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Regulatory T cells are essential players of peripheral tolerance and suppression of
inflammatory immune responses. Type 1 regulatory T (Tr1) cells are FoxP3- regulatory T
cells induced in the periphery under tolerogenic conditions. Tr1 cells are identified as
LAG3+CD49b+ mature CD4+ T cells that promote peripheral tolerance through secretion
of IL-10 and TGF-b in addition to exerting perforin- and granzyme B-mediated cytotoxicity
against myeloid cells. After the initial challenges of isolation were overcome by surface
marker identification, ex vivo expansion of antigen-specific Tr1 cells in the presence of
tolerogenic dendritic cells (DCs) and IL-10 paved the way for their use in clinical trials. With
one Tr1-enriched cell therapy product already in a Phase I clinical trial in the context of
allogeneic hematopoietic stem cell transplantation (allo-HSCT), Tr1 cell therapy
demonstrates promising results so far in terms of efficacy and safety. In the current
review, we identify developments in phenotypic and molecular characterization of Tr1 cells
and discuss the potential of engineered Tr1-like cells for clinical applications of Tr1 cell
therapies. More than 3 decades after their initial discovery, Tr1 cell therapy is now being
used to prevent graft versus host disease (GvHD) in allo-HSCT and will be an alternative to
immunosuppression to promote graft tolerance in solid organ transplantation in the
near future.
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INTRODUCTION

More than 30 years ago, studies in a severe combined immunodeficiency (SCID) patient that had
undergone fully mismatched allogenic hematopoietic stem cell transplantation (allo-HSCT) led to
the groundbreaking discovery of type 1 regulatory T (Tr1) cells (1). In this patient, mixed chimerism
with donor T cells and host antigen presenting cells (APCs) and B cells was established in the
absence of immunosuppression. Donor-derived T cell clones had the ability to respond to host allo-
antigens in vitro, but no graft-versus-host disease (GvHD) was observed in vivo, suggesting an active
mechanism of tolerance. In subsequent studies, it was discovered that the host-reactive T cell clones
isolated from the transplanted patient produced IL-2, IFN-g and GM-CSF, but not IL-4, suggesting a
role for these cytokines in the observed peripheral tolerance (2). Shortly after the cloning of human
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IL-10 (3), a second transplanted SCID patient was found to have
CD4+ T cells specific for host allo-antigens that secreted high
levels of IL-10 (4). Further investigation in healthy donors and
mice led to the finding of tolerance-inducing, high IL-10-
secreting cells that were named Tr1 cells (5).

Tr1 cells can be defined as CD4+Foxp3- regulatory T cells that
promote tolerance and dampen inflammatory immune responses.
At resting state, Tr1 cells can be found in the spleen or periphery
[reviewed in (6)]. Upon antigen-specific TCR activation, Tr1 cells
secrete high levels of IL-10 and TGF-b that suppress proliferation
of effector T cells and pro-inflammatory cytokine production by
APCs. In addition to IL-10 and TGF-b secretion, Tr1 cells also
suppress effector T cell responses via engagement of CTLA-4/
CD80 or PD-1/PD-L1 (7). Additionally, activated Tr1 cells secrete
granzyme B and exert cytotoxicity against myeloid APCs (8),
thereby preventing naïve T cell priming (9). Thanks to their
ability to prevent production of inflammatory cytokines by APCs
and suppress effector T cells, Tr1 cells act as a bridge between
innate and adaptive immune responses.
GENERATION OF HUMAN TR1 CELLS

Ex vivo isolation of Tr1 cells from peripheral blood CD4+ T cells
of healthy donors results in poor yields since Tr1 cells in
circulation are in low quantities [1-10% of peripheral blood
memory CD4+ T cells (10)]. Tr1-rich cell products and antigen-
specific Tr1 cell clones have been expanded in vitro using a feeder
cell mixture or other artificial APCs. With the discovery and use
of tolerogenic dendritic cells producing high levels of IL-10 (DC-
10) (11) as stimuli for CD4+ T cells, an in vitro method to
generate alloantigen-specific Tr1 cells was successfully developed
for clinical applications. Another product comprised of
engineered polyclonal Tr1-like cells has been developed and
tested in pre-clinical models showing promising results to
prevent GvHD and exert anti-leukemia responses (12–14). All
methods are reviewed in detail elsewhere (6) but in summary,
these protocols can be grouped as follows:

