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ABSTRACT Outbreaks of infection occur more often than they are reported in most
developing countries, largely due to poor diagnostic services. A Klebsiella species
bacteremia outbreak in a newborn unit with high mortality was recently encoun-
tered at a location being surveilled for childhood bacteremia. These surveillance ef-
forts offered the opportunity to determine the cause of this neonatal outbreak. In
this report, we present the whole-genome sequences of New Delhi metallo-�-
lactamase (NDM-5)-containing Klebsiella quasipneumoniae subsp. similipneumoniae
bloodstream isolates from a neonatal bacteremia outbreak at a tertiary hospital in
Nigeria and as part of the largest collection of K. pneumoniae bloodstream isolates
from children in Africa. Comparative analysis of the genetic environment surround-
ing the NDM-5 genes revealed nearly perfect sequence identity to blaNDM-5-bearing
IncX3-type plasmids from other members of the Enterobacteriaceae.

IMPORTANCE Carbapenem-resistant Klebsiella pneumoniae is of global health impor-
tance, yet there is a paucity of genome-based studies in Africa. Here we report fatal
blood-borne NDM-5-producing K. quasipneumoniae subsp. similipneumoniae infec-
tions from Nigeria, Africa. New Delhi metallo-�-lactamase (NDM)-producing Klebsiella
spp. are responsible for high mortality and morbidity, with the NDM-5 variant show-
ing elevated carbapenem resistance. The prevalence of NDM-5 in Klebsiella has been
limited primarily to K. pneumoniae, with only one isolate being collected from Africa.
During an outbreak of sepsis in a teaching hospital in Nigeria, five NDM-5-producing
K. quasipneumoniae subsp. similipneumoniae sequence type 476 isolates were identi-
fied. Given the increased resistance profile of these strains, this study highlights the
emerging threat of blaNDM-5 dissemination in hospital environments. The observation
of these NDM-5-producing isolates in Africa stresses the urgency to improve moni-
toring and clinical practices to reduce or prevent the further spread of resistance.
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The global dissemination of carbapenemase-producing Klebsiella spp. poses a seri-
ous public health threat. Among the newly emerging carbapenemases, NDM is one

of the most clinically significant due to its increased resistance phenotype, rapid and
ongoing evolution, and global dissemination. Since NDM-1 was initially identified from
Klebsiella pneumoniae in 2008 (1), 16 new blaNDM alleles have been identified, with most
of them originating from Asia. NDM producers now include multiple bacterial genera
and have spread to virtually every continent (2), largely due to the plasmid-mediated
transfer of blaNDM.
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In 2011, a multidrug-resistant (MDR) Escherichia coli strain isolated in the United
Kingdom from a patient returning from a recent hospitalization in India was found to
harbor NDM-5 (3). In comparison to the prevalent NDM-1 allele, NDM-5, a 2-amino-acid
variant, conferred elevated carbapenem resistance (3) and has subsequently been
identified in isolates from other members of the Enterobacteriaceae family worldwide
(4–30). Among the Enterobacteriaceae, reports of NDM-5-producing Klebsiella spp. are
sporadic (17–19, 21–24, 31), with only one isolate collected from a hospitalized infant
in northern Africa (20). Furthermore, the prevalence of NDM-5 in Klebsiella has been
limited primarily to K. pneumoniae strains.

In this study, we report on an NDM-5-producing K. quasipneumoniae subsp. simili-
pneumoniae strain representing the sequence type 476 (ST476) clonal group isolated
from neonates at the University of Abuja Teaching Hospital, Gwagwalada, Nigeria.

