
 International Journal of 

Molecular Sciences

Review

Insecticidal Triterpenes in Meliaceae: Plant Species, Molecules
and Activities: Part I (Aphanamixis-Chukrasia)

Meihong Lin 1, Sifan Yang 2, Jiguang Huang 1,* and Lijuan Zhou 1,*

����������
�������

Citation: Lin, M.; Yang, S.; Huang, J.;

Zhou, L. Insecticidal Triterpenes in

Meliaceae: Plant Species, Molecules

and Activities: Part I

(Aphanamixis-Chukrasia). Int. J. Mol.

Sci. 2021, 22, 13262. https://doi.org/

10.3390/ijms222413262

Academic Editor: Jesus Vicente De

Julián Ortiz

Received: 26 October 2021

Accepted: 6 December 2021

Published: 9 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Key Laboratory of Natural Pesticides and Chemical Biology, Ministry of Education, South China Agricultural
University, Guangzhou 510642, China; 24628@noposion.com

2 Organic Agriculture, Wageningen University and Research,
6708 PB Wageningen, Gelderland, The Netherlands; sifan.yang@wur.nl

* Correspondence: hnnyzx@scau.edu.cn (J.H.); zhoulj@scau.edu.cn (L.Z.)

Abstract: Plant-originated triterpenes are important insecticidal molecules. The research on insectici-
dal activity of molecules from Meliaceae plants has always received attention due to the molecules
from this family showing a variety of insecticidal activities with diverse mechanisms of action. In
this paper, we discuss 102 triterpenoid molecules with insecticidal activity of plants of eight genera
(Aglaia, Aphanamixis, Azadirachta, Cabralea, Carapa, Cedrela, Chisocheton, and Chukrasia) in Meliaceae.
In total, 19 insecticidal plant species are presented. Among these species, Azadirachta indica A. Juss
is the most well-known insecticidal plant and azadirachtin is the active molecule most widely rec-
ognized and highly effective botanical insecticide. However, it is noteworthy that six species from
Cedrela were reported to show insecticidal activity and deserve future study. In this paper, a total of
102 insecticidal molecules are summarized, including 96 nortriterpenes, 4 tetracyclic triterpenes, and
2 pentacyclic triterpenes. Results showed antifeedant activity, growth inhibition activity, poisonous
activity, or other activities. Among them, 43 molecules from 15 plant species showed antifeedant
activity against 16 insect species, 49 molecules from 14 plant species exhibited poisonous activity on
10 insect species, and 19 molecules from 11 plant species possessed growth regulatory activity on
12 insect species. Among these molecules, azadirachtins were found to be the most successful botani-
cal insecticides. Still, other molecules possessed more than one type of obvious activity, including
7-deacetylgedunin, salannin, gedunin, azadirone, salannol, azadiradione, and methyl angolensate.
Most of these molecules are only in the primary stage of study activity; their mechanism of action
and structure–activity relationship warrant further study.

Keywords: Meliaceae; triterpenoid molecules; insecticidal activities

1. Introduction

Pesticides provide tremendous benefit to modern agriculture. It is well known that
the increase of crop yields largely depends on synthetic pesticides. However, it is also
recognized that synthetic pesticides have some negative impacts and the indiscriminate
application of synthetic pesticides has resulted in contamination of water, soil, air, and
crop products, etc. The persistent use of pesticides has also led to serious resistance and
resurgence of insect pests [1]. The current consensus asserts that the development of new
pesticides should be based on sustainable development, environmental protection, and
ecological balance. In order to achieve sustainable development, many scientists have
undertaken the search for low toxicity, low residue and environmentally friendly biopesti-
cides, among which botanical pesticides are an important part. Botanical insecticides are
attracting global attention as new tools to kill or suppress insect pest populations. Generally,
natural products are particularly attractive as templates because of their structural diversity.
They can be used directly and have been used as models for the development of several
successful insecticides that introduce new mechanisms of action, which are greatly needed
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to overcome the acquired resistance to synthetic insecticide in agricultural production.
Therefore, active chemicals isolated from plants are of considerable significance [2].

The Meliaceae family has 50 genera, including more than 550 species, which are
evergreen or deciduous trees or shrubs and are mainly distributed in the tropics and
subtropics. These plants are known to be rich sources of limonoids. Until now, various
insecticidal active ingredients have been discovered in Meliaceae plants. Numerous studies
have demonstrated that the great insecticidal potential of Meliaceae plants has been mainly
due to triterpenoids. Many of these triterpenoids have shown contact poison, stomach
poison, antifeedant, or growth inhibition activities on various important agricultural
insects [3–5].

This review is an extensive coverage of naturally occurring insecticidal triterpenoids
in eight genera (Aglaia, Aphanamixis, Azadirachta, Cabralea, Carapa, Cedrela, Chisocheton,
and Chukrasia) of Meliaceae discovered from 1968 to the present. The insecticidal plant
species, insecticidal phytochemicals and their structures, various insecticidal activities, the
insecticidal mechanism of action, and the structure–activity relationship (SAR) of the active
insecticidal chemicals are summarized. This review thus provides a relatively systemic
background on the research of insecticidal triterpenoids from Meliaceae plants and can
offer meaningful hints to the development of insecticidal triterpenoids as novel insecticides
and promote the application of these molecules in agricultural production.

2. Structures of Triterpenes

Triterpenes are terpenoids derived from squalene, usually composed of 30 carbon
atoms. The structural classification of triterpenoids is mainly grouped into six groups,
including linear triterpenes, simple cyclic triterpenes (monocyclic triterpenes, bicyclic
triterpenes, and tricyclic triterpenes), tetracyclic triterpenes, pentacyclic triterpenes, nor-
triterpenes, and triterpenoid saponins (Figure 1).

Tetracyclic triterpenes are mainly divided into five groups, including cycloartanes,
cucurbitanes, dammaranes, lanostanes, tirucallanes, and protolimonoids; while pentacyclic
triterpenoids are mainly divided into five groups, including friedelanes, hopanes, lupanes,
oleananes, and ursanes. Simple cyclic triterpenes are further classified into three groups,
including monocyclic triterpenes, bicyclic triterpenes, and tricyclic triterpenes. Addition-
ally, triterpenoid saponoinsare saponins are formed by the linkage of hydroxyl groups
at certain positions of triterpenoids with different kinds and quantities of sugars [6]. In
particular, nortriterpenes are formed by the rearrangement and degradation of triterpenes.
Nortriterpenes mainly include mononorterpenoids, dinorterpenoids, trinorterpenoids,
tetranorterpenoids, and polynorterpenoids; among them, tetranortriterpenoids are gener-
ally found to show obvious insecticidal activities. Specifically, the skeleton of the Meliaceae
plant is composed of 26 carbons with the loss of 4 carbons, therefore, they are also called
tetranortriterpenoids.