Peripheral Blood-Derived Tr1 Cell
Lines and Clones
In early studies bulk T cell populations enriched for Tr1 cells
were generated by culturing peripheral blood mononuclear cells
(PBMC) or CD4+ T cells with allogeneic monocytes and
exogenous IL-10 (5). After the initial polyclonal expansion, T
cell clones were cultured as single cells and expanded in the
presence of irradiated feeder cells containing third party PBMCs
and the allogeneic EBV-immortalized cell line JY to obtain
antigen-specific Tr1 cells. Polyclonal Tr1 cell lines could also
be generated and expanded using mouse L cells expressing
hCD32, hCD58 and hCD80 in the presence of anti-CD3
antibody, IL-10 and IFN-a (15). In another study, human
ovalbumin-specific Tr1 cell clones were generated by using
Drosophila-derived APCs (16). Overall, peripheral blood Tr1
cells could be isolated and expanded in vitro in the presence of
feeder cells.
Frontiers in Immunology | www.frontiersin.org 2
In Vitro Tr1 Generation by Tolerogenic
DC Stimulation
Immature monocyte-derived dendritic cells (iDCs) enabled the
generation of Tr1 cells from naïve CD4+ T cells in vitro and this
differentiation was IL-10-dependent (17). Following these findings,
the discovery of DC-10 – an IL-10-secreting, ILT4+ HLA-G+ DC
populationgenerated in vitro frommonocytes in the presence of IL-
10– allowed theoptimizationof an in vitro allo-antigen-specificTr1
generation protocol (11). Recently, both ex vivo-generated and in
vivoDC-10 were shown to express CD141 and CD163, enabling ex
vivo isolation of DC-10 population from peripheral blood (18).
Naïve CD4+ T cells isolated from healthy donor PBMCs can be
cultured with allogeneic DC-10 to generate anergic, alloantigen-
specificTr1-enriched cell populations in vitro andcanbe safelyused
for cell therapy (19). Another Tr1-enriched cell therapy product,
T10, was generated by co-culturing T cells of transplant recipients
with organ donorDCs to promote tolerogenic Tr1 generation (20).
This preclinical study confirmed the potential benefit of T10 to
prevent graft rejection, as explained in later sections. A similar
strategy is now being used to generate the T-allo10 cell therapy
product to prevent GvHD in allo-HSCT. Briefly, peripheral blood
monocyte-derived DC-10 cells of a patient undergoing allo-HSCT
andCD4+ T cells of the stem cell donor are isolated and co-cultured
ex vivo in the presence of exogenous IL-10 to generate patient
alloantigen-specific tolerogenic T-allo10 cells. This Tr1-rich cell
therapy product T-allo10 is currently in phase I clinical trial
(Clinicaltrials.gov identifier NCT03198234), explained in
later sections.

Next Generation of Engineered
Tr1-Like Cells: CD4IL-10
CD4IL-10 are engineered Tr1-like cells and are generated by
transducing human peripheral blood CD4+ T cells with a lentiviral
vector over-expressing human IL10 (hIL10). CD4IL-10 display a Tr1
cytokine production profile (IL-10+IFN-g+IL-2-IL-4-), phenotypic
markers (CD2+CD18+CD226+), suppressive properties, and
cytotoxicity against myeloid cells. CD4IL-10 also prevent xeno-
GvHD in humanized mouse models (12, 13) and kill primary acute
myeloid leukemia blasts (13, 14). Interestingly, CD4IL-10 upregulate
cytotoxicity-related genes correlated with constitutive expression of
IL-10 (our unpublished data). In contrast to other methods which
produce low yields of poorly proliferating Tr1 cell products,
polyclonal CD4IL-10 grow and expand in vitro for several weeks,
providing largerquantitiesofTr1-like cells.Accordingly,CD4IL-10 are
promising candidates tobeused in clinic innear future forprevention
ofGvHDandpromotionof anti-leukemia responses inacutemyeloid
leukemia patients going through allo-HSCT.
BIOLOGICAL CHARACTERIZATION
OF HUMAN TR1 CELLS

Phenotype
Tr1 cells were hard to identify for many years due to the lack of
specific surface markers. The discovery of LAG3 and CD49b
expressed on both murine and human memory CD4+ Tr1 cells
June 2021 | Volume 12 | Article 693105
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enabled the isolation and characterization of Tr1 populations
from peripheral blood of healthy donors (10). Since then, many
other studies confirmed the expression of these proteins on
murine (21–29), non-human primate (30) and human (18, 31–
44) Tr1 cell populations.