RESULTS AND DISCUSSION
Clinical setting of Klebsiella outbreak. The evaluation of the causative agent of

this outbreak was facilitated by one of the surveillance laboratories for the Community-
Acquired Bacteremic Syndrome in Young Nigerian Children (CABSYNC) program, which
is located at the University of Abuja Teaching Hospital, Gwagwalada, Nigeria, and the
diagnostic service was offered at no cost to the parents of these babies. At most health
care facilities in Nigeria and, indeed, throughout sub-Saharan Africa, diagnostic micro-
biology laboratories are not readily available, and where they are available, the service
is neither free nor affordable; thus, most septic newborns are treated empirically.

An outbreak of neonatal sepsis occurred during the month of April 2016, when there
was a high admission in the special care baby unit of the University of Abuja Teaching
Hospital, Gwagwalada, in central Nigeria. This is one of two special care neonatal units
in the Federal Capital Territory, both of which cater to a population of over 3 million
(National Bureau of Statistics, Nigeria). The bed occupancy rates typically exceed the
total number of beds, with babies being nursed on Resuscitaire units (Dräger, Lübeck,
Germany) and less critically ill babies occasionally sharing cots. Mechanized respiratory
support was limited to continuous positive airway pressure (CPAP). The outbreak
prompted an increased level of infection control, such as enforced hand washing,
restricted access to the unit, and temporary closing of the unit for 4 days for sanitiza-
tion, which presumably led to resolution of the outbreak by the beginning of May 2016.

Sequencing of neonatal bloodstream isolates of MDR Klebsiella spp. Illumina
NextSeq genome sequencing was performed on seven bloodstream isolates of Kleb-
siella spp. from babies being treated in the University of Abuja Teaching Hospital,
Gwagwalada, in central Nigeria, as part of an ongoing (2012 to 2016) surveillance for
community-acquired bacteremic syndromes (CABSYNC). Part of this collection included
five isolates obtained during the April 2016 outbreak of neonatal sepsis. The resulting
de novo assembly Illumina sequence coverage of five of the seven isolates was between
90-fold (for isolate G4612) and 230-fold (for isolate G4584) across an average of 121
contigs per genome (minimum, 46 for G4704; maximum, 146 for G4612), resulting in
average draft genome sizes of between 5.4 Mbp (G4704) and 5.8 Mbp (G4601) (Table 1).
Two representative isolates, G4584 and G747, which received additional Oxford Nano-

TABLE 1 Select genomic features and metadata for the K. quasipneumoniae subsp. similipneumoniae genomes sequenced in this studya

BioSample accession no. Strain
Length
(Mbp) N50 MLST ST MLST allelic profileb

Patient
age (days) Date of isolation

Presence
of NDM

SAMN05960914 G747 5.9 5395457 476 18-22-26-22-93-37-99 6 25 Feb 2013 �
SAMN05960931 G4582 5.8 219823 476 18-22-26-22-93-37-99 2 14 Apr 2016 �
SAMN05960932 G4584 5.9 5446060 476 18-22-26-22-93-37-99 1 15 Apr 2016 �
SAMN05960934 G4593 5.8 226966 476 18-22-26-22-93-37-99 1 20 Apr 2016 �
SAMN05960936 G4601 5.8 208789 476 18-22-26-22-93-37-99 1 26 Apr 2016 �
SAMN05960939 G4612 5.8 208978 476 18-22-26-22-93-37-99 4 04 May 2016 �
SAMN05960940 G4704 5.4 368354 1031 18-22-18-23-134-13-51 2 18 Jul 2016 �

aAll isolates originated from the blood of patients at the University of Abuja Teaching Hospital, Gwagwalada, Nigeria.
bThe alleles are for gapA-infB-mdh-pgi-phoE-rpoB-tonB.
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pore minION sequencing, resulted in a hybrid de novo assembly of seven circular
contigs including one chromosome (5,446,060 bp) and six plasmids (3,733 bp to
218,935 bp) and a de novo assembly of six circular contigs including one chromosome
(5,395,457 bp) and five plasmids (3,733 bp to 218,944 bp), respectively. The resulting
hybrid de novo assembly sequence coverage of G4584 was 760-fold (234 times by
Illumina NextSeq sequencing and 525 times by Oxford Nanopore sequencing), and that
of G747 was 164-fold (105 times by Illumina NextSeq sequencing and 60 times by
Oxford Nanopore sequencing).

