = 10/90, flow

rate 1.0mL/min, l= 254 nm), major product: t1 = 20.38min (major), t2 = 35.83min (minor), ee= 97%;minor product: t1 = 17.76min (minor), t2 =

22.78 min (major), ee = 98%; 1H NMR (400 MHz, CDCl3) d 7.99–7.64 (m, 3H), 7.60–7.31 (m, 4H), 6.12–5.80 (m, 1H), 5.28–4.94 (m, 1H), 4.50–3.96

(m, 3H), 3.93–3.74 (m, 5H), 3.67–3.33 (m, 1H), 3.03–2.34 (m, 2H), 1.67–1.53 (m, 2H), 1.49–1.33 (m, 12H), 1.17–0.81 (m, 5H), 0.67–0.57 (m, 3H). 13C

NMR (100MHz, CDCl3) d 165.1, 164.4, 164.3, 155.1, 140.9, 135.4, 134.8, 133.4, 133.2, 133.0, 132.0, 130.1, 129.8, 129.0, 128.4, 128.4, 127.2, 126.7,

126.1, 125.3, 125.0, 115.7, 110.3, 81.3, 63.3, 60.2, 51.7, 51.5, 31.1, 27.9, 24.8, 22.9, 14.6, 13.8, 13.3. HRMS (ESI) m/z calcd for C34H42N2O8Na+ [M+

Na]+ = 629.2833, found = 629.2841.

(R,S)-4-ethyl 3-methyl 2-benzyl-1-((2-(tert-butoxycarbonyl)allyl)(ethoxycarbonyl)amino)-5-(naphthalen-1-yl)-1H-pyrrole-3,4-
dicarboxylate: 3t

A colorless oil; 61.4 mg; isolated yield = 96%; dr = 4:1. [a]31.6D =�24.32 (c 0.37, CH2Cl2); HPLC (IE column, i-propanol/n-hexane = 30/70, flow

rate 1.0mL/min, l= 254 nm), major product: t1 = 11.22min (major), t2 = 17.52min (minor), ee= 95%;minor product: t1 = 10.38min (major), t2 =

12.28 min (minor), ee = 93%; 1H NMR (400 MHz, CDCl3) d 7.94–7.62 (m, 3H), 7.59–7.32 (m, 4H), 7.31–7.13 (m, 5H), 6.15–5.56 (m, 1H), 5.36–4.58

(m, 1H), 4.47–4.11 (m, 2H), 4.06–3.65 (m, 7H), 3.57–3.23 (m, 2H), 1.48–1.31 (m, 9H), 1.05–0.77 (m, 3H), 0.68–0.49 (m, 3H). 13C NMR (100 MHz,

CDCl3) d 165.1, 164.5, 163.9, 154.7, 137.7, 137.4, 135.4, 134.8, 133.4, 133.2, 130.1, 129.9, 129.5, 128.4, 128.4, 128.3, 127.1, 126.8, 126.4,

126.2, 125.3, 124.9, 115.3, 112.1, 81.4, 63.0, 60.2, 51.7, 51.4, 30.6, 27.9, 14.2, 13.3. HRMS (ESI) m/z calcd for C37H40N2O8Na+ [M + Na]+ =

663.2677, found = 663.2675.

(R,S)-Diethyl 1-((2-(tert-butoxycarbonyl)allyl)(ethoxycarbonyl)amino)-2-(4-fluoronaphthalen-1-yl)-5-methyl-1H-pyrrole-3,4-
dicarboxylate: 3u

A colorless oil; 48.9mg; isolated yield = 82%; dr = 2.3:1. [a]31.2D =�32.67 (c 0.30, CH2Cl2); HPLC (IE column, i-propanol/n-hexane = 30/70, flow

rate 1.0 mL/min, l = 254 nm), major product: t1 = 11.51 min (major), t2 = 19.94 min (minor), ee = 97%; minor product: t1 = 9.02 min (major), t2 =

9.95min (minor), ee= 95%; 1HNMR (400MHz, CDCl3) d 8.16–8.11 (m, 1H), 7.88–7.61 (m, 1H), 7.60–7.28 (m, 3H), 7.19–7.14 (m, 1H), 6.18–5.89 (m,

1H), 5.45–5.08 (m, 1H), 4.43–4.22 (m, 4H), 4.00–3.31 (m, 4H), 2.31 (s, 3H), 1.45–1.41 (m, 9H), 1.38–1.23 (m, 6H), 0.79–0.65 (m, 3H). 13C NMR (100

MHz, CDCl3) d 164.5, 164.4, 164.4, 164.3, 160.7, 158.2 (J = 250 Hz), 154.7, 136.9, 135.6, 135.0, 134.5, 134.4, 131.0, 129.9, 128.5, 128.4, 127.6,

126.6, 125.6, 125.5, 123.1, 121.0, 120.9, 120.7 (J = 25 Hz), 115.9, 110.6, 109.1, 108.9, 81.5, 63.3, 60.4, 60.3, 51.0, 27.9, 14.8, 14.3, 13.4, 10.7.
19F NMR (376MHz, CDCl3) d�119.93,�119.97,�120.39. HRMS (ESI) m/z calcd for C32H37N2O8FNa+ [M +Na]+ = 619.2426, found = 619.2430.