It is important to note that CD49b and LAG3 are not
exclusively expressed on Tr1 cells and are not sufficient to
identify Tr1 cells alone. This is mainly due to the fact that
LAG3 is also expressed by activated T cells and CD49b is
expressed on memory T cell populations (45). Nevertheless,
our data support that when LAG3+CD49b+ memory T cells are
purified, the regulatory function expected of Tr1 cells is confined
to this population. Single-cell RNA sequencing analysis of IL-10-
producing CD4+FoxP3- cells revealed that Tr1 cells can be
differentiated from other IL-10-producing CD4+ T cells by
their expression of co-inhibitory receptors (CIRs) in addition
to LAG3 and CD49b (46). High IL-10 secretion was correlated
with high granzyme B as well as expression of CIRs LAG3,
TIGIT, TIM3 and PD-1 in CD4+FoxP3- T cells. Only the CIR-
rich IL-10-secreting splenic T cells had suppressive capacity as
shown by in vivo models of colitis. Thus, IL-10 alone is not a
factor in determining Tr1 identity but the combination of IL-10
with granzyme B and CIRs along with suppressive function
frame the Tr1 population definition. In conclusion, on top of
LAG3 and CD49b, Tr1 phenotyping should be supported by
other surface markers such as PD-1, CTLA-4, ICOS, TIM-3,
TIGIT, CD226, CD73 and CD39 [reviewed in (47)].

Molecular Characterization
The search for key transcription factors playing a role in Tr1 cell
generation and function has been hampered until recently by the
difficulty of purifying Tr1 cells and distinguishing them from other
IL-10-producing T cells. Unlike Foxp3+ regulatory T cells (Tregs),
Tr1 cells currently do not have a defined master regulator that can
be used as a lineage-determining transcription factor. The
difference between Tregs and Tr1 cells was unequivocally
demonstrated when CD4+ T cells from IPEX patients carrying
loss-of-function FOXP3 mutations could differentiate in vitro into
functional Tr1 cells (48).

Transcription factors that play a role in anergy induction and
IL-10 production were among the first candidates to be
investigated for their relevance in Tr1 biology and function.
For instance, EGR-2, a key transcription factor for T cell anergy,
was found to be expressed in Tr1 cells (49, 50), and EGR2
overexpression in naïve CD4+ T cells caused elevated LAG3
expression and IL-10 production (10, 51). In vitro culture of
murine T cells with IL-27 and TGF-b drove the differentiation of
IL-10 producing T cells (52). Notably, there are several
transcription factors that induce IL-10 production upon IL-27
treatment in murine CD4+ T cells. In a recent study covering
transcriptional and epigenetic profiling of murine Th cell subsets,
Blimp-1 (encoded by the Prdm1 gene) and Maf were
demonstrated to be two transcription factors driving the
expression of genes induced with IL-27, including IL-10 in Tr1
cells (53). Prdm1 and Maf double knock-out led to spontaneous
colitis, mimicking the phenotype observed in IL-10 knockout
mice (53). IL-27 signals through EGR-2 to induce IL-10
Frontiers in Immunology | www.frontiersin.org 3
production by Blimp-1 in CD4+ T cells (54), and EGR-2 is
necessary for IL-27-induced Blimp-1-dependent IL-10 induction
(51). Blimp-1 is required for high IL-10 secretion, not only by
Tr1 cells but also by other CD4+ T cells (55, 56) and CD8+