Taxonomic classification. Phylogenetic characterization via in silico multilocus
sequence typing (MLST) and determination of single nucleotide polymorphisms (SNPs)
of publicly available Klebsiella species genome sequences (n � 4,963), including Kleb-
siella species isolates from Nigeria (n � 93), revealed that the Nigerian isolates in this
study could be taxonomically classified as K. quasipneumoniae subsp. similipneumoniae
(Fig. 1). The taxonomy of all Klebsiella species genomes was confirmed by the average
nucleotide sequence identity (ANI). Those phylogenetically characterized as K. quasi-
pneumoniae subsp. similipneumoniae (n � 102) in this study had �98% ANI to K.
quasipneumoniae subsp. similipneumoniae 07A044T (see Table S1 in the supplemental
material). Sequence type 476 (ST476) was identified in six of the K. quasipneumoniae
subsp. similipneumoniae isolates collected from the University of Abuja Teaching
Hospital, Gwagwalada, Nigeria (Table 1), representing a clonal group with 98.94% to
100% identity by pairwise ANI.

Phenotypic susceptibility characterization. Antimicrobial susceptibility testing of
the K. quasipneumoniae subsp. similipneumoniae isolates demonstrated various degrees
of resistance to broad-spectrum antibiotics (Table 2). The April 2016 outbreak isolates,
G4582, G4584, G4593, G4601, and G4612, were resistant to virtually every antibiotic
tested, including the carbapenems imipenem, meropenem, and ertapenem (MICs,
�32 �g/ml). Exceptions for resistance to other antibiotics included intermediate resis-
tance to amikacin (MICs, 24 to 32 �g/ml) and, in the case of G4612, also resistance to
chloramphenicol (MIC, 16 �g/ml). No other K. quasipneumoniae subsp. similipneu-
moniae isolate obtained as part this study had a high level of resistance to all antibiotics
tested, including the carbapenems. G747, which shares the same sequence type, ST476,
and five of six plasmids with G4584 but was isolated from the same hospital 3 years
earlier, exhibited a similar resistance profile but was sensitive to imipenem (MIC,
0.5 �g/ml), meropenem (MIC, 0.125 �g/ml), and ertapenem (MIC, 0.064 �g/ml), as well
as cefoxitin (MIC, 8 �g/ml). Similarly, G4704, obtained 3 months later, was also sensitive
to carbapenems (imipenem, meropenem, and ertapenem), as well as cefoxitin, cefta-
zidime, cefepime, piperacillin-tazobactam, and amikacin, and showed intermediate
resistance to amoxicillin-clavulanic acid.

Genotypic characterization of NDM-5-containing K. quasipneumoniae subsp.
similipneumoniae isolates. Multidrug-resistant K. quasipneumoniae subsp. similipneu-

moniae isolates G4582, G4584, G4593, G4601, and G4612 were found to harbor
�-lactamase genes blaCTX-M-15, blaNDM-5, blaOKP-B-6, blaOXA-1, and blaTEM-1, and non-�-
lactam acquired resistance genes included aac(6’)-Ib-cr, bleMBL, qnrB1, and sul2 (Ta-
ble S2). Complete genomic sequencing of G4584 revealed a circularized IncX3-type
plasmid carrying the NDM-5 allele in the outbreak strain and confirmed the absence of
the blaNDM-5-bearing plasmid in the preoutbreak strain, G747. Compared with other
publicly available K. quasipneumoniae subsp. similipneumoniae strains (n � 102), this is
the first report of NDM-5 in an ST476 isolate (Fig. 1; Table S1), and to the best of our
knowledge, this is the first occurrence of an NDM-5-producing Klebsiella sp. in Nigeria
and one of few Klebsiella species NDM producers in Africa (20, 32–40).