(R,S)-Diethyl 2-(4-bromonaphthalen-1-yl)-1-((2-(tert-butoxycarbonyl)allyl)(ethoxycarbonyl)amino)-5-methyl-1H-pyrrole-3,4-
dicarboxylate: 3v

A colorless oil; 60.4mg; isolated yield = 92%; dr = 2.3:1. [a]31.7D =�9.72 (c 0.36, CH2Cl2); HPLC (IC column, i-propanol/n-hexane= 20/80, flow rate

1.0 mL/min, l = 254 nm), major product: t1 = 10.90 min (major), t2 = 28.45 min (minor), ee = 96%; minor product: t1 = 11.79 min (major), t2 =

17.65 min (minor), ee = 95%; 1H NMR (400 MHz, CDCl3) d 8.31–8.26 (m, 1H), 7.84–7.80 (m, 2H), 7.70–7.15 (m, 3H), 6.61–5.89 (m, 1H), 5.44–5.09

(m, 1H), 4.48–4.25 (m, 4H), 4.20–3.15 (m, 4H), 2.31 (s, 3H), 1.45–1.41 (m, 9H), 1.37–1.29 (m, 6H), 0.86–0.53 (m, 3H). 13C NMR (100 MHz, CDCl3)

d 164.4, 164.3, 164.1, 154.6, 137.0, 135.6, 135.0, 134.0, 132.0, 130.8, 130.3, 130.1, 129.3, 128.9, 128.5, 127.7, 127.5, 127.2, 126.1, 124.9, 115.9,

110.7, 81.5, 63.4, 60.3, 60.3, 51.0, 27.9, 14.8, 14.3, 13.4, 10.7. HRMS (ESI) m/z calcd for C32H37N2O8BrNa+ [M+Na]+ = 679.1625, found= 679.1628.

(R,S)-Diethyl 1-((2-(tert-butoxycarbonyl)allyl)(ethoxycarbonyl)amino)-2-methyl-5-(4-methylnaphthalen-1-yl)-1H-pyrrole-3,4-
dicarboxylate: 3w

A colorless oil; 57.4 mg; isolated yield = 97%; dr = 2.3:1. [a]31.3D = �39.50 (c 0.40, CH2Cl2); HPLC (ID column, i-propanol/n-hexane = 20/80,

flow rate 1.0mL/min, l= 254 nm),major product: t1 = 15.40min (major), t2 = 26.04min (minor), ee= 94%;minor product: t1 = 12.25min (major),
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t2 = 31.14 min (minor), ee = 96%; 1H NMR (400 MHz, CDCl3) d 8.04–7.98 (m, 1H), 7.86–7.59 (m, 1H), 7.57–7.21 (m, 4H), 6.16–5.92 (m, 1H), 5.44–

5.12 (m, 1H), 4.57–4.22 (m, 4H), 4.20–3.05 (m, 4H), 2.73 (s, 3H), 2.46–2.16 (m, 3H), 1.45–1.42 (m, 9H), 1.38–1.19 (m, 6H), 0.79–0.62 (m, 3H). 13C

NMR (100MHz, CDCl3) d 164.6, 164.5, 164.5, 154.7, 136.9, 136.3, 135.6, 135.0, 132.8, 132.7, 132.0, 130.3, 129.8, 128.1, 126.2, 126.0, 126.0, 125.5,

125.2, 124.6, 124.2, 115.7, 110.2, 81.4, 63.2, 60.3, 60.2, 50.8, 27.9, 19.7, 14.8, 14.3, 13.4, 10.7. dr = 2.3:1. HRMS (ESI) m/z calcd for

C33H40N2O8Na+ [M + Na]+ = 615.2677, found = 615.2677.

(R,S)-Diethyl 1-((2-(tert-butoxycarbonyl)allyl)(ethoxycarbonyl)amino)-2-(4-methoxynaphthalen-1-yl)-5-methyl-1H-pyrrole-3,4-
dicarboxylate: 3x

A colorless oil; 58.4mg; isolated yield = 96%; dr = 2.7:1. [a]31.6D =�22.08 (c 0.48, CH2Cl2); HPLC (IC column, i-propanol/n-hexane = 30/70, flow

rate 1.0mL/min, l= 254 nm), major product: t1 = 12.16min (major), t2 = 24.36min (minor), ee= 97%;minor product: t1 = 15.18min (major), t2 =

17.40 min (minor), ee = 95%; 1H NMR (400 MHz, CDCl3) d 8.39–8.06 (m, 1H), 7.83–7.56 (m, 1H), 7.51–7.19 (m, 3H), 6.83–6.81 (m, 1H), 6.18–5.93

(m, 1H), 5.47–5.14 (m, 1H), 4.55–4.23 (m, 4H), 4.04 (s, 3H), 3.98–3.04 (m, 4H), 2.31–2.30 (m, 3H), 1.45–1.42 (m, 9H), 1.37–1.29 (m, 6H), 0.88–0.55

(m, 3H). 13C NMR (100 MHz, CDCl3) d 164.6, 164.5, 164.5, 156.4, 154.8, 136.8, 135.6, 135.0, 133.8, 132.7, 131.8, 130.5, 130.4, 128.8, 127.1, 126.3,

125.8, 125.5, 125.4, 125.3, 125.2, 122.4, 122.0, 118.8, 115.8, 110.1, 103.2, 81.4, 63.2, 60.3, 60.2, 55.6, 50.8, 27.9, 14.8, 14.3, 13.5, 10.7. HRMS (ESI)

m/z calcd for C33H40N2O9Na+ [M + Na]+ = 631.2626, found = 631.2629.

(R,S)-Diethyl 2-(5-bromonaphthalen-1-yl)-1-((2-(tert-butoxycarbonyl)allyl)(ethoxycarbonyl)amino)-5-methyl-1H-pyrrole-3,4-
dicarboxylate: 3y

A colorless oil; 59.0 mg; isolated yield = 90%; dr = 2.3:1. [a]31.3D = �21.88 (c 0.48, CH2Cl2); HPLC (IC column, i-propanol/n-hexane = 10/90,

flow rate 1.0 mL/min, l = 254 nm), major product: t1 = 30.69 min (major), t2 = 76.70 min (minor), ee = 93%; minor product: t1 = 28.75 min

(major), t2 = 76.70 min (minor), ee = 87%; 1H NMR (400 MHz, CDCl3) d 8.37–8.35 (m, 1H), 7.85–7.39 (m, 4H), 7.34–7.16 (m, 1H), 6.30–5.72

(m, 1H), 5.44–5.05 (m, 1H), 4.53–4.23 (m, 4H), 4.20–3.09 (m, 4H), 2.31 (s, 3H), 1.45–1.41 (m, 9H), 1.37–1.26 (m, 6H), 0.78–0.65 (m, 3H). 13C NMR

(100 MHz, CDCl3) d 164.4, 164.3, 164.2, 154.6, 136.9, 135.0, 134.2, 132.0, 131.2, 131.1, 130.4, 129.9, 129.3, 129.0, 127.7, 126.5, 125.6, 123.3,

115.8, 110.6, 81.5, 63.4, 60.4, 60.3, 51.0, 27.9, 14.8, 14.3, 13.4, 10.7. HRMS (ESI) m/z calcd for C32H37N2O8BrNa+ [M + Na]+ = 679.1625,

found = 679.1622.