cytotoxic T lymphocytes (57). Blimp-1 deficiency results in
markedly less IL-10 production by CD4+ T cells, while its
overexpression promotes Tr1 generation (58). Recently,
eomesodermin (Eomes) was demonstrated to coordinate with
Blimp-1 to drive Tr1 polarization, and Eomes was critical for
protection against GvHD (59). Importantly, T-bet was also
crucial for Eomes-mediated Tr1 differentiation. As previously
mentioned, c-Maf also contributes to IL-27-induced IL-10
production by Tr1 cells. The aryl hydrocarbon receptor (AHR)
also contributes to Tr1 differentiation (60). Interestingly, this has
been shown to occur through the formation of AHR/c-Maf
heterodimers (61) and through metabolic regulation (25). A
recent study also revealed that a cytokine, activin-A, induced
an IRF4/AHR transcriptional network in human cells to drive
Tr1 differentiation, and adoptive transfer of activin-A-induced
Tr1 cells protected against asthma in humanized mouse models
(62). The role for IRF4 was further shown in mouse models of
infection in which ITK signaling through Ras/IRF4 promoted
Tr1 differentiation in vivo (24). Additionally, transcription
factors IRF1 and BATF were stated as ‘pioneering factors’ that
have substantial roles in murine Tr1 differentiation and function
(63). Both IRF1 and BATF are induced upon IL-27 stimulation
and are required for chromatin accessibility of Tr1-associated
genes as shown by ATAC-seq analysis (63). Taken together,
downstream signaling of IL-27 shapes the epigenetic and
transcriptomic requirements for Tr1 generation and function
in murine T cells.

Continuous expression of IL10 in human peripheral blood CD4+

T cells is essential to drive Tr1 cell differentiation; however, IL-10
alone is not a lineage-determining factor since it can be secreted by
many cells of the immune system. IL-10 producing CD4+ T cells are
a heterogenous population, but Tr1 cells can be characterized with
the expression of CIRs (46). In this study, IL-10-secreting
CD4+FoxP3- T cells isolated from the spleens and small intestines
of mice had tissue-dependent transcriptional profiles. Single-cell
RNA sequencing showed that IL-10-producers from the spleen were
more diverse in terms of their transcriptional profile compared to
the intestine. Id2 and Bhlhe40 are additional transcription factors
found highly expressed in IL-10-producing CD4+ CIR-rich cell
subsets but their specific roles in these cell subsets are yet to be
determined (46). In a different study, Bhlhe40 was required to
repress IL-10 expression in Mycobacterium tuberculosis infected
mice (64). Interestingly, Yu et al. showed that Bhlhe40 behaved as a
switch between anti and proinflammatory states of Th1 cells,
regulating IL-10 expression depending on different immunological
cues (65). Thus, the role of Bhlhe40 in Tr1 generation needs
further investigation.

While the aforementioned transcription factors revolve around
IL-10 regulation, the IL-10 Receptor (IL-10R) is also essential in
Tr1 induction in vivo as well as Tr1 generation in vitro (66). IL-
10R signals through STAT3 and p38/MAPK, resulting in
activation of multiple immune-related pathways. STAT3 is also
hyperphosphorylated in activated peripheral blood Tr1 cells (67).
June 2021 | Volume 12 | Article 693105
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The IL-10/STAT3 axis might be essential in regulation of
transcription factors required for Tr1 generation and function,
contributing to the maintenance of peripheral tolerance (68).

TCR stimulation is essential for Tr1 suppressive function both
in vitro and in vivo (9). ITK, a kinase activated downstream of
TCR activation modulates Tr1 generation in murine and human
CD4+ T cells. In ITK knock-out mice, IL-10 production is
impaired and the suppressive function of ITK-deficient cells can
be reversed by IRF4 expression. As mentioned above, ITK is
responsible for the Ras/IRF4 activation that contributes to CD4+ T
cell development into CD49b+LAG3+ Tr1 cells (24). As with
canonical TCR stimulation for T cell activation, costimulatory
and coinhibitory signals have been demonstrated to affect Tr1 cell
differentiation. In one case, stimulation of murine naïve CD4+ T
cells with anti-CD3 in the presence of soluble PD-L1 produced a
substantial proportion of Tr1-like cells (69). Similarly, activation
of human CD4+ T cells with anti-CD3 in the presence of anti-
CD46 led to downregulation of IL-2 and gave rise to Tr1 cells (70,
71). Interestingly, this effect is not seen in T cells fromMS patients
(72). Costimulation of human naïve CD4+ T cells through CD55
also produces highly suppressive Tr1 cells (73).

Overall, these data suggest that several distinct transcription
factors and signaling pathways play roles in differentiation,
generation and activation of Tr1 cells through IL-27 stimulation,
regulation of IL-10 gene expression or through altering
suppressive and cytotoxic functions of Tr1 cells. To date, no
single transcription factor has been proven to be sufficient to
lead to Tr1 generation alone and their dynamic interactions within
mouse or human Tr1 cells require further investigations.