Screening for putative virulence genes revealed no difference between the carriage
of a virulence-associated gene/gene clusters among NDM-5-containing and NDM-5-
noncontaining Nigerian isolates. Genes coding for the urease (ureABCDEFG) and fimbria
(mrkABCDFHIJ and fimFGH) gene clusters, glucuronic acid transferase (wabG), the
siderophores enterobactin (entABCDEF), and ferric iron uptake (kfuABC) were detected
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FIG 1 Phylogenetic analysis of K. quasipneumoniae subsp. similipneumoniae isolates. The resulting tree
was rooted with type strain K. quasipneumoniae subsp. similipneumoniae 07A044 (GenBank accession no.
NZ_CBZR010000000) and annotated with genotypes of resistance to common carbapenemases. The

(Continued on next page)
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in all seven Nigerian isolates, while genes coding for the allantoinase gene cluster
(allABCDRS), the two-component system KvgAS (kvgAS), and mucoid phenotype regu-
lators (rmpA and rmpA2) and the glxKR, ybbWY, ylbEF, hyi, arcC, and fdrA virulence-
associated genes were absent.

Comparative analysis of the NDM-5 genetic environment. IncX3-type plasmids
have a narrow host range and are found primarily within the Enterobacteriaceae (41),
and IncX3-type plasmids containing blaNDM-5 were found within several members of
the Enterobacteriaceae, including E. coli, Salmonella enterica subsp. enterica serovar
Typhimurium, K. pneumoniae, K. michiganensis, and K. quasipneumoniae (Fig. 2). Com-
parative analysis of all fully sequenced IncX3 plasmids containing an NDM-5 allele was
performed to assess the genetic context of the NDM-5 gene. Ten different structural
forms were identified from a total of 48 plasmid sequences available in GenBank and
the five outbreak isolates from this study and are denoted groups A to J (Fig. 2). The
plasmid backbone was nearly identical across the groups (conserved region, Fig. 2),
with all plasmids carrying genes for replication (pir and bis), partitioning (parA-parB),
entry exclusion (eex), maintenance (topB and stpA), and conjugative transfer (type IV
secretion system and taxA, taxB, taxC, and taxD). However, there were some structural
differences resulting from potential insertions/deletions of components of existing
insertion sequence (IS) elements (Fig. 2, blue arrows). For example, group F may have
had a second insertion of IS5, disrupting the IS3000 transposase, and groups B, D to G,
and J displayed apparent insertions of ISAba125 between IS3000 and IS5 that were
lacking in the prototype sequences from group C. It is difficult to determine from the
available sequence data whether the group C sequences resulted from deletion of
these IS elements or whether the other groups represented novel IS insertions relative
to group C. Only group I, represented by the unpublished E. coli plasmid pMTC948,
possesses an additional bla gene (blaSHV). These results suggest that the variable region
(Fig. 2) may be highly dynamic, but other than the loss of a promoter from the end of
the ISAba125 fragment, previously shown to drive the expression of blaNDM-1 and bleMBL

(42), it is unclear if these differences have any effect on the expression of blaNDM-5,
bleMBL, or the accessory genes trpF and dsbC. Both trpF and dsbC appeared to be tightly
linked to blaNDM-5 in all sequences examined, with the exception of the sequence of the
unpublished plasmid pTBCZNDM01 in group H, which lacked both trpF and dsbC,
suggesting a critical role either in the stability, retention, or spread of this element or
in facilitating enzyme functionality. The NDM-5-containing plasmid from K. quasipneu-
moniae subsp. similipneumoniae is structurally similar to members of group E, with two
differences: a partial duplication of the IS3000 element and truncation of the accessory
replication protein Bis via insertion of the Tn5403 transposon. Inactivation of bis results

FIG 1 Legend (Continued)
isolates discussed in this study are highlighted. The predicted sequence type (ST), isolation year, and
geographical origin are displayed. Novel STs are indicated by “new.” The numbers at the nodes represent
�50% bootstrap support. The scale bar represents the number of nucleotide substitutions per site.