(R,S)-Diethyl 1-((2-(tert-butoxycarbonyl)allyl)(ethoxycarbonyl)amino)-2-(6-methoxynaphthalen-1-yl)-5-methyl-1H-pyrrole-3,4-
dicarboxylate: 3z

A colorless oil; 58.4 mg; isolated yield = 96%; dr = 2.6:1. [a]31.4D =�7.81 (c 0.32, CH2Cl2); HPLC (IC column, i-propanol/n-hexane = 20/80, flow

rate 1.0mL/min, l= 254 nm), major product: t1 = 23.66min (major), t2 = 57.86min (minor), ee= 94%;minor product: t1 = 20.25min (major), t2 =

30.16 min (minor), ee = 96%; 1H NMR (400 MHz, CDCl3) d7.81–7.79 (m, 1H), 7.73–7.49 (m, 1H), 7.45–7.19 (m, 2H), 7.16–7.00 (m, 2H) 6.16–5.90

(m, 1H), 5.42–5.07 (m, 1H), 4.51–4.22 (m, 4H), 4.18–3.16 (m, 7H), 2.40–2.12 (m, 3H), 1.45–1.41 (m, 9H), 1.37–1.28 (m, 6H), 0.77–0.66 (m, 3H). 13C

NMR (100MHz, CDCl3) d 164.5, 164.5, 164.4, 157.7, 154.8, 136.9, 135.5, 134.9, 134.8, 131.8, 130.1, 128.6, 128.3, 127.8, 127.0, 126.9, 126.0, 125.8,

125.3, 119.5, 118.8, 115.6, 110.3, 106.1, 81.4, 63.2, 60.4, 60.2, 55.3, 50.9, 27.9, 14.8, 14.3, 13.4, 10.7. HRMS (ESI) m/z calcd for C33H40N2O9Na+

[M + Na]+ = 631.2626, found = 631.2635.

(R,S)-Diethyl 1-((2-(tert-butoxycarbonyl)allyl)(ethoxycarbonyl)amino)-2-methyl-5-(7-methylnaphthalen-1-yl)-1H-pyrrole-3,4-
dicarboxylate: 3a0

A colorless oil; 54.5 mg; isolated yield = 92%; dr = 2.6:1. [a]31.3D = +63.75 (c 0.40, CH2Cl2); HPLC (IF column, i-propanol/n-hexane = 10/90, flow

rate 1.0mL/min, l= 254 nm), major product: t1 = 34.27min (minor), t2 = 49.31min (major), ee= 93%;minor product: t1 = 24.28min (major), t2 =

43.71 min (minor), ee = 93%; 1H NMR (400 MHz, CDCl3) d 7.93–7.54 (m, 4H), 7.46–7.32 (m, 2H), 6.07–6.06 (m, 1H), 5.36–5.27 (m, 1H), 4.59–4.24

(m, 5H), 4.16–4.06 (m, 2H), 3.69–3.35 (m, 1H), 2.53–2.52 (m, 3H), 2.32–2.30 (m, 3H), 1.40 (s, 9H), 1.39–1.29 (m, 6H), 1.17–0.98 (m, 3H). 13C NMR

(100MHz, CDCl3) d 165.4, 164.5, 164.3, 154.9, 137.2, 136.9, 136.8, 136.3, 135.0, 133.4, 132.7, 131.3, 131.2, 129.2, 129.1, 128.8, 128.1, 127.6, 126.8,

126.7, 125.6, 114.9, 110.0, 81.5, 63.3, 60.8, 60.2, 50.3, 27.8, 21.8, 14.9, 14.3, 14.0, 10.7. HRMS (ESI) m/z calcd for C33H40N2O8Na+ [M + Na]+ =

615.2677, found = 615.2672.

(R,S)-Diethyl 1-((2-(tert-butoxycarbonyl)allyl)(ethoxycarbonyl)amino)-2-(7-chloronaphthalen-1-yl)-5-methyl-1H-pyrrole-3,4-
dicarboxylate: 3b0

A colorless oil; 54.5mg; isolated yield = 89%; dr = 2.3:1. [a]31.0D =�57.71 (c 0.35, CH2Cl2); HPLC (IC column, i-propanol/n-hexane = 30/70, flow

rate 1.0 mL/min, l = 254 nm), major product: t1 = 10.80 min (major), t2 = 25.94 min (minor), ee = 90%; minor product: t1 = 8.47 min (major), t2 =

14.80min (minor), ee= 92%; 1HNMR (400MHz, CDCl3) d7.90–7.88 (m, 1H), 7.85–7.62 (m, 2H), 7.63–7.34 (m, 3H), 6.19–5.93 (m, 1H), 5.42–5.09 (m,

1H), 4.48–4.26 (m, 4H), 4.22–3.11 (m, 4H), 2.33–2.31 (m, 3H), 1.45–1.42 (m, 9H), 1.40–1.24 (m, 6H), 0.79–0.74 (m, 3H). 13C NMR (100MHz, CDCl3)

d 164.7, 164.4, 164.4, 154.7, 137.1, 135.5, 134.9, 133.6, 132.9, 132.3, 131.7, 131.3, 130.8, 130.4, 130.2, 130.1, 129.9, 129.8, 129.6, 129.5, 127.3,

127.2, 126.6, 125.4, 125.0, 124.4, 116.0, 110.5, 81.6, 63.3, 60.4, 60.3, 51.0, 27.9, 14.8, 14.3, 13.4, 10.7. HRMS (ESI) m/z calcd for C32H37N2O8ClNa+