Tetranortriterpenoids are well-known insecticidal limonoids formed by the loss of
the four terminal carbons of the side chain in the apolipoprotein or apolipoane skeleton,
and then cyclized to form a 17β-furan ring. The basic skeleton of limonoids undergoes
oxidative rearrangement to form various types of limonoids. It is mainly divided into ring
intact limonoids, ring-seco limonoids, rearranged limonoids, and limonoids derivatives [7].

Among them, ring intact limonoids are mainly classified into five types, including
azadirones, cedrelones, havanensins, trichilins, and vilasinins. Particularly, azadirone
limonoids are characteristic of 3-oxo-∆1,2 and C-7 oxygenation, while the cedrelone limonoids
are 5,6-enol-7-one derivatives. For havanensin limonoids, generally, there exist oxygenic
substituents at C-1, C-3, and C-7, and the degree of oxidation of C-28 varies from methyl
to carboxyl. In addition, most of the trichilin limonoids contain the C-19/29 lactol bridge
and the 14,15-epoxide moieties, while the vilasinin limonoids have the characteristics of a
6α,28-ether bridge [8].
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demolition of three rings (rings A,B,D-seco group). In particular, the ring C-seco group, 
which belongs to the group of demolition of a single ring, can be further divided into five 
classes (azadirachtin/melia-carpin-class, azadirachtinin/meliacarpinin-class, salannin-
class, nimbolinin-class, nimbin-class, and nimbolidin-class) [9], while the rings of the A,B-
seco group, belonging to the group of demolition of two rings, can be further divided into 
prieurianin-class and others. In the prieurianin-class, aphanamixoid-type belong to its 

Figure 1. The structural classification of triterpenes.

Ring-seco limonoids are mainly divided into demolition of a single ring (ring A-
seco group, ring B-seco group, ring C-seco group, and ring D-seco group), demolition of
two rings (rings A,B-seco group, rings A,D-seco group, and rings B,D-seco group), and
demolition of three rings (rings A,B,D-seco group). In particular, the ring C-seco group,
which belongs to the group of demolition of a single ring, can be further divided into
five classes (azadirachtin/melia-carpin-class, azadirachtinin/meliacarpinin-class, salannin-
class, nimbolinin-class, nimbin-class, and nimbolidin-class) [9], while the rings of the
A,B-seco group, belonging to the group of demolition of two rings, can be further divided
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into prieurianin-class and others. In the prieurianin-class, aphanamixoid-type belong to its
structural classification [10]. Similarly, rings B,D-seco group also can be further grouped
into the andirobin-class and others.

Rearranged limonoids include 1,n-linkage group, 2,30-linkage group, 8,11-linkage group
(namely, trijugin-class), 10,11-linkage group (namely, cipadesin-class), and other linkages
groups. Among them, 2,30-linkage groups include mexicanolides and phragmalins, and
phragmalins can be further divided intophragmalinorthoesters and polyoxyphragmalins.

In addition, limonoid derivatives contain seven types, which are pentanortriter-
penoids, hexanortriterpenoids, heptanortriterpenoids, octanortriterpenoids, enneanor-
triterpenoids, N-containing derivatives, and simple degraded derivatives [9].

3. Plant Species and Their Insecticidal Chemicals

A total of 19 insecticidal plant species from eight genera (Aglaia, Aphanamixis, Azadirachta,
Cabralea, Carapa, Cedrela, Chisocheton, and Chukrasia) in Meliaceae are reported here to show
insecticidal activities (Table 1 and Figure 2). In these species, Azadirachta indica A. Juss was the
most well-known insecticidal plant and azadirachtin was the active molecule most widely
recognized and highly effective botanical insecticide [10–16]. However, it is noteworthy that
six species from Cedrela were reported to show insecticidal activity, deeming them deserving
of further study.

Table 1. The 19 insecticidal plant species of 8 genera in Meliaceae.

Family Genus Species

Meliaceae

Aglaia Aglaia elaeagnoidea (A. Juss.) Benth.

Aphanamixis Aphanamixis grandifolia Bl.
Aphanamixis polystachya (Wall.) R. Parker

Azadirachta
Azadirachta excelsa (Jack) Jacobs

Azadirachta indica A. Juss
Azadirachta siamensis Val.

Cabralea Cabralea canjerana (Vell.) Mart
Carapa Carapa guianensis Aubl.

Cedrela

Cedrela dugessi (S. Watson)
Cedrela fissilis Vell.
Cedrela odorata L.

Cedrela salvadorensis L.
Cedrela sinensis Juss.

Cedrela toona Roxb. Ex Rottler et Willd.
Chisocheton ceramicus (Miq.) C.DC.

Chisocheton
Chisocheton paniculatus (Roxb.) Hiern

Chisocheton siamensis Craib
Chisocheton erythrocarpus Hiern

Chukrasia Chukrasia tabularis A. Juss.

In total, 102 insecticidal chemicals were found to be active from the 19 aforementioned
plant species. They were active on 29 insect species (Aedes aegypti (L.), Aedes albopictus
Skuse, Anopheles gambiae Giles, Anopheles stephensi Liston, Atta sexdens rubropilosa Forel,
Culex quinquefasciatus Say, Diabrotica balteata Le Conte, Epilachna paenulata Germar, Epilachna
varivestis Mulsant, Helicoverpa armigera (Hübner), Heliothis virescens (Fabricius), Heliothis zea
(Boddie), Leptinotarsa decemlineata (Say), Locusta migratoria (L.), Musca domestica L., Ostrinia
nubilalis (Hübner), Pectinophora gossypiella (Saund.), Peridroma saucia (Hübner), Phyllotreta
striolata (Fabricius), Pieris brassicae (L.), Pieris rapae (L.), Plutella xylostella (L.), Reticulitermes
speratus Kollbe, Rhodnius prolixus Stål, Schistocerca gregaria Forskål, Sitobion avenae (Fabri-
cius), Spodoptera frugiperda Smith, Spodoptera littoralis (Boisduval), and Spodoptera litura
(F.)). Generally, these plant-derived chemicals showed good antifeedant, growth inhibition
activity, poisonous activity as well as other activities [9,17–30].
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In sum, 43 chemicals isolated from 15 plant species (Aphanamixis polystachya (Wall.) R.
Parker, Azadirachta excelsa (Jack) Jacobs, A. indica A. Juss, Azadirachta siamensis Val., Cabralea
canjerana (Vell.) Mart, Cabralea eichleriana DC., Carapa guianensis Aubl., Cedrela dugessi (S. W
atson), Cedrela fissilis Vell., Cedrela odorata L., Cedrela salvadorensis L., Cedrela sinensis Juss.,
Chisocheton paniculatus Hiern., Chisocheton siamensis Craib, and Chukrasia tabularis A. Juss.)
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showed antifeedant activity against 16 insect species (E. paenulata, E. varivestis, H. armigera,
L. decemlineata, L. migratoria, O. nubilalis, P. saucia, P. striolata, P. brassicae, P. rapae, P. xylostella,
R. speratus, R. prolixus, S. gregaria, S. littoralis, and S. litura) (Table 2) [9,17,21–23,29,31]. In
these chemicals, azadirachtin, namely azadirachtin A, was the most active and has been
successfully used as a botanical insecticide. Azadirachtin B and L also showed significant
activity. Normally, the widely used various neem-based insecticide preparations consisted
of not only azadirachtin A but also other similar azadirachtins, such as azadirachtin B
and L. Still, the activity of other azadirachtins and some other types of chemicals deserves
more attention. For example, epoxyprieurianin showed an obvious antifeedant activity
on H. armigera (EC50 = 3.2 µg/mL, 7 d). Another chemical, 1-tigloyl-3-acetyl-azadirachtol,
showed good activity on E. varivestis. These chemicals could be developed as antifeedant
agents on some specific insects in the future [9,32,33].