TABLE 2 Antimicrobial susceptibility testing of K. quasipneumoniae subsp. similipneumoniae isolates

Strain

MIC (�g/ml)a

AMP AMC CEF FOX CAZ CRO CTX FEP TZP IPM MEM ETP GEN AMK TOB SXT TET CIP CHL ESBL CAZ-CLA ESBL CTX-CLA

G747 �256 48 �256 8 �256 �256 �256 �256 �256 0.5 0.125 0.064 256 24 48 �32 �256 32 12 �32/0.38 (�) �16/0.19 (�)
G4582 �256 �256 �256 �256 �256 �256 �256 �256 �256 �32 �32 �32 �256 24 256 �32 �256 �32 24 �32/�4 (�) �16/�1 (�)
G4584 �256 �256 �256 �256 �256 �256 �256 �256 �256 �32 �32 �32 �256 32 192 �32 �256 �32 24 �32/�4 (�) �16/�1 (�)
G4593 �256 256 �256 �256 �256 �256 �256 �256 �256 �32 �32 �32 �256 24 192 �32 �256 32 24 �32/4 (�) �32/0.19 (�)
G4601 �256 256 �256 �256 �256 �256 �256 �256 �256 �32 �32 �32 256 32 64 �32 �256 �32 32 �32/�4 (�) �16/�1
G4612 �256 �256 �256 �256 �256 �256 �256 �256 �256 �32 �32 �32 �256 32 256 �32 �256 �32 16 �32/�4 (�) �16/�1 (�)
G4704 �256 16 �256 8 1.5 �256 �256 6 6 0.5 0.094 0.023 �256 4 12 �32 �256 4 �256 �0.5/0.25 (�) �16/0.125 (�)
aAMP, ampicillin; AMC, amoxicillin-clavulanic acid; CEF, cephalothin; FOX, cefoxitin; CAZ, ceftazidime; CRO, ceftriaxone; CTX, cefotaxime; FEP, cefepime; TZP,
piperacillin-tazobactam; IPM, imipenem; MEM, meropenem; ETP, ertapenem; GEN, gentamicin; AMK, amikacin; TOB, tobramycin; SXT, trimethoprim-sulfamethoxazole;
TET, tetracycline; CIP, ciprofloxacin; CHL, chloramphenicol; CAZ-CLA, ESBL ceftazidime-clavulanic acid; CTX-CLA, ESBL cefotaxime-clavulanic acid; �, positive; �,
negative.
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in the loss of beta origin replication, but not alpha or gamma origin replication, in the
prototypical IncX family plasmid R6K (43). Given that similar IncX3 plasmids possess
multiple origins of replication (44), it is unlikely that the loss of Bis will reduce the
spread of antibiotic resistance.

Transmission of NDM-5. The transmission of a plasmid carrying NDM-5 was
evidenced by performing conjugation experiments with donor cells harboring the
NDM-5-containing plasmid. Due to the extensive drug resistance of strain G4584, the
NDM-5-containing plasmid was electroporated into E. coli DH10B and subsequently
transferred to a separate E. coli strain (JW2786-1). JW2786-1 cells harboring the NDM-
5-containing plasmid grew on CHROMagar KPC plates supplemented with kanamycin
only if the NDM-5-containing plasmid transferred via conjugation from DH10B to
JW2786-1. Transfer of the blaNDM-5 IncX3-type plasmid to recipient cells (E. coli
JW2786-1) was confirmed by PCR and the acquisition of carbapenem resistance in the
recipient strain, which was measured using disk diffusion. The recipient strain turned