[M + Na]+ = 635.2131, found = 635.2129.
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(R,S)-Diethyl 1-((2-(tert-butoxycarbonyl)allyl)(ethoxycarbonyl)amino)-2-(3,7-dimethylnaphthalen-1-yl)-5-methyl-1H-pyrrole-3,4-
dicarboxylate: 3c0

A colorless oil; 57.0mg; isolated yield = 94%; dr = 4.0:1. [a]31.0D =�72.25 (c 0.40, CH2Cl2); HPLC (IC column, i-propanol/n-hexane = 20/80, flow

rate 1.0mL/min, l= 254 nm), major product: t1 = 11.99min (major), t2 = 27.75min (minor), ee= 97%;minor product: t1 = 10.85min (major), t2 =

16.64 min (minor), ee = 92%; 1HNMR (400MHz, CDCl3) d 7.68–7.62 (m, 2H), 7.48 (s, 1H), 7.36–7.12 (m, 2H), 6.23–5.82 (m, 1H), 5.29–5.14 (m, 1H),

4.55–4.26 (m, 4H), 4.25–3.09 (m, 4H), 2.47–2.46 (m, 3H), 2.42–2.40 (m, 3H), 2.35–2.27 (m, 3H), 1.48–1.39 (m, 9H), 1.38–1.29 (m, 6H), 0.81–0.60

(m, 3H). 13C NMR (100 MHz, CDCl3) d 164.60, 164.5, 154.8, 137.3, 137.1, 135.5, 135.3, 135.1, 133.6, 133.6, 132.5, 132.1, 132.0, 131.8, 131.2,

130.9, 130.6, 130.3, 130.2, 129.7, 128.7, 128.6, 128.4, 127.7, 127.6, 127.3, 126.0, 124.0, 115.7, 110.1, 81.4, 63.2, 60.3, 60.2, 50.8, 27.9, 21.8,

21.5, 14.9, 14.3, 13.4, 10.7. HRMS (ESI) m/z calcd for C34H42N2O8Na+ [M + Na]+ = 629.2833, found = 629.2834.

(R,S)-Diethyl 2-(anthracen-1-yl)-1-((2-(tert-butoxycarbonyl)allyl)(ethoxycarbonyl)amino)-5-methyl-1H-pyrrole-3,4-dicarboxylate: 3d0

A colorless oil; 60.3mg; isolated yield = 96%; dr = 2.3:1. [a]31.3D =�86.22 (c 0.45, CH2Cl2); HPLC (IC column, i-propanol/n-hexane = 30/70, flow

rate 1.0mL/min, l= 254 nm), major product: t1 = 11.65min (major), t2 = 30.67min (minor), ee= 95%;minor product: t1 = 10.29min (major), t2 =

15.51 min (minor), ee = 94%; 1H NMR (400 MHz, CDCl3) d 8.58–8.16 (m, 2H), 8.16–7.80 (m, 3H), 7.65–7.34 (m, 4H), 6.16–5.85 (m, 1H), 5.41–5.07

(m, 1H), 4.50–4.24 (m, 4H), 4.24–3.09 (m, 4H), 2.37–2.36 (m, 3H), 1.46–1.44 (m, 3H), 1.42–1.11 (m, 12H), 0.79–0.42 (m, 3H). 13C NMR (100 MHz,

CDCl3) d 164.6, 164.5, 164.4, 154.8, 137.1, 135.0, 132.0, 131.7, 131.5, 130.9, 130.1, 130.0, 128.4, 128.2, 128.0, 127.2, 127.0, 125.9, 125.9, 125.7,

124.5, 124.1, 116.0, 110.4, 81.4, 63.3, 60.4, 60.2, 50.9, 27.8, 14.8, 14.3, 13.4, 10.8. HRMS (ESI) m/z calcd for C36H40N2O8Na+ [M + Na]+ =

651.2677, found = 651.2684.

General procedures for asymmetric acylation

Racemic axial chiral compound 1 (0.10 mmol), cinnamic anhydride 4a (0.15 mmol) were dissolved in CH2Cl2 (1 mL), and C9 (10 mol %) was

added. The reaction mixture was stirred for 12 h at 0�C. The solvent was removed in vacuo and the crude product was separated by flash

column chromatography on silica gel (petroleum ether/ethyl acetate = 4:1–2:1) to afford the product 5.

(S)-Diethyl 1-(N-(tert-butoxycarbonyl)cinnamamido)-2-methyl-5-(naphthalen-1-yl)-1H-pyrrole-3,4-dicarboxylate: 5a

A colorless oil; 56.6mg; isolated yield = 95%; dr = 1.3:1. [a]20.0D =�80.01 (c 0.55, CH2Cl2); HPLC (IC column, i-propanol/n-hexane = 30/70, flow

rate 1.0mL/min, l= 254 nm), major product: t1 = 31.00min (minor), t2 = 36.52min (major), ee= 90%;minor product: t1 = 10.87min (major), t2 =

22.25min (minor), ee= 90%; 1HNMR (400MHz, CDCl3) d 7.86–6.43 (m, 14H), 4.31–3.96 (m, 2H), 3.65–3.56 (m, 2H), 2.17–2.16 (m, 3H), 1.30 (s, 3H),

1.14 (t, J = 7.1 Hz, 3H), 0.96 (s, 6H), 0.42–0.33 (m, 3H). 13C NMR (100 MHz, CDCl3) d 165.8, 164.6, 164.6, 164.3, 150.0, 147.0, 136.1, 134.3, 133.3,

133.1, 132.9, 130.9, 129.6, 128.9, 128.8, 128.7, 128.6, 128.3, 128.0, 126.7, 126.5, 126.1, 125.9, 125.0, 117.9, 115.5, 111.1, 86.0, 60.4, 60.1, 27.4, 14.3,

13.3, 10.3. HRMS (ESI) m/z calcd for C35H37N2O7
+ [M + H]+ = 597.2595, found = 597.2587.