Table 2. Antifeedant activity of insect cidal triterpenoids of plants from 8 genera in Meliaceae.

Compound Plant Source Insect Activity Ref.

Aphanamixoid A Aphanamixis polystachya Helicoverpa armigera AFD *, EC50 = 0.015 µmol/cm2 (24 h) [31]
Aphanamixoid C Aphanamixis polystachya Helicoverpa armigera AFD, EC50 = 0.017 µmol/cm2 (24 h)

[18]Aphanamixoid F Aphanamixis polystachya Helicoverpa armigera AFD, EC50 = 0.008 µmol/cm2 (24 h)
Aphanamixoid G Aphanamixis polystachya Helicoverpa armigera AFD, EC50 = 0.012 µmol/cm2 (24 h)

Prieurianin Aphanamixis polystachya Helicoverpa armigera AFD, EC50 = 18.8 µg/mL (7 d) [34]
Epoxyprieurianin Aphanamixis polystachya Helicoverpa armigera AFD, EC50 = 3.2 µg/mL (7 d) [34]

Azadirachtin Azadirachta indica
Azadirachta excelsa

Epilachna varivesti AFD, EC50 = 13 µg/mL (24 h)

[9–13,15,16,33,35,36]

Epilachna paenulata AFD, LD50 = 1.24 µg/cm2 (96 h)
Helicoverpa armigera AFD, EC50 = 0.26 µg/mL (6 h)

Locusta migratoria AFD, MIC = 25 µg/mL
Locusta migratoria AFD, ED50 = 3 µg/mL (48 h)
Ostrinia nubilalis AFD, PC50 = 3.5 µg/mL (48 h)
Peridroma saucia AFD, EC50 = 0.26 µg/mL (72 h)

Pieris rapae AFD, AR = 100(1000 µg/mL) (24 h)
Phyllotreta striolata AFD, MIC = 10 µg/mL

Reticulitermes speratus AFD, PC95 = 65.293 (25 d)
Rhodnius prolixus AFD, ED50 = 25.0 µg/mL (25 d)

Schistocerca gregaria AFD, ED50 = 0.001 µg/mL
Spodoptera littoralis AFD, AI = 98.8 ± 1.11 (1 µg/mL) (8 h)

Azadirone Azadirachta indica Leptinotarsa
decemlineata AI = 11.6–26.9(100–500 µg/mL) (20 h) [37]

7-deacetylgedunin
Azadirachta indica

Reticulitermes speratus AFD, PC95 = 113.7 µg/disc (30 d) [23]Cedrela fissilis
Cedrela sinensis

Chisocheton compound F Chisocheton paniculatus Pieris brassicae Antifeedant activity [38]

Salannin Azadirachta indica Reticulitermes speratus AFD, PC95 = 203.3 µg/disc (30 d) [23]
Spodoptera litura FRA50

# = 2.8 µg/cm2 (7 d) [22]

Gedunin

Azadirachta indica

Reticulitermes speratus AFD, PC95 = 218.4 µg/disc (30 d) [23]

Cedrela dugessi
Cedrela fissilis

Cedrela sinensis
Cedrela salvadorensis
Cabralea eichleriana
Carapa guianensis

Chisocheton paniculatus
17β-hydroxy-
azadiradione

Azadirachta indica Reticulitermes speratus AFD, PC95 = 235.6 µg/disc (30 d) [23]Carapa guianensis
nimbandiol Azadirachta indica Reticulitermes speratus AFD, PC95 = 254.4 µg/disc (30 d) [23]

3-deacetylsalannin Azadirachta indica Reticulitermes speratus AFD, PC95 = 1373.1 µg/disc (30 d) [23]
6-deacetylnimbin Azadirachta indica Reticulitermes speratus AFD, PC95 = 1581.2 µg/disc (30 d) [23]

Azadirachtin B Azadirachta indica Locusta migratoria AFD, EC50 = 12 µg/mL [39]
Azadirachta excelsa Epilachna varivesti AFD, EC50 = 30 µg/mL [9]

Nimbolide Azadirachta indica Epilachna varivesti AFD, EC50 = 90 µg/mL [9]Azadirachta excelsa

Azadirachtin L Azadirachta indica Epilachna varivesti AFD, EC50 = 6 µg/mL [9]Azadirachta excelsa
1-tigloyl-3-acetyl-

azadirachtol
Azadirachta excelsa Epilachna varivesti AFD, EC50 = 6 µg/mL [9]Azadirachta siamensis

Salannol Azadirachta indica Spodoptera litura FRA50 = 2.3 µg/cm2 (7 d) [22]
Azadiraindin A Azadirachta indica Plutella xylostella AR = 28% at 2000 µg/mL (48 h) [24]

Epoxyazadiradione Azadirachta indica Plutella xylostella AR = 37.2% at 2000 µg/mL (48 h) [24]
Desfuranoazadiradione Azadirachta indica Plutella xylostella AR = 39.6% at 2000 µg/mL (48 h) [24]

Azadiradione Azadirachta indica Plutella xylostella AR = 90.6% at 2000 µg/mL (48 h) [24]Chisocheton siamensis
7-deacetoxy-7-oxo-

gedunin

Cedrela fissilis
Spodoptera littoralis AFD at 1000 µg/mL (3–10 h) [20]Cabralea eichleriana

Carapa guianensis
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Table 2. Cont.

Compound Plant Source Insect Activity Ref.