FIG 2 Linear comparison of the genetic environment of the blaNDM-5 region found on IncX3 plasmids from members of the Enterobacteriaceae. E. coli plasmid
pEC14_35 (GenBank accession no. JN935899) represents the prototypical IncX3 plasmid that lacks known antibiotic resistance determinants. Group A represents
the sequence from E. coli plasmid pNDM5-NJ-IncX3 (GenBank accession no. KX447767). Group B consists of two sequences (GenBank accession no.
NEWC01000014.1 and NEWB01000014.1), both from K. quasipneumoniae. Group C has 3 members: sequences with GenBank accession no. CP027204 and
MF547511 from E. coli and the sequence with GenBank accession no. CP028536 from Enterobacter hormaechei. Group D represents the sequence with GenBank
accession no. KY041843 from E. coli plasmid pZHDC40. Group E contains 37 examples consisting of sequences with GenBank accession no. CP019073, CP021692,
CP021738, CP024825, CP025948, CP026577, CP028577, CP028705, CP029245, KF220657, KT824791, KU167608, KU167609, KX023261, KX507346, KX960109,
MF547507, MF547508, MF547509, MF547510, MF679143, MG252891, MG545911, MG825368, MG825382, MG825384, and MH094148 from E. coli; CM007781 and
MTKV01000083 from Salmonella enterica subsp. enterica serovar Typhimurium; CP024820 from Citrobacter freundii; CP014006, KF220657, KU761328, MH161191,
and MH341575 from K. pneumoniae; CP022351 and CP023188 from Klebsiella michiganensis; and MG833406 from Klebsiella oxytoca. Group F represents the
sequence with GenBank accession no. KY435936 from E. coli plasmid pNDM5_WCHEC0215. Group G represents the sequence with GenBank accession no.
MG591703 from E. coli plasmid pNDM-EC36. Group H represents the sequence with GenBank accession no. MH107030 from K. pneumoniae plasmid
pTBCZNDM01. Group I represents the sequence with GenBank accession no. MH349095 from E. coli plasmid pMTC948. Group J contains 5 examples (from this
study), sequences with GenBank accession no. NZ_NFXE01000097 (G4582), CP034133 (G4584), NZ_NFXD01000099 (G4593), NZ_NFXB01000102 (G4601), and
NZ_NFWY01000105 (G4612), all from K. quasipneumoniae subsp. similipneumoniae. Arrows indicate protein-coding genes (CDSs) drawn to scale and colored as
follows: salmon for factors involved in plasmid replication, yellow for factors involved in plasmid maintenance and mobility, red for antibiotic resistance
determinants, blue for mobile elements, green for other known proteins, and gray for unknown proteins. Homologous CDSs between adjacent groups are
joined vertically by colored lines.
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resistant to meropenem (decrease in zone diameter, 35 mm to 15 mm), cefoxitin
(23 mm to 6 mm), amoxicillin-clavulanic acid (22 mm to 8 mm), and cefepime (36 mm
to 12 mm) after acquiring the blaNDM-5 IncX3-type plasmid.

In conclusion, we describe the occurrence of clonal (ST476) NDM-5-producing K.
quasipneumoniae subsp. similipneumoniae isolates in Africa with an IncX3-type plasmid
highly similar to the plasmids found in other members of the Enterobacteriaceae. The
original source and transmission route of these isolates are unclear, but the close
proximity of patients within the hospital when this outbreak occurred could have
played a role in its transmission to other neonates in the unit. After the introduction of
infection control measures, no isolates with NDM-5 were identified. Given the increased
resistance profile of these strains and the associated high mortality rate among infected
patients, this study highlights the emerging threat of the plasmid-mediated transfer
and spread of blaNDM-5 in hospital environments. Furthermore, the increasing perva-
siveness of NDM-5 enzymes confirmed in North Africa and the now newly identified
occurrence in western Africa stress the urgency to improve monitoring and clinical
practices to reduce or prevent further the spread of resistance.