(S)-Diethyl 1-(N-(ethoxycarbonyl)cinnamamido)-2-methyl-5-(naphthalen-1-yl)-1H-pyrrole-3,4-dicarboxylate: 5b

A colorless oil; 52.3mg; isolated yield = 92%; dr = 2.3:1. [a]20.0D =�51.20 (c 0.50, CH2Cl2); HPLC (IC column, i-propanol/n-hexane = 30/70, flow

rate 1.0 mL/min, l= 254 nm), major product: t1 = 25.735min (minor), t2 = 28.659min (major), ee= 84%; minor product: t1 = 12.086min (major),

t2 = 17.613 min (minor), ee = 91%; 1H NMR (400 MHz, CDCl3) d 7.97–7.49 (m, 5H), 7.48–6.78 (m, 9H), 4.56–3.56 (m, 6H), 2.38–2.21 (m, 3H), 1.39–

1.35 (m, 4H), 1.04–1.00 (m, 2H), 0.66–0.58 (m, 3H). 13C NMR (100 MHz, CDCl3) d 165.3, 164.6, 164.3, 164.2, 151.7, 147.6, 136.0, 134.2, 133.4,

133.1, 132.9, 131.0, 129.7, 129.0, 128.6, 128.4, 128.1, 126.5, 126.1, 126.0, 125.0, 117.2, 115.7, 111.2, 64.5, 60.4, 60.1, 14.3, 13.7, 13.3, 10.3.

HRMS (ESI) m/z calcd for C33H33N2O7
+ [M + H]+ = 569.2282, found = 569.2277.

(S)-Diethyl 1-(N-((benzyloxy)carbonyl)cinnamamido)-2-methyl-5-(naphthalen-1-yl)-1H-pyrrole-3,4-dicarboxylate: 5c

A colorless oil; 59.2mg; isolated yield = 94%; dr = 1.7:1. [a]20.0D =�73.10 (c 0.55, CH2Cl2); HPLC (ID column, i-propanol/n-hexane= 30/70, flow

rate 1.0mL/min, l = 254 nm), major product: t1 = 15.874min (minor), t2 = 25.353min (major), ee= 68%;minor product: t1 = 19.745min (minor),

t2 = 69.702min (major), ee= 93%; 1HNMR (400MHz, CDCl3) d 8.07–7.51 (m, 4H), 7.50–6.71 (m, 15H), 5.36–4.61 (m, 2H), 4.50–4.20 (m, 2H), 4.08–

3.59 (m, 2H), 2.30–2.28 (m, 3H), 1.39–1.35 (m, 3H), 0.63–0.57 (m, 3H). 13CNMR (100MHz, CDCl3) d 165.2, 164.5, 164.2, 164.1, 151.6, 147.8, 136.0,

134.1, 133.9, 133.6, 133.4, 132.9, 131.1, 129.8, 129.1, 128.9, 128.9, 128.8, 128.6, 128.5, 128.0, 127.7, 126.5, 126.3, 126.1, 126.0, 124.9, 117.1, 115.7,

111.5, 69.5, 60.4, 60.1, 14.3, 13.3, 10.3. HRMS (ESI) m/z calcd for C38H35N2O7
+ [M + H]+ = 631.2439, found = 631.2440.

(S)-3-Benzyl 4-ethyl 1-(N-(ethoxycarbonyl)cinnamamido)-2-methyl-5-(naphthalen-1-yl)-1H-pyrrole-3,4-dicarboxylate: 5d

A colorless oil; 56.7mg; isolated yield = 90%; dr = 2.3:1. [a]20.0D =�54.00 (c 0.50, CH2Cl2); HPLC (IC column, i-propanol/n-hexane = 30/70, flow

rate 1.0 mL/min, l= 254 nm), major product: t1 = 26.903min (minor), t2 = 37.429min (major), ee= 95%; minor product: t1 = 13.964min (major),

t2 = 19.710 min (minor), ee = 84%; 1H NMR (400 MHz, CDCl3) d 7.93–6.85 (m, 19H), 5.35 (s, 2H), 4.55–3.56 (m, 4H), 2.38–2.37 (m, 3H), 1.37–0.99

(m, 3H), 0.57–0.59 (m, 3H). 13C NMR (100 MHz, CDCl3) d 165.3, 164.3, 164.3, 164.2, 151.7, 147.7, 136.5, 136.3, 134.2, 133.4, 133.1, 132.9, 131.1,

129.8, 129.0, 128.6, 128.5, 128.4, 128.0, 127.7, 126.5, 126.4, 126.1, 126.0, 125.0, 117.2, 115.9, 110.7, 66.4, 64.5, 60.1, 13.7, 13.3, 10.4. HRMS (ESI)

m/z calcd for C38H35N2O7
+ [M + H]+ = 631.2439, found = 631.2426.
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(S)-3-Ethyl 4-methyl 1-(N-(ethoxycarbonyl)cinnamamido)-2-methyl-5-(naphthalen-1-yl)-1H-pyrrole-3,4-dicarboxylate: 5e

A colorless oil; 54.3mg; isolated yield = 98%; dr = 1.3:1. [a]20.0D =�85.61 (c 0.50, CH2Cl2); HPLC (IF column, i-propanol/n-hexane = 30/70, flow

rate 1.0mL/min, l = 254 nm), major product: t1 = 18.255min (minor), t2 = 33.880min (major), ee= 97%;minor product: t1 = 12.078min (minor),

t2 = 13.395 min (major), ee = 93%; 1H NMR (400 MHz, CDCl3) d 7.91–7.49 (m, 5H), 7.49–6.80 (m, 9H), 4.57–3.61 (m, 4H), 3.44–3.41 (m, 3H), 2.39–

2.38 (m, 3H), 1.39–1.34 (m, 4H), 1.04–1.00 (m, 2H). 13C NMR (100 MHz, CDCl3) d 165.2, 165.0, 164.5, 164.3, 151.6, 147.7, 136.2, 134.2, 133.4,

133.0, 132.7, 131.0, 129.9, 129.0, 128.8, 128.6, 128.4, 128.2, 127.8, 126.4, 126.2, 126.0, 125.9, 125.0, 117.2, 115.4, 111.1, 64.5, 60.4, 51.5, 14.3,

13.7, 10.3. HRMS (ESI) m/z calcd for C32H31N2O7
+ [M + H]+ = 555.2126, found = 555.2119.