Cytotoxic Properties of Tr1 Cells
In addition to their well-known suppressive function, both
peripheral and engineered Tr1 cells (CD4IL-10) are able to
recognize and kill cells of myeloid origin (8, 12–14). Constitutive
expression of hIL10 in human CD4+ T cells results in upregulation
of cytotoxicity-related genes (our unpublished data). Tr1 cells and
CD4IL-10 express high amounts of granzyme B along with CD2,
CD18 and CD226 that contribute to myeloid cell killing (8, 12, 13).
CD2 binds to CD54, CD18 binds to CD58, and CD226 binds to
CD112 and CD155 found on target cells, enhancing adhesion and
sending activating signals. Myeloid target cell killing is dependent
on granzyme B expression by CD4IL-10 and HLA class I expression
on target cells (8, 13). In addition to myeloid cell lines and primary
adult acute myeloid leukemia, we recently showed that CD4IL-10 can
also kill pediatric AML blasts (14). We observed that pediatric AML
differ in their sensitivity to CD4IL-10 mediated killing and group as
sensitive, intermediate-resistant, or resistant. RNA sequencing of
different groups of pediatric AML showed that sensitive and
resistant blasts have distinct transcriptional profiles. CD200, a
prognostic factor for AML (74), was differentially expressed on
the resistant pediatric AML. The receptor for CD200, CD200R1, is
expressed on T cells and functions as an inhibitory receptor
contributing to diminished cytotoxic responses (14). Thus, it is
possible that resistant pediatric AML have signature molecules
upregulated on their surface that can be used as predictive
markers to select patients with AML suitable for CD4IL-10 cell
therapy. Tr1 cells or engineered Tr1-like cells can enhance anti-
Frontiers in Immunology | www.frontiersin.org 4
tumor response once delivered to a leukemia patient undergoing
allo-HSCT, targeting residual tumor cells that would otherwise
cause relapse. While exerting anti-tumor activity, Tr1 cells also
promote tolerance and thus provide a combinatorial benefit to
the patient.
CLINICAL APPLICATION OF TR1 CELLS

Suppressive Roles in Transplantation
The ability of Tr1 cells to maintain tolerance in organ
transplantation has been demonstrated in many preclinical
studies. Battaglia et al. showed that rapamycin plus IL-10
treatment induced Tr1 cells that modulated long term tolerance
in vivo and prevented allograft rejection following islet
transplantation (75). Notably, antigen-specific Tr1 cells were
found to be more potent than polyclonal Tr1 (76). Interestingly,
Tr1 cells localized in the spleen maintained long-term tolerance
(77). A potential advantage of Tr1 cell therapy compared to
traditional immune suppression was recently demonstrated: Tr1
cell therapy did not alter the anti-viral response in islet transplant
models in mice, nor did viral infections change Tr1 efficacy in
maintaining transplant tolerance (78). Recently, graft-infiltrating
M2 macrophages were shown to induce Tr1-mediated tolerance
after islet cell transplantation in mouse models (79). Accordingly,
CD206high IL-10-producing macrophages infiltrated the graft of
G-CSF/rapamycin-treated tolerant mice and in vivo depletion of
phagocytic cells abrogated graft tolerance and Tr1 induction (79).
Taken together, these preclinical studies show the crosstalk
between Tr1 cells and other immune cells and demonstrate that
Tr1 cells promote graft tolerance in islet transplantation while
preserving anti-viral immunity.