MATERIALS AND METHODS
Participant description. Children were enrolled per a previously published protocol (45, 46). Briefly,

children less than 5 years old who presented to any of the enrolling clinical facilities in the Federal Capital
Territory of Nigeria with clinical symptoms that were suggestive of bacteremia were enrolled following
the provision of informed consent by the parent or guardian.

Bacterial isolation and culturing. Blood sampling and processing were as previously described (45,
46). Briefly, only aerobic blood culture bottles were utilized, and cultures were held in a Bactec 9050
incubator for a maximum of 5 days. Bacteria were identified by a combination of morphology and
biochemical testing for Enterobacteriaceae using an API 20E system (bioMérieux, France). All blood-borne
bacterial isolates that were recovered from September 2012 to September 2016 and that were identified
as Klebsiella spp. were shipped to the University of Nebraska, where secondary confirmation of their
identity was performed using standard biochemical tests. For genomic DNA isolation, Klebsiella isolates
were cultured aerobically at 250 rpm in 1.5 ml brain heart infusion (BHI) medium overnight at 37°C. Only
one bacterial isolate was processed per participant.

AST. Antibiotic susceptibility testing (AST) was performed by the University of Nebraska Medical Center
(UNMC) using the Etest (bioMérieux, France). The antimicrobial drugs tested were ampicillin, amoxicillin-
clavulanate, cephalothin, cefoxitin, ceftazidime, ceftriaxone, cefotaxime, cefepime, piperacillin-tazobactam,
imipenem, meropenem, ertapenem, gentamicin, amikacin, tobramycin, trimethoprim-sulfamethoxazole,
tetracycline, ciprofloxacin, chloramphenicol, the extended-spectrum �-lactamase (ESBL) ceftazidime-
clavulanic acid, and the ESBL cefotaxime-clavulanic acid.

DNA isolation and whole-genome sequencing. Using a 1-ml overnight BHI culture, genomic DNA
was isolated using a MasterPure Gram-positive DNA purification kit (Epicentre). The extracted genomic
DNA was resuspended in �30 �l Tris-EDTA (TE) buffer and quantified using a NanoDrop spectropho-
tometer. Paired-end 150-bp Nextera XT libraries of whole genomic DNA were sequenced on an Illumina
NextSeq sequencer with a target average coverage of 100-fold. All sequences were de novo assembled
individually using the SPAdes algorithm (47). The genomes of strains G747 and G4584 were selected for
additional sequencing using the Oxford Nanopore minION technology (one-dimensional sequencing on
an R9.4 flow cell). G4584 was hybrid de novo assembled using reads from both the Illumina NextSeq and
Oxford Nanopore minION sequencers with the Unicycler (v0.4.6) assembler (48). G747 was de novo
assembled using the long-read assembler Canu (v1.7.1) (49), and the consensus sequence was generated
using the Racon (v1.3.1) program (50). The circular nature of the assembled contigs was determined
based on the presence of nearly identical repeats at the contig ends. The redundant regions were
trimmed from one end, and the contig orientation and starting position were adjusted such that the first
gene of the chromosome and plasmids was dnaA and repA, respectively. The final G747 assembly was
polished using the Pilon (v1.22) tool (51) and the Illumina reads. All assembled sequences were
annotated with NCBI’s prokaryotic genome annotation pipeline (PGAP) (52).