(S)-3-Ethyl 4-isopropyl 1-(N-(ethoxycarbonyl)cinnamamido)-2-methyl-5-(naphthalen-1-yl)-1H-pyrrole-3,4-dicarboxylate: 5f

A colorless oil; 56.0 mg; isolated yield = 96%; dr = 1.5:1. [a]20.0D = �109.63 (c 0.53, CH2Cl2); HPLC (IC column, i-propanol/n-hexane = 30/70,

flow rate 1.0 mL/min, l = 254 nm), major product: t1 = 10.810 min (major), t2 = 14.810 min (minor), ee = 90%; minor product: t1 = 16.521 min

(major), t2 = 27.272 min (minor), ee = 98%; 1H NMR (400 MHz, CDCl3) d 7.92–7.49 (m, 5H), 7.48–6.86 (m, 9H), 4.85–4.54 (m, 1H), 4.50–3.67

(m, 4H), 2.38–2.37 (m, 3H), 1.39–1.36 (m, 4H), 1.05–1.01 (m, 2H), 0.73–0.65 (m, 3H), 0.59–0.45 (m, 3H). 13C NMR (100 MHz, CDCl3) d 165.3,

164.6, 164.3, 163.6, 151.7, 147.6, 135.9, 134.2, 133.3, 133.2, 133.0, 133.0, 131.0, 129.6, 128.9, 128.6, 128.4, 128.0, 126.7, 126.7, 126.3, 125.9,

124.9, 117.2, 116.1, 111.2, 67.3, 64.5, 60.4, 21.3, 20.7, 14.3, 13.7, 10.2. HRMS (ESI) m/z calcd for C34H35N2O7
+ [M + H]+ = 583.2439, found =

583.2439.

(S)-Diethyl 1-(N-(ethoxycarbonyl)cinnamamido)-2-ethyl-5-(naphthalen-1-yl)-1H-pyrrole-3,4-dicarboxylate: 5g

A colorless oil; 50.1mg; isolated yield = 86%; dr = 1.2:1. [a]20.0D =�79.32 (c 0.50, CH2Cl2); HPLC (IF column, i-propanol/n-hexane = 30/70, flow

rate 1.0 mL/min, l = 254 nm), major product: t1 = 9.443 min (minor), t2 = 11.384 min (major), ee = 93%; minor product: t1 = 12.997 min (minor),

t2 = 24.180 min (major), ee = 95%; 1H NMR (400 MHz, CDCl3) d 7.95–7.50 (m, 5H), 7.47–6.83 (m, 9H), 4.53–3.53 (m, 6H), 2.97–2.53 (m, 2H), 1.39–

1.35 (m, 4H), 1.24–0.94 (m, 5H), 0.65–0.56 (m, 3H). 13C NMR (100 MHz, CDCl3) d 165.5, 164.4, 164.3, 164.3, 151.9, 147.6, 141.1, 134.2, 133.4,

132.9, 132.9, 131.0, 129.7, 129.0, 128.8, 128.6, 128.4, 128.1, 127.6, 126.7, 126.5, 126.2, 125.9, 125.0, 117.3, 115.9, 110.9, 64.4, 60.4, 60.1, 18.4,

14.3, 13.6, 13.4, 13.3. HRMS (ESI) m/z calcd for C34H35N2O7
+ [M + H]+ = 583.2439, found = 583.2429.

(S)-3-Ethyl 4-methyl 1-(N-(ethoxycarbonyl)cinnamamido)-2-(naphthalen-1-yl)-5-propyl-1H-pyrrole-3,4-dicarboxylate: 5h

A colorless oil; 51.8mg; isolated yield = 89%; dr = 1.4:1. [a]20.0D =�63.52 (c 0.50, CH2Cl2); HPLC (IC column, i-propanol/n-hexane = 30/70, flow

rate 1.0 mL/min, l = 254 nm), major product: t1 = 15.843 min (major), t2 = 20.782 min (minor), ee = 96%; minor product: t1 = 10.11 min (major),

t2 = 10.74 min (minor), ee = 94%; 1H NMR (400 MHz, CDCl3) d 8.05–7.50 (m, 5H), 7.49–6.85 (m, 9H), 4.43–3.53 (m, 7H), 2.97–2.45 (m, 2H), 1.72–

1.32 (m, 3H), 1.00–0.96 (m, 5H), 0.63–0.55 (m, 3H). 13C NMR (100 MHz, CDCl3) d 165.5, 165.0, 164.3, 164.2, 151.8, 147.7, 139.8, 134.2, 133.4,

132.9, 131.0, 129.8, 129.0, 128.6, 128.4, 128.1, 126.6, 126.5, 126.2, 125.9, 125.0, 117.2, 115.6, 111.2, 64.4, 60.1, 51.6, 26.8, 22.2, 14.2, 13.6,

13.3. HRMS (ESI) m/z calcd for C34H35N2O7
+ [M + H]+ = 583.2439, found = 583.2429.

(S)-4-Ethyl 3-methyl 2-benzyl-1-(N-(ethoxycarbonyl)cinnamamido)-5-(naphthalen-1-yl)-1H-pyrrole-3,4-dicarboxylate: 5i

A colorless oil; 52.9mg; isolated yield = 84%; dr = 1.1:1. [a]20.0D =�79.10 (c 0.55, CH2Cl2); HPLC (IC column, i-propanol/n-hexane = 30/70, flow

rate 1.0 mL/min, l = 254 nm), major product: t1 = 9.738 min (major), t2 = 14.429 min (minor), ee = 91%; minor product: t1 = 22.438 min (major),

t2 = 28.628 min (minor), ee = 98%; 1H NMR (400 MHz, CDCl3) d 7.96–7.49 (m, 5H), 7.49–6.70 (m, 14H), 4.66–4.52 (m, 1H), 3.91 (s, 3H), 3.90–2.99

(m, 5H), 1.12–1.08 (m, 1H), 0.71–0.41 (m, 5H). 13C NMR (100 MHz, CDCl3) d 165.5, 165.1, 164.3, 164.0, 151.3, 147.7, 137.4, 136.9, 134.3, 134.1,

133.3, 132.7, 131.0, 129.7, 129.0, 128.7, 128.5, 128.1, 126.6, 126.4, 126.2, 126.0, 125.9, 117.3, 115.5, 112.2, 64.2, 60.2, 51.8, 31.0, 13.2, 13.1. HRMS

(ESI) m/z calcd for C38H35N2O7
+ [M + H]+ = 631.2439, found = 631.2433.