In solid organ transplantation, host immune cells attack donor
organs, leading to transplant rejection. To prevent this immune
response, transplant recipients are obliged to take life-long
immunosuppressive treatments that have severe negative impacts,
including recurrent severe infections. A key approach to replace or
minimize immunosuppressive treatments is to induce donor-specific
tolerance.Aclinicalproduct calledT10wasdeveloped tooptimize the
production of Tr1-enriched cell products in patients undergoing
kidney transplants, aiming to prevent graft rejection (20, 80) (Figure
1A). The T10 product is generated by culturing donor DC-10 with
patientCD4+Tcells in thepresence of exogenous IL-10.CD4+Tcells
isolated from patients undergoing dialysis were able to reach
sufficient numbers of ex vivo expanded T10 cells that maintained
suppressive abilities stably after cryopreservation. In parallel,
phenotyping was done periodically with peripheral blood Tr1 cells
of patients going through immunosuppression to understand
potential effects of immunosuppressive treatments on Tr1 cells,
since planned T10 infusion would take place in patients receiving
immunosuppressive treatments. The phenotype of Tr1s from
transplant patients were comparable to healthy controls and
optimal times for T10 infusion were considered to be at time zero
and around 36weeks after transplantation. These pre-clinical studies
were essential to optimize Tr1 medicinal product quality and
demonstrate the potential for transplant patients, but no product
infusion has been done yet. Despite the promising results in pre-
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FIGURE 1 | Tr1 cell therapy strategies in transplantation. (A) Tr1 cell therapy in solid organ transplantation. Patient CD4+ T cells (1) and donor tolerogenic DC-
10 cells (2) will be isolated prior to organ transplantation. A Tr1-rich cell therapy product will be expanded by culturing CD4+ T cells and DC-10 in the presence
of exogenous IL-10 (3). The alloantigen-specific Tr1-rich cell therapy product will be phenotyped and tested ex vivo for suppressive capacity and will be infused
into the transplant recipient (4). Concurrently or a day after infusion, organ transplantation will take place (5). (B) Tr1 cell therapy in allo-HSCT. Donor CD4+ T
cells (1) and patient-derived tolerogenic DC-10 cells (2) will be isolated prior to HSCT. Steps (3) and (4) will be followed as in part (A). A day after infusion, HSCT
will take place (5). (C) CD4IL-10 cell therapy in allo-HSCT. In this example, the transplant recipient is an acute myeloid leukemia patient. Stem cell donor or 3rd

party healthy donor CD4+ T cells will be isolated (1) and transduced with hIL10 lentivirus to generate CD4IL-10 cells (2). After ex vivo expansion and quality
control, CD4IL-10 cells will be infused to the transplant recipient (3) concurrently with allo-HSCT (4). While donor stem cells repopulate blood, donor T cells
promote graft versus host disease (GvHD). CD4IL-10 cells prevent GvHD by secretion of IL-10 and promote graft versus leukemia (GvL) response via granzyme
B/perforin mediated cytotoxicity against residual AML cells.
Frontiers in Immunology | www.frontiersin.org June 2021 | Volume 12 | Article 6931055
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clinical studies, the role of Tr1 in solid organ transplantation is a field
anticipating in-patient trials.

Tr1 Therapy in the Context of allo-HSCT
Many leukemia patients are dependent on successful allo-HSCT for
treatment of their hematological malignancies and reconstitution of
a healthy immune system. Allo-HSCT is also the only cure for
patients with inherited blood disorders, such as SCID and beta
thalassemia. Following the initial studies that demonstrated Tr1-
mediated tolerance after mismatched allo-HSCT in SCID patients
(1, 2, 4), Tr1 cells were also shown to play a role in thalassemic
patients with persistent mixed chimerism after allo-HSCT (81). In a
proof-of-concept clinical study, the ALT-TEN trial, twelve patients
with hematological malignancies undergoing haplo-HSCT were
given IL-10-anergized donor T cells (IL10-DLI) containing Tr1
cells to support immune reconstitution in the absence of severe
GvHD (32). 4 patients had positive outcomes, long term disease
remission and gene expression profiles of these patients’ cells were
associated with tolerance (32). This study led the way to the use of
Tr1 cell therapy in allo-HSCT recipients.

In the current T-allo10 clinical trial (Clinicaltrials.gov identifier
NCT03198234), the IL-10-anergized donor T cells specific for the
host allo-antigens are generated using an optimized protocol.
Donor CD4+ T cells are co-cultured with host-derived DC-10 to
‘educate’ the T cells to become anergic to the host allo-antigens and
to generate alloantigen-specific Tr1 cells (Figure 1B). The T-allo10
cell product contains up to 15% Tr1 cells. T-allo10 cells are infused
one day before the transplant to patients undergoing related or
unrelatedmismatched allo-HSCT. The goal of this study is to show
the safety, unravel the maximum tolerated dose and demonstrate
the capacity of the T-allo10 cells to prevent GvHD and promote
long term tolerance in patients receiving mismatched HSCT. Thus
far, the preliminary analysis shows that the therapy iswell tolerated,
with long-term persistence of Tr1 cells (Chen et al., unpublished
data). Recently, theT-allo10 trial has also been expanded to patients
undergoing alpha-beta T cell-depleted haplo-HSCT to boost
immune cell reconstitution and help prevent GvHD
(Clinicaltrials.gov identifier NCT04640987). Overall, the T-allo10
clinical trial will be a first step in determining in vivo safety and
efficacy of alloantigen-specific tolerogenic Tr1 cells that can be
further used in other clinical settings beyond allo-HSCT.