Genomic analysis. In silico MLST of the seven-locus K. pneumoniae Pasteur Institute MLST scheme
(http://bigsdb.pasteur.fr/klebsiella/) and identification of virulence factors were performed using the
LOCUST typer (53). Resistance Gene Identifier (RGI) software (54) in strict mode was used to predict the
antibiotic resistome from whole-genome sequence data using the Comprehensive Antibiotic Resistance
Database (CARD) (54–56). A whole-genome alignment was inferred from SNPs identified by the Northern
Arizona SNP Pipeline (NASP; v1.0.2) (57) using the genome of K. quasipneumoniae subsp. similipneu-
moniae 07A044T (GenBank accession no. NZ_CBZR010000000) as the reference. The resulting alignment
was run through the Gubbins (v2.2.1) program (58) to filter out the effects of recombination on our
maximum likelihood phylogenetic tree, generated using the RAxML tool (59) under the GTRCAT model
with 100 bootstrap replicates. The resulting tree was rendered with metadata annotated using the
Interactive Tree of Life (iTOL) (60–62). Taxonomic assignments were confirmed using the Mash (v1.1.1)
program, which is based on ANI (63).
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Plasmid and NDM-5 synteny analysis. Plasmid incompatibility groups were identified using
Plasmid Finder (v1.3) software (https://cge.cbs.dtu.dk/services/PlasmidFinder/) (64). Coding sequences
(CDSs) were determined based on the available NCBI PGAP annotations, and nucleotide comparisons of
CDSs between fully sequenced IncX3-type plasmids containing an NDM-5 allele were performed using
the NCBI legacy BLAST (v2.2.9) program. The presence of transposons and insertion sequences was
confirmed using the IS Finder database (65). A linear illustration of the NDM-5-containing plasmids was
generated using the SimpleSynteny tool (66) and edited using Adobe Illustrator software.

Plasmid conjugation assay. The whole genome from isolate G4584 was transformed into E. coli
DH10B (Mem� Kan�) (Invitrogen, USA) using electroporation, and carbapenem-resistant colonies were
selected on CHROMagar KPC plates (CHROMagar, Paris, France). Transformation of blaNDM-5-containing
plasmids was confirmed by PCR using NDM primers (NDM-Fwd, 5=-GTTTGGCGATCTGGTTTTC-3=; NDM-
Rev, 5=-CGGAATGGCTCATCACGATC-3=). This NDM-5-containing E. coli DH10B/pG4584::NDM-5 (Mem�

Kan�) strain was used as a donor and cocultured with a recipient strain, E. coli JW2786-1 (Mem� Kan�)
(Coli Genetic Stock Center number 10181; Yale University, USA) on a Mueller-Hinton agar plate to
promote conjugation. Transconjugants were selected on CHROMagar KPC plates containing 50 �g/ml of
kanamycin. Simultaneously, donor and recipient strains were cultured separately and plated on CHRO-
Magar KPC plates with 50 �g/ml of kanamycin as controls. Disk diffusion using meropenem, cefoxitin,
cefepime, amoxicillin-clavulanic acid, and kanamycin antibiotic disks was performed for all the strains to
determine the change in resistance. The zone diameter for each antibiotic was measured and interpreted
according to Clinical and Laboratory Standards Institute (CLSI) guidelines (2017).

Ethics statement. This study was approved by the ethics committees of the Federal Capital Territory,
University of Abuja Teaching Hospital, Gwagwalada, Nigeria, and the University of Nebraska Medical
Center, Omaha, Nebraska, Institutional Review Board for the Community-Acquired Bacteremic Syndrome
in Young Nigerian Children (CABSYNC).

Accession number(s). The genomes sequenced and analyzed in this study, as well as their associ-
ated metadata, are available at NCBI under BioProject no. PRJNA351846 with the following accession
numbers: for G4582, NFXE00000000; for G4584, CP034129 to CP034135; for G4593, NFXD00000000; for
G4601, NFXB00000000; for G4612, NFWY00000000; for G747, CP034136 to CP034140 and CP034339; and
for G4704, NFWX00000000. In addition, AST results for strain G4584 for ceftazidime-avibactam, aztreo-
nam, aztreonam-avibactam, and colistin are available under BioSample accession no. SAMN05960932.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/

mSphere.00685-18.
TABLE S1, PDF file, 0.1 MB.
TABLE S2, PDF file, 0.04 MB.
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