(S)-Diethyl 1-(N-(ethoxycarbonyl)cinnamamido)-2-methyl-5-(4-methylnaphthalen-1-yl)-1H-pyrrole-3,4-dicarboxylate: 5j

A colorless oil; 57.0 mg; isolated yield = 98%; dr = 1.1:1. [a]20.0D = �111.01 (c 0.50, CH2Cl2); HPLC (IC column, i-propanol/n-hexane = 30/70,

flow rate 1.0 mL/min, l = 254 nm), major product: t1 = 13.074 min (major), t2 = 26.493 min (minor), ee = 85%; minor product: t1 = 21.433 min

(minor), t2 = 40.600min (major), ee= 94%; 1HNMR (400MHz, CDCl3) d 8.04–7.49 (m, 4H), 7.49–6.85 (m, 9H), 4.60–3.66 (m, 6H), 2.66 (s, 3H), 2.38–

2.37 (m, 3H), 1.39–1.35 (m, 4H), 1.05–1.01 (m, 2H), 0.71–0.63 (m, 3H). 13CNMR (100MHz, CDCl3) d 165.5, 165.1, 164.3, 164.0, 151.3, 147.7, 137.4,

136.9, 134.3, 134.1, 133.3, 132.7, 131.0, 129.7, 129.0, 128.7, 128.5, 128.1, 126.6, 126.4, 126.2, 126.0, 125.9, 124.9, 117.3, 115.5, 112.2, 64.2, 60.2,

51.8, 31.0, 13.9, 13.3, 13.2, 13.1. HRMS (ESI) m/z calcd for C34H35N2O7
+ [M + H]+ = 583.2439, found = 583.2441.

(S)-Diethyl 1-(N-(ethoxycarbonyl)cinnamamido)-2-(4-methoxynaphthalen-1-yl)-5-methyl-1H-pyrrole-3,4-dicarboxylate: 5k

A colorless oil; 55.0mg; isolated yield = 92%; dr = 1.1:1. [a]20.0D =�83.81 (c 0.50, CH2Cl2); HPLC (IC column, i-propanol/n-hexane = 30/70, flow

rate 1.0 mL/min, l= 254 nm), major product: t1 = 19.525min (minor), t2 = 40.537min (major), ee= 97%; minor product: t1 = 12.895min (major),

t2 = 24.465 min (minor), ee = 91%; 1H NMR (400 MHz, CDCl3) d 8.32–7.96 (m, 1H), 7.85–7.43 (m, 3H), 7.40–6.99 (m, 8H), 6.92–6.55 (m, 1H), 4.38–

3.56 (m, 9H), 2.30–2.29 (m, 3H), 1.31–1.27 (m, 4H), 0.97–0.93 (m, 2H), 0.63–0.58 (m, 3H). 13C NMR (100 MHz, CDCl3) d 165.3, 164.6, 164.4, 164.3,

156.4, 151.8, 147.5, 135.8, 134.2, 133.8, 133.3, 131.0, 129.3, 129.0, 128.6, 128.4, 126.7, 126.4, 125.9, 125.4, 125.2, 122.0, 118.3, 117.3, 115.8, 111.0,

103.0, 64.4, 60.4, 60.1, 55.5, 14.3, 13.7, 13.5, 10.3. HRMS (ESI) m/z calcd for C34H35N2O8
+ [M + H]+ = 599.2388, found = 599.2388.
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(S)-Diethyl 2-(3,7-dimethylnaphthalen-1-yl)-1-(N-(ethoxycarbonyl)cinnamamido)-5-methyl-1H-pyrrole-3,4-dicarboxylate: 5l

A colorless oil; 55.4mg; isolated yield = 93%; dr = 1.3:1. [a]20.0D =�95.41 (c 0.50, CH2Cl2); HPLC (IF column, i-propanol/n-hexane = 30/70, flow

rate 1.0mL/min, l= 254 nm), major product: t1 = 6.500min (major), t2 = 7.417min (minor), ee= 86%;minor product: t1 = 9.564min (minor), t2 =

26.629 min (minor), ee = 97%; 1H NMR (400 MHz, CDCl3) d 7.96–7.49 (m, 4H), 7.49–6.74 (m, 8H), 4.61–3.57 (m, 6H), 2.45–2.39 (m, 6H), 2.31–2.30

(m, 3H), 1.39–1.32 (m, 4H), 1.00–0.97 (m, 2H), 0.71–0.65 (m, 3H). 13C NMR (100 MHz, CDCl3) d 165.5, 164.7, 164.5, 164.3, 151.7, 147.4, 136.1,

134.6, 134.2, 133.4, 133.3, 132.0, 131.2, 131.0, 130.9, 129.0, 128.9, 128.6, 128.4, 128.2, 125.6, 125.1, 124.6, 117.4, 115.6, 111.1, 64.3, 60.4,

60.1, 21.8, 21.4, 14.3, 13.6, 13.4, 10.3. HRMS (ESI) m/z calcd for C35H37N2O7
+ [M + H]+ = 597.2595, found = 597.2603.