Beyond these studies, there are also preclinical studies
investigating the method of in utero HCT for prevention of
congenital hematological diseases, but the injection window and
technical difficulties have not been overcome yet. Nevertheless, it
was recently demonstrated that treatment with tolerance-inducing
Tregs and Tr1 cells prevented GvHD and promoted long-term
multilineage chimerism in mice receiving in utero HCT (82).

Other Immune Mediated Diseases
Tr1 cells play important roles in suppressing autoimmunity and
it has been reported that Tr1 function may be impaired in
diseases like type I diabetes, colitis, and multiple sclerosis (MS)
(83). In patients with refractory Crohn’s disease, ovalbumin-
specific Treg (OVA-Tregs) cells isolated from patients’ blood and
restimulated with ovalbumin have been reinfused intravenously
(84). This study (Crohn’s And Treg Cells Study- CATS1)
Frontiers in Immunology | www.frontiersin.org 6
demonstrated that Treg infusions were well-tolerated and
reduced pathology in some patients. Tr1 cells can modulate
inflammasome activity in macrophages via secretion of IL-10
(28), which can be a potential approach in treating inflammatory
bowel disease (IBD). It was also recently revealed that the
phenotype of Tr1 cells isolated from the gut of patients with
Crohn’s disease or ulcerative colitis was not different from that of
healthy individuals after ex vivo expansion. In addition, these Tr1
cells were able to secrete IL-22, promoting barrier function in
intestinal epithelial cells (85). Collectively, Tr1 cell therapy is a
promising approach for treating IBD.

Considerations for Future Clinical
Applications
Treg cell therapies for autoimmune disorders and transplant
patients is an area of increasing interest. Despite the abundance
of promising preclinical studies, several hurdles remain for the
clinical application of Treg cell therapies [reviewed in (86, 87)].
In the current clinical trial in allo-HSCT, the manufactured
alloantigen-specific T-allo10 cell product is only enriched in
Tr1 cells. The lack of purity represents a significant limitation to
the use of this cell product in other clinical settings. Nevertheless,
administration of tolerogenic Tr1-enriched cell products could
increase graft tolerance in solid organ transplant patients,
comparable to their tolerogenic effect in allo-HSCT. Antigen-
specific Tr1 cells can also be generated for known self-antigens
causing autoimmune disorders, like early-onset type 1 diabetes,
to prevent autoreactive T cells from destructing islet cells (88).

CD4IL-10, engineered Tr1 cells that overexpress hIL10, is a pure
cell therapy product which should be considered for future clinical
applications. Preclinical studies demonstrate that CD4IL-10 not
only share the functional properties of Tr1 cells but also can grow
and expand in abundance. The bidirectional lentiviral vector used
for concurrent expression of IL-10/delta-NGFR has been recently
updated to meet FDA requirements (Liu et al, unpublished data).
Polyclonal CD4IL-10 cells can provide a GMP-compliant cell
therapy option for leukemic patients undergoing allo-HSCT in
the near future (Figure 1C). The future generation of antigen-
specific engineered Tr1-like cells will also broaden their clinical
applications to other immune mediated diseases.
CONCLUDING REMARKS

In the 33 years since their discovery, Tr1 cells have been shown to be
essential in peripheral tolerance in transplant settings, chronic
infections, and autoimmune disorders. While it was challenging to
isolate, expand, and identify these cells, we now have more
information than ever regarding their phenotype, function, and ex
vivo expansion. Multiple single cell level -omics analyses such as
single cell RNAsequencing andATACsequencing are advancingour
understanding of key molecular mechanisms regulating Tr1
differentiation and function. Alloantigen-specific Tr1-enriched cell
products in clinical trials will yield insights on safety and efficacy of
these cells andpave theway for their use inother clinical settings such
as solid organ transplantation and tissue stem cell therapies.
Furthermore, refined methods to generate and expand polyclonal
June 2021 | Volume 12 | Article 693105
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and antigen-specific Tr1 cells will allow their application in
autoimmune and chronic inflammatory disorders in the near future.
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