Methyl angolensate Cedrela fissilis Spodoptera litura AFD, PFI = 65.3 at 1 µg/cm2 (24 h) [40]Cabralea canjerana
11β-acetoxyobacunyl

acetate Cedrela odorata Spodoptera littoralis AFD at 1000 µg/mL [29]
11β,19-diacetoxy-l-de-

acetyl-l-epidihy-
dronomilin

Cedrela odorata Spodoptera littoralis AFD at 1000 µg/mL [29]

11β-acetoxyobacunol Cedrela odorata Spodoptera littoralis AFD at 1000 µg/mL [29]
Odoralide Cedrela odorata Spodoptera littoralis AFD at 1000 µg/mL [29]

Swietenolide Cedrela odorata Spodoptera littoralis AFD at 1000 µg/mL [29]
8β,14α-dihydro-

swietenolide Cedrela odorata Spodoptera littoralis AFD at 500 µg/mL [29]

3β,6-dihydroxydihydro
-carapin Cedrela odorata Spodoptera littoralis AFD at 1000 µg/mL [29]

3β-hydroxydihydro-
carapin Cedrela odorata Spodoptera littoralis AFD at 1000 µg/mL [29]

Xyloccensin K Cedrela odorata Spodoptera littoralis AFD at 1000 µg/mL [29]
Cedrodorin Cedrela odorata Spodoptera littoralis AFD at 1000 µg/mL [29]
Ocotillone Cabralea canjerana Spodoptera litura AFD, PFI = 44.5 at 1 µg/cm2 (24) [41]
Tabulalin Chukrasia tabularis Spodoptera littoralis AFD at 500 µg/mL (2–12 h) [42]

Tabulalide D Chukrasia tabularis Spodoptera littoralis AFD at 500 µg/mL (2–12 h) [42]
TabulalideA Chukrasia tabularis Spodoptera littoralis AFD at 1000 µg/mL (2–12 h) [42]
Tabulalide B Chukrasia tabularis Spodoptera littoralis AFD at 1000 µg/mL (2–12 h) [42]
Tabulalide E Chukrasia tabularis Spodoptera littoralis AFD at 1000 µg/mL (2–12 h) [42]

*: AFD means antifeedant activity; #: FRA50 means feeding reducing activity by 50%.

Overall, 49 chemicals isolated from 14 plant species (Aglaia elaeagnoidea (A. Juss.),
A. polystachya, A. excelsa, A. indica, C. canjerana, C. eichleriana, C. guianensis, C. dugessi,
C. fissilis, C. salvadorensis, C. sinensis, Chisocheton ceramicus (Miq.) C.DC., Chisocheton ery-
throcarpus Hiern, and C. paniculatus) in Meliaceae exhibited poisonous activity on 10 insect
species (A. aegypti, A. albopictus, A. gambiae, A. stephensi, A. sexdens rubropilosa, C. quinquefas-
ciatus, D. balteata, P. xylostella, S. frugiperda, and S. littoralis) (Table 3) [9,19,20,25,26,28,43].
Normally, the poisonous activity was not the most important of many plant-derived
chemicals. However, azadirachtin did show good poisonous activity against S. littoralis.
Other chemicals such as azadirachtin O, azadirachtin P, azadirachtin Q, azadirachtin B,
azadirachtin L, azadirachtin M, 11α-azadirachtin H, and azadirachtol also showed good
poisonous activity on P. xylostella, with LD50 (24 or 96 h) values ranging from 0.75 to
3.92 µg/g [9,33].

As a whole, 19 chemicals isolated from 11 plant species (A. elaeagnoidea, A. excelsa,
A. indica, C. canjerana, C. guianensis, C. fissilis, C. odorata, C. salvadorensis, Cedrela toona
Roxb., C. paniculatus, and C. siamensis) in Meliaceae possessed growth regulatory activity
on 12 insect species (A. aegypti, H. armigera, H. virescens, H. zea, M. domestica, O. nubilalis,
P. gossypiella, P. saucia, R. prolixus, S. frugiperda, S. littoralis, and S. litura) and some locusts
(Table 4) [17,22,27,30,31,40,43]. Among these chemicals, azadirachtin was the most effective
insect growth regulatory agent showing good activity on H. armigera, R. prolixus, H. zea, H.
virescens, S. frugiperda, P. gossypiella, S. litura, and S. littoralis, with EC50 or ED50 values (7 or
10 d) ranging from 0.11 to 0.70 µg/mL [9,29,30,48,50].

The following sections describe the insecticidal plant species, the corresponding
insecticidal chemicals, and their activities in detail.

3.1. Aglaia

In the Aglaia genus, two species, including A. elaeagnoidea and A. odorata, have been
reported to show insecticidal activity. Previous phytochemical investigation and bioactivity
studies on the Aglaia genus have shown the main chemical group of this genus to be
rocaglamide derivatives (flavaglines) [53]. However, triterpenoids were also the main
insecticidal active constituents in this genus.
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Table 3. Poisonous activity of insecticidal triterpenoids of plants from 8 genera in Meliaceae.

Compound Plant Source Insect Activity Ref.

Aphapolynin D Aphanamixis polystachya Diabrotica balteata MS: 66 5–9 d)

[19]

Aphanalide F Aphanamixis polystachya Diabrotica balteata MS: 66 (5–9 d)
Aphapolynin F Aphanamixis polystachya Diabrotica balteata MS: 33 (5–9 d)

Dregenana-1 Aphanamixis polystachya Diabrotica balteata MS: 33 (5–9 d)
Aphanalide E Aphanamixis polystachya Diabrotica balteata MS: 33 (5–9 d)
Aphanalide G Aphanamixis polystachya Diabrotica balteata MS: 33 (5–9 d)
Aphanalide H Aphanamixis polystachya Diabrotica balteata MS: 99 (5–9 d)

Aphapolynin C Aphanamixis polystachya Diabrotica balteata MS: 99 (5–9 d)
Aphanamixis polystachya Caenorhabditis elegans MS: 66 (5–9 d)

Aphapolynin A Aphanamixis polystachya Plutella xylostella MS: 66 (5–9 d)
Zaphaprinin I Aphanamixis polystachya Plutella xylostella MS: 99 (5–9 d)
Zaphaprinin R Aphanamixis polystachya Plutella xylostella MS: 99 (5–9 d)

Azadirachtin Azadirachta indica
Azadirachta excelsa

Spodoptera littoralis LC50 = 0.32 µg/mL (12 d)
[9–13,15,16,33,35,36]Anopheles gambiae LD50 = 57.1 µg/mL (24 h)

Plutella xylostella LD50 = 7.04–0.87 (24–96 h)

7-deacetylgedunin
Azadirachta indica

Atta sexdens rubropilosa S50 = 9 d at 100 µg/mL [28]Cedrela fissilis
Cedrela sinensis

Gedunin

Azadirachta indica

Spodoptera frugiperda LC50 = 39 µg/mL (7 d) [43]

Cedrela dugessi
Cedrela fissilis

Cedrela sinensis
Cedrela salvadorensis
Cabralea eichleriana
Carapa guianensis

Chisocheton paniculatus
Nimocinol Azadirachta indica Aedes aegypti LC50 = 21 µg/mL (24 h) [25]

6α-O-acetyl-7-deacetyl-
nimocinol Azadirachta indica Aedes aegypti LC50 = 83 µg/mL (24 h) [25]

22,23-dihydronimocinol Azadirachta indica Anopheles stephensi LC50 = 60 µg/mL (24 h) [26]
desfurano-6α-hydroxy-

azadiradione Azadirachta indica Anopheles stephensi LC50 = 43 µg/mL (24 h) [26]

Meliatetraolenone Azadirachta indica Anopheles stephensi LC50 = 16 µg/mL (24 h) [26]
Odoratone Azadirachta indica Anopheles stephensi LC50 = 154 µg/mL (24 h) [44]

Azadirachtin O Azadirachta excelsa Plutella xylostella LD50 = 3.92 µg/g (24 h) [33]
Azadirachtin P Azadirachta excelsa Plutella xylostella LD50 = 2.19 µg/g (24 h) [33]
Azadirachtin Q Azadirachta excelsa Plutella xylostella LD50 = 1.10 µg/g (96 h) [33]
Azadirachtin B Azadirachta excelsa Plutella xylostella LD50 = 1.06 µg/g (96 h) [33]
Azadirachtin L Azadirachta excelsa Plutella xylostella LD50 = 1.92 µg/g (96 h) [33]
Azadirachtin M Azadirachta excelsa Plutella xylostella LD50 = 1.30 µg/g (96 h) [33]

11α-azadirachtin H Azadirachta excelsa Plutella xylostella LD50 = 0.75 µg/g (96 h) [33]
Azadirachtol Azadirachta excelsa Plutella xylostella LD50 = 1.78 µg/g (96 h) [33]

23-O-methylnimocinolide Azadirachta indica Aedes aegypti LC50 = 53 µg/mL (24 h) [45]
7-O-deacetyl-23-O-methyl-

7α-O-senecioyl-nimocinolide Azadirachta indica Aedes aegypti LC50 = 14 µg/mL (24 h) [45]

6α-acetoxygedunin
Aglaia elaeagnoidea

Atta sexdens rubropilosa S50 = 8 d at 100 µg/mL [28]Carapa guianensis
Cedrela fissilis

Chisochetonpaniculatus

14-deoxy-∆14,15-xyloccensin K Chisocheton erythrocarpus
Hiern

Aedes aegypti,
Aedes albopictus

Culex Quinquefasciatus

LC50 = 10.2 µg/mL (24 h)
LC50 = 12.16 µg/mL (24 h)
LC50 = 16.82 µg/mL (24 h)

[46]

14-deoxyxyloccensin K
Chisocheton erythrocarpus

Hiern
Chisocheton ceramicus

Aedes aegypti,
Aedes albopictus

Culex Quinquefasciatus

LC50 = 3.19 µg/mL (24 h)
LC50 = 3.01 µg/mL (24 h)
LC50 = 3.64 µg/mL (24 h)

[46]

Photogedunin epimer mixture Cedrela dugessi Spodoptera frugiperda LC50 = 10 µg/mL (7 d) [47]
Photoacetic acid acetate mixture Cedrela dugessi Spodoptera frugiperda LC50 = 8 µg/mL (7 d) [47]

7-deacetoxy-7-oxo-gedunin
Cedrela fissilis

Atta sexdens rubropilosa S50 = 11 d at 100 µg/mL [28]Cabralea eichleriana
Carapa guianensis

Photogedunin Cedrela fissilis Atta sexdens rubropilosa S50 = 9 d at 100 µg/mL [28]1,2-dihydro-3β-hydroxy-7-
deacetoxy-7-oxogedunin Cedrela fissilis Atta sexdens rubropilosa S50 = 9 d at 100 µg/mL

Cipadesin B Cedrela fissilis Atta sexdens rubropilosa S50 = 9 d at 100 µg/mL

[28]
Swietemahonolide Cedrela fissilis Atta sexdens rubropilosa S50 = 8 d at 100 µg/mL
3β-acetoxycarapin Cedrela fissilis Atta sexdens rubropilosa S50 = 8 d at 100 µg/mL

Oleanolic acid Cedrela fissilis Atta sexdens rubropilosa S50 = 6 d at 100 µg/mL
Oleanonic acid Cedrela fissilis Atta sexdens rubropilosa S50 = 8 d at 100 µg/mL

Methyl angolensate Cedrela fissilis Spodoptera frugiperda MR: 40% at 50 mg/kg (7 d) [48]Cabralea canjerana
Photogeduninepimeric acetate

mixture Cedrela salvadorensis Spodoptera frugiperda SR 50% at 10 µg/mL (24 h) [49]
Photogeduninepimeric mixture Cedrela salvadorensis Spodoptera frugiperda SR 17% at 10 µg/mL (24 h)

Ocotillone Cabralea canjerana Spodoptera frugiperda MR: 40% at 50 mg/kg (7 d) [48]
β-photogedunin Carapa guianensis Spodoptera frugiperda LM 53.3% at 50 µg/mL (7 d) [48]PM 20.0% at 50 µg/mL (7 d)

MS: mortality scored; SR: survival rate; MR: mortality rate; LM: larval mortality; PM: pupal mortality.
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Table 4. Growth regulatory activity of insecticidal triterpenoids of plants from 8 genera in Meliaceae.

Compound Plant Source Insect Activity Ref.

Azadirachtin Azadirachta indica
Azadirachta excelsa

Helicoverpa armigera IGR, EC50 = 0.26 µg/mL (7 d)

[9–13,15,16,33,35,36]
Rhodnius prolixus IGR, ED50 = 0.40 µg/mL (7 d)

Heliothis zea
Heliothis virescens IGR, ED50 = 0.70 µg/mL (10 d)

Spodoptera frugiperda,
Pectinophora gossypiella IGR, ED50 = 0.40 µg/mL (10 d)

Spodoptera litura IGR, EC50 = 0.21 µg/mL (7 d)
Spodoptera littoralis EC50 = 0.11 µg/mL (6 d)

Nimocinolide Azadirachta indica Musca domestica FI at 100 µg/mL [27]

Isonimocinolide Azadirachta indica Musca domestica FI at 100 µg/mL [27]Aedes uegypti mutagenic properties
7-deacetylazadiradione Azadirachta indica Heliothis virescens IGR, EC50 = 1600 µg/mL [30]Chisocheton paniculatus

Salannin Azadirachta indica Helicoverpa armigera IGR EC50 = 86.5 µg/mL (7 d) [22]Azadirachta indica Spodoptera litura IGR EC50 = 87.7 µg/mL (7 d)
3-O-acetyl salannol Azadirachta indica Helicoverpa armigera IGR EC50 = 64.2 µg/mL (7 d) [22]

Azadirachta indica Spodoptera litura
IGR EC50 = 65.6 µg/mL; RF50 at

2.0 µg/cm2 (7 d)

Salannol Azadirachta indica Helicoverpa armigera IGR, EC50 was 79.7 µg/mL (7 d) [22]Azadirachta indica Spodoptera litura IGR, EC50 = 77.4 µg/mL (7 d)
6β-hydroxygedunin Azadirachta indica Helicoverpa armigera IGR EC50 = 24.2 µg/mL (7 d) [35]Azadirachta indica Spodoptera litura IGR EC50= 391.4 µg/mL (7 d)

Nimbinene Azadirachta indica Helicoverpa armigera IGR EC50 was 21.5 µg/mL (7 d) [35]Azadirachta indica Spodoptera litura IGR EC50 = 404.5 µg/mL (7 d)

Azadiradione

Azadirachta indica Heliothis virescens IGR, EC50= 560 µg/mL [30]Chisocheton siamensis
Azadirachta indica Heliothis virescens IGR, EC50 = 560 µg/mL [30]Chisocheton siamensis

6α-acetoxygedunin
Aglaia elaeagnoidea

Ostrinia nubilalis reduced growth at 50 µg/mL [17]Carapa guianensis
Cedrela fissilis

Chisocheton paniculatus
Cedrelanolide I Cedrela salvadorensis Ostrinia nubilalis reduced weight at 50 µg/mL [51]

Cedrelone Cedrela odorata Peridroma saucia IGR, EC50 = 53.1 µg/mL (9 d) [29]Cedrela toona
Cabraleadiol Cabralea canjerana Spodoptera frugiperda LPE, 1.2 d [48]

3β-deacetylfissinolide Cabralea canjerana Spodoptera frugiperda LPE, 1.2 d [48]
β-photogedunin Carapa guianensis Spodoptera frugiperda PWI at 50 mg/kg (7 d) [48]
Cedrelanolide I Cedrela salvadorensis Ostrinia nubilalis reduced weight at 50 µg/mL [51]

Meliantriol Azadirachta indica Locusts chewing prevention [52]
7-deacetyl-17β-hydroxy-

azadiradione Azadirachta indica Heliothis virescens IGR, EC50 = 240 µg/mL [30]

IGR: insect growth inhibitory activity; LPE: larval phase extended; FI: fecundity inhibition; RF50: reduced feeding by 50%; PWI: pupal
weight inhibition.

6α-acetoxygedunin, belonging to ring D-seco limonoids, was isolated from A. elaeag-
noidea and could reduce the growth of the European corn borer O. nubilalis at 50 µg/mL [17,51].
A. odorata has been reported to show insecticidal activity on the cotton leafworm S. lit-
toralis [54,55]. However, most of the reported compounds with insecticidal activity ex-
tracted from this species were rocaglaol derivatives. In addition, some triterpenoids,
such as eleganoside A and odoratanone A, have also been reported to be extracted from
A. odorata, but their insecticidal activities have not been described [56–58].

3.2. Aphanamixis

Aphanamixis is a rich source of limonoids [59–61]. In this genus, A. polystachya and A.
grandifolia have been reported to show insecticidal activity (Table 1).

A total of 17 tetranortriterpenoids were reported to show insecticidal activities. In detail,
the 17 tetranortriterpenoids contained 13 rings A,B-seco-type limonoids (prieurianin, epoxy-
prieurianin, zaphaprinin I, zaphaprinin R, aphapolynin A, aphapolynin C, aphapolynin
F, aphapolynin D, dregenana-1, aphanamixoid A, aphanamixoid C, aphanamixoid F, and
aphanamixoid G) [18,31,62] and 4 ring A-seco type chemicals (aphanalide E, aphanalide F,
aphanalide G, and aphanalide H) [19,34].
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3.2.1. Rings A,B-seco Limonoids

In this group, 13 chemicals have been reported to show insecticidal activity and
they were prieurianin, epoxyprieurianin, zaphaprinin I, zaphaprinin R, aphapolynin A,
aphapolynin C, aphapolynin F, aphapolynin D, dregenana-1, aphanamixoid A, aphanamixoid
C, aphanamixoid F, and aphanamixoid G). These chemicals were isolated from
A. polystachya [17,31,62,63].

In these chemicals, prieurianin and epoxyprieurianin exhibited antifeedant activity
against the cotton bollworm, H. armigera and the EC50 values were 18.8 µg/mL and
3.2 µg/mL, respectively, after 7 d [34]. Further study has shown that prieurianin-type
limonoids, zaphaprinin I, showed strong insecticidal activities against the aphid S. avenae,
with a mortality score of 99, which was the same with the positive control thiamethoxam.
Both Zaphaprinin I and Zaphaprinin R showed strong insecticidal activities against the
diamondback moth/cabbage moth, P. xylostella and both mortalities were scored as 99,
which was the same with the positive control thiamethoxam [63].

Aphapolynin A has been found to cause a mortality score of 66 against the diamond-
back moth P. xylostella in a leaf-disk assay at 500 µg/mL. Mortality was assessed relative
to untreated control wells, with wells showing significant levels of mortality scored as
99, and wells without significant mortality scored as 0 [19,64]. Similarly, aphapolynin
C, aphapolynin D, aphapolynin F, and dregenana-1 were found to possess obvious in-
secticidal activity against the banded cucumber beetle, D. balteata in a leaf-disk assay at
500 µg/mL [19,34,65].

Aphanamixoids are a novel class of limonoids derived from prieurianin-type limonoids.
Aphanamixoid A, aphanamixoid C (highly oxidized tetra-uridine), aphanamixoid F, and
aphanamixoid G all affected the feeding activity of the cotton bollworm, H. armigera. The
EC50 values of these compounds (24 h) were 0.015, 0.017, 0.008, and 0.012 µmol/cm2,
respectively [18,31,66].

3.2.2. Ring A-seco Limonoids

Aphanalide E, aphanalide F, aphanalide G, and aphanalide H were found to cause
mortalities scored as 33–99 against the banded cucumber beetle D. balteata in a leaf-disk
assay at 500 µg/mL at 5–9 days. Mortality was assessed relative to untreated control
wells, with wells showing significant levels of mortality scored as 99, and wells without
significant mortality scored as 0 [19,64].

3.3. Azadirachta

In this genus, three species, A. indica, A. excels, and A. siamensis were reported to show
insecticidal activity with triterpenoids.

A total of 36 tetranortriterpenoids (21 ring-seco limonoids and 15 ring intact limonoids),
7 pentanortriterpenoids (11α-azadirachtin H, azadirachtin I, azadirachtin L, azadirachtin
M, azadirachtin P, nimbinene, and nimbandiol), 2 octanortriterpenoids (desfurano-6α-
hydroxyazadiradione and desfuranoazadiradione), and 2 protolimonoids (meliantriol and
odoratone) were reported to show insecticidal activities [9,22–24,26,27,32,33,35,39].

Specifically, the 21 ring-seco limonoids were mainly the demolition of a single ring,
consisting of 18 ring C-seco limonoinds (12 azadirachtin/meliacarpin-class chemicals,
5 salannins, and 1 nimbin-class chemical), and 3 ring D-seco limonoids (gedunin, 7-
deacetylgedunin and 6β-hydroxygedunin). Further, the 12 azadirachtin/meliacarpin-class
chemicals were azadirachtin A, azadirachtin B, azadirachtin D, azadirachtin E, azadirachtin
F, azadirachtin G, azadirachtin K, azadirachtin N, azadirachtin O, azadirachtin Q, azadirach-
tol, and 1-tigloyl-3-acetylazadirachtol. The 5 salannins were salannin, 3-deacetylsalannin,
salannol, 3-O-acetyl salannol, and nimbolide. Additionally, the only nimbin-class chem-
ical was 6-deacetylnimbin. As far as the 15 ring intact limonoids were concerned, they
were 13 azadirones (nimocinolide, isonimocinolide, azadirone, 7-deacetylazadiradione,
7-deacetyl-17β-hydroxyazadiradione, 17β-hydroxyazadiradione, 23-O-methylnimocinolide,
7-O-deacetyl-23-O-methyl-7α-O-senecioylnimocinolide, nimocinol, 6α-O-acetyl-7- deacetyl-
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nimocinol, 22,23-dihydronimocinol, epoxyazadiradione, and azadiradione), and 2 other
ring intact limonoids (azadiraindin A and meliatetraolenone) [9,22–24,26,27,32,33,35,39].

3.3.1. Ring C-seco Chemicals

In this group, 18 chemicals were reported to show insecticidal activity: azadirachtin A,
azadirachtin B, azadirachtin D, azadirachtin E, azadirachtin F, azadirachtin G, azadirachtin K,
azadirachtin N, azadirachtin O, azadirachtin Q, azadirachtol, 1-tigloyl-3-acetylazadirachtol,
salannin, 3-deacetylsalannin, 3-O-acetyl salannol, salannol, 6-deacetylnimbin, and nim-
bolide [9,22,23,32,33,39].

Among these chemicals, azadirachtins were the most widely used botanical insecti-
cides originating from A. indica [67–69] and A. excels [20,32,36]. Presently, azadirachtins
contain 15 analogs, 10 of which (azadirachtin A, B, D, E, F, G, K, N, O, and Q) belong to
azadirachtin/meliacarpin-class chemicals and 5 of which (11α-azadirachtin H, I, L, M, and
P) belong to pentanortriterpenoids [70]. As far as the insecticidal activity was concerned,
Azadirachtin A, B, L, O, P, Q, and M gained wide attention [9,33,39].

Normally, azadirachtin is referred to as azadirachtin A [9]. Azadirachtin A has a
broad control spectrum. It was reported that azadirachtin A possessed strong insecticidal
activities against more than 400 insect species in Lepidoptera, Hymenoptera, Coleoptera,
and so on. Azadirachtin A has shown various activities, including antifeeding, growth
inhibition, repellent, stomach poisoning, and sterilizing [10–16]. Particularly, antifeeding
and growth inhibition activities were the most remarkable [71–73]. Azadirachtins and
neem-based formulations included liquid type, pellet type, alginate-biosorbent, and so
on [74,75]. Of note, there are more than 2000 references focusing on azadirachtins and
several reviews on azadirachtins. Further information can be referred to in the papers by
Mordue (1993), Kraus (1993), Ley (1994), and Devakumar (2009) [21,41,76–87].

3-O-acetyl salannol, salannol, and salannin have shown growth inhibitory activity
on the cotton bollworm H. armigera and the tobacco cutworm S. litura. After 7 days, the
EC50 values of them on H. armigera were 64.2, 79.7, and 86.5 µg/mL, respectively. Similarly,
the EC50 values of them on S. litura were 65.6, 77.4, and 87.7 µg/mL, respectively [22].
Meanwhile, these three chemicals together with 3-deacetylsalannin were also reported
to show antifeedant activity on insects. In a choice leaf disc bioassay, after 7 days, 3-O-
acetyl salannol, salannol, and salannin reduced feeding by 50% in S. litura at 2.0, 2.3, and
2.8 µg/cm2, respectively [22]. Salannin also showed antifeedant activity on the lower
subterranean termite R. speratus and the PC95 value was 203.3 µg/disc after 30 d. In
contrast, 3-deacetylsalannin showed a weak antifeedant activity on R. speratus and the PC95
value was 1373.1 µg/disc after 30 d [23].

In this group, another chemical nimbolide, isolated from A. indica and A. excels,
could inhibit the feeding of the Mexican bean beetle, E. varivestis. The EC50 value was
90 µg/mL [9,32,88]. Nimbin-class chemical 6-deacetylnimbin showed antifeedant activity
on the lower subterranean termite R. speratus. The PC95 value was 1581.2 µg/disc after
30 days [23].

3.3.2. Ring D-seco Chemicals

In this group, three chemicals were reported to show insecticidal activity and they
were gedunin, 7-deacetylgedunin, and 6β-hydroxygedunin.

Gedunin showed antifeedant activity on the lower subterranean termite R. speratus
(PC95, 113.7 µg/disc) and growth inhibitory activity on the cotton bollworm H. armigera
(EC50, 50.8 µg/mL) and the tobacco cutworm S. litura (EC50, 40.4 µg/mL). In contrast, the
derivative of gedunin, 7-deacetylgedunin, was reported to show a weaker antifeedant
activity on the lower subterranean termite R. speratus (PC95, 218.4 µg/disc) after 30 days.
However, in artificial diet bioassays, 6β-hydroxygedunin showed better growth inhibitory
activity on the cotton bollworm H. armigera (EC50, 24.2 µg/mL, 7 d) and the tobacco
cutworm S. litura (EC50, 21.5 µg/mL, 7 d). This efficacy was higher in comparison to



Int. J. Mol. Sci. 2021, 22, 13262 12 of 33

gedunin, the EC50 (7 d) of which on H. armigera and S. litura were 50.8 and 40.4 µg/mL,
respectively [23,35].

3.3.3. Rings Intact Limonoids: Azadirones, Azadiraindin A and Meliatetraolenone

As mentioned above, there were 13 azadirones: azadirone, azadiradione, epoxyazadi-
radione, 7-deacetylazadiradione, 17β-hydroxyazadiradione, and 7-deacetyl-17β- hydrox-
yazadiradione, nimocinol, 22,23-dihydronimocinol, 6α-O-acetyl-7-deacetylnimocinol, ni-
mocinolide, isonimocinolide, 23-O-methylnimocinolide, and 7-O-deacetyl-23-O-methyl-7α-
O-senecioylnimocinolide.

Azadirone showed antifeedant activity against the Colorado potato beetle L. decem-
lineata with an antifeedant index of 11.6 ± 6.3 (100 µg/mL) (starved for 6 h and feed for
20 h) [37]. Azadiradione and epoxyazadiradione were also reported to show antifeedant
activities to some extent against the diamondback moth P. xylostella [24]. Further, azadi-
radione, 7-deacetylazadiradione, and 7-deacetyl-17β-hydroxyazadiradione were isolated
from the seeds of A. indica and they showed growth inhibitory activity against the tobacco
budworm H. virescens and the EC50 values were 560, 1600, and 240 µg/mL, respectively.
Similarly, 17β-hydroxyazadiradione also showed antifeedant activity and the PC95 value
at the lower subterranean termite R. speratus was 235.6 µg/disc after 30 days [23].

Nimocinol, 6α-O-acetyl-7-deacetylnimocinol, 23-O-methylnimocinolide, and 7-O-
deacetyl-23-O-methyl- 7α-O-senecioylnimocinolide poseessed insecticidal activity on the
mosquito A. aegypti. The LC50 (24 h) values of them were 21.0, 83.0, 53.0, and 2.14 µg/mL,
respectively [25,45].

Nimocinolide, isonimocinolide and 22,23-dihydronimocinol were also isolated from
the fresh leaves of A. indica [26,27]. Nimocinolide and isonimocinolide affected the fecun-
dity of the housefly M. domestica at 100–500 µg/mL and showed mutagenic properties in
the mosquito A. aegypti. In contrast, 22,23-dihydronimocinol showed poisonous activity on
the mosquito A. stephensi and the LC50 value was 60 µg/mL after 24 h [26].

Additionally, the other ring intact limonoids, azadiraindin A and meliatetraolenone,
were reported to show insecticidal activity. Azadiraindin A showed antifeedant activities
against the diamondback moth P. xylostella. The antifeedant rate was 28% at 2000 µg/mL
after 48 h [24]. Meliatetraolenone, isolated from the leaves of A. indica, showed insecticidal
activities against the mosquito A. stephensi and the LC50 value was 16 µg/mL after 24 h [44].

3.3.4. Pentanortriterpenoids

In this group, seven chemicals have been reported to show insecticidal activity and
they were 11α-azadirachtin H, azadirachtin I, azadirachtin L, azadirachtin M, azadirachtin
P, nimbinene, and nimbandiol. There were five kinds of azadirachtin analogs (11α-
azadirachtin H, I, L, M, and P) that belonged to pentanortriterpenoids. 11α-azadirachtin H,
azadirachtin L, azadirachtin M, and azadirachtin P, which were reported to have insecti-
cidal activities, were isolated from the seed kernels of A. excelsa. The LD50 values (24 h)
of these derivatives against the diamondback moth P. xylostella were 5.75, 10.27, 8.46, and
2.19 µg/g, respectively [33].

Nimbinene exhibited growth inhibitory activity on insects and the EC50 values of
nimbinene on the cotton bollworm H. armigera and the tobacco cutworm S. litura were
391.4 and 404.5 µg/mL, respectively after 7 days [35]. Further, nimbandiol were found
to show antifeedant activity on the lower subterranean termite R. speratus and the PC95
values was 254.4 µg/disc after 30 days [23].

3.3.5. Octanortriterpenoids

Desfurano-6α-hydroxyazadiradione, isolated from fresh leaves of A. indica, showed
insecticidal activity on the mosquito A. stephensi and the LC50 value was 43 µg/mL after
24 h [39]. Comparatively, desfuranoazadiradione showed relatively weak antifeedant
activity on the diamondback moth P. xylostella to some extent as demonstrated by the low
mortality rate (39.6% after 48 h) at a high concentration (2000 µg/mL) [24].
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3.3.6. Protolimonoids

Odoratone, isolated from the leaves of A. indica, showed insecticidal activities against
the mosquito A. stephensi and the LC50 value was 154 µg/mL after 24 h [44]. Another
protolimonoid isolated from this plant was meliantriol, found to be a feeding inhibitor
preventing locust chewing [52].

3.4. Cabralea

In this genus, C. canjerana has been reported to show insecticidal activity.
From C. canjerana, 2 tetracyclic triterpenes (cabraleadiol and ocotillone) and 2 tetra-

nortriterpenoids were isolated and shown to have insecticidal activity [41,48]. Particularly,
cabraleadiol and ocotillone belonged to dammaranes, while 3-β-deacetylfissinolide was
one of mexicanolides. Furthermore, the 2 tetranortriterpenoids consisted of 1 ring B, D-seco
limonoid (methyl angolensate), and 1 rearranged limonoid (3-β-deacetylfissinolide) [40,48].
Other known compounds such as gedunin and 7-deacetoxy-7-oxogedunin (belonging to
ring D-seco limonoids) were also contained in these plants [89].

Ocotillone and methyl angolensate showed antifeedant activity on the tobacco cut-
worm S. litura. At 1µg/cm2, the PFI (percentage feeding index) values (24 h) of the two
chemicals were 44.5 and 65.3, respectively [40,41,90–93]. Additionally, they also showed
insecticidal activity at 50 mg/kg with a mortality rate of 40% for the larva of the fall
armyworm S. frugiperda after 7 d [48,94]. Cabraleadiol and 3-β-deacetylfissinolide affected
the larval development on S. frugiperda. At 50 mg/kg, when treated by the method of
semi-artificial diet, the larval phase was extended by 1.2 d [48].

3.5. Carapa

In this genus, until now, only C. guianensis has been reported to show insecticidal
activity [95,96].

From this species, a ring D-seco limonoid β-photogedunin and a ring intact limonoid
17β-hydroxyazadiradione were reported to show insecticidal activity [17,97]. Particularly,
17β-hydroxyazadiradione belong to azadirones. Other known compounds such as gedunin
and 7-deacetoxy-7-oxogedunin were also contained in these plants [28].

At 50 mg/kg, β-photogedunin, when treated by the method of semi-artificial diet,
reduced the weight of pupa the fall armyworm S. frugiperda. Meanwhile, the mortalities
caused by β-photogedunin on the larval and pupal of S. frugiperda were 53.3% and 20.0%
(7 d), respectively. In contrast, gedunin at 50 mg/kg caused a mortality of 63.3% to the
larval S. frugiperda after 7 d [48,93]. 17β-hydroxyazadiradione showed antifeedant activity
on the lower subterranean termite R. speratus with a PC95 (95% protective concentrations,
µg/disc) value (30 d) of 235.6 µg/disc [23,98,99].

3.6. Cedrela

In the genus Cedrela, six species, C. dugessi, C. fissilis, C. odorata, C. salvadorensis, C.
sinensis, and C. toona have been reported to show insecticidal activity [100,101].

From these species, 25 tetranortriterpenoids (1 ring intact limonoid (cedrelone), 15
ring-seco limonoids, 9 rearranged limonoids) and 2 pentacyclic triterpenes (oleanolic acid
and oleanonic acid) were