General procedure for asymmetric synthesis of compound 6

Compound 1e’ (0.10 mmol), MBH carbonic ester 2e (0.15 mmol) were dissolved in DCM (1 mL), and C3 (10 mol %) were added. The reaction

mixture was stirred for 6 h at room temperature. The solvent was removed in vacuo and the crude product was separated by flash column

chromatography on silica gel (petroleum ether/ethyl acetate = 4:1–2:1) to afford the product 6. A colorless solid; 52.0 mg; isolated yield =

90%; m.p. 72.2�C–72.8�C; [a]20D = +51.34 (c 0.025, THF); HPLC (IC column, i-propanol/n-hexane = 30/70, flow rate 1.0 mL/min, l =

254 nm), product: t1 = 9.22 min (minor), t2 = 11.05 min (major), ee = 97%; 1H NMR (400 MHz, CDCl3) d 7.91–7.77 (m, 4H), 7.56–7.48 (m, 2H),

7.46–7.33 (m, 1H), 6.13–6.01 (m, 1H), 5.43–5.23 (m, 1H), 4.55–4.37 (m, 1H), 4.34–4.22 (m, 2H), 4.11–3.94 (m, 2H), 3.93–3.84 (m, 3H), 3.63–3.41

(m, 1H), 2.37–2.24 (m, 3H), 1.55–1.43 (m, 2H), 1.39 (s, 9H), 1.36–1.28 (m, 3H), 0.70–0.51 (m, 3H); 13C NMR (100 MHz, CDCl3) d 165.4, 164.4,

164.2, 155.9, 155.4, 137.1, 136.7, 135.0, 134.7, 133.2, 133.0, 132.5, 131.4, 129.5, 128.7, 128.6, 128.5, 128.3, 128.3, 128.1, 127.8, 127.2, 127.1,

126.9, 126.8, 126.6, 126.6, 126.5, 125.7, 115.2, 110.2, 81.6, 68.2, 66.5, 66.4, 62.9, 60.3, 60.2, 54.3, 54.1, 51.2, 50.5, 27.8, 21.8, 21.4, 20.9, 19.2,

18.9, 14.3, 14.0, 13.5, 10.7, 10.2, 9.9; HRMS (ESI) m/z calcd for C32H38N2O8Na+ [M+Na]+ = 601.2520, found = 601.2525.

General procedure for kinetic resolution of 7

Racemic axial chiral compound 7 (0.2 mmol), MBH carbonic ester 2e (0.1 mmol) were dissolved in DCM (10mL), andC3 (10 mol %) was added.

The reaction mixture was stirred for 24 h at room temperature. The solvent was removed in vacuo and the crude product was separated by

flash column chromatography on silica gel (petroleum ether/ethyl acetate = 4:1) to afford the product 8 and recover compound 7.

(S)-Diethyl 2-(2-(benzyloxy)naphthalen-1-yl)-1-((tert-butoxycarbonyl)amino)-5-methyl-1H-pyrrole-3,4-dicarboxylate: 7

A colorless oil; 49.2 mg; isolated yield = 43%; [a]32.6D = +187.36 (c 0.30, CH2Cl2); HPLC (IC column, i-propanol/hexane = 30/70, flow rate

1.0 mL/min, l = 254 nm), product: t1 = 8.06 min (minor), t2 = 14.24 min (major), ee = 90%; 1H NMR (400 MHz, CDCl3) d 7.85 (d, J = 9.0 Hz,

1H), 7.74 (s, 2H), 7.40–7.28 (m, 6H), 7.23–7.17 (m, 2H), 7.00–6.89 (m, 1H), 5.21–5.08 (m, 2H), 4.45–4.15 (m, 2H), 3.99–3.55 (m, 2H), 2.45 (s, 3H),

1.37 (t, J = 7.1 Hz, 3H), 0.91 (s, 9H), 0.57 (s, 3H); 13C NMR (100 MHz, CDCl3) d 164.8, 164.4, 154.1, 153.9, 137.2, 136.5, 134.1, 131.2, 129.6,

128.7, 128.2, 127.4, 126.8, 124.5, 116.2, 115.1, 110.5, 82.0, 72.9, 60.2, 59.9, 27.3, 14.3, 13.3, 10.5; HRMS (ESI) m/z calcd for C33H37N2O7
+

[M + H]+ = 573.2595, found = 573.2590.

(R,R)-Diethyl 2-(2-(benzyloxy)naphthalen-1-yl)-1-((tert-butoxycarbonyl)(2-(tert-butoxycarbonyl)allyl)amino)-5-methyl-1H-pyrrole-
3,4-dicarboxylate: 8

A colorless oil; 65.5mg; isolated yield = 46%; dr = 7.7:1. [a]20.0D =�98.00 (c 0.30, CH2Cl2); HPLC (IC column, i-propanol/n-hexane = 20/80, flow

rate 1.0 mL/min, l = 254 nm), major product: t1 = 6.26 min (minor), t2 = 6.98 min (major), ee = 92%; minor product: t1 = 5.74 min (major), t2 =

7.84min (minor), ee= 94%; 1HNMR (400MHz, CDCl3) d 7.94–7.47 (m, 3H), 7.43–7.14 (m, 8H), 5.77–5.67 (m, 1H), 5.24–5.04 (m, 2H), 4.92–4.70 (m,

1H), 4.47–3.73 (m, 6H), 2.37–2.34 (m, 3H), 1.47–1.43 (m, 9H), 1.41–1.35 (m, 3H), 1.33–1.09 (m, 9H), 0.78–0.49 (m, 3H). 13C NMR (100MHz, CDCl3)

d 165.0, 164.8, 164.4, 155.6, 153.0, 136.9, 136.8, 134.9, 131.4, 130.0, 128.9, 128.5, 127.9, 127.6, 127.1, 126.6, 126.3, 124.0, 115.4, 114.7, 113.9,

110.5, 82.8, 81.1, 71.2, 60.2, 59.8, 50.8, 14.3, 13.4, 10.9. HRMS (ESI) m/z calcd for C41H49N2O9
+ [M + H]+ = 713.3433, found = 713.3442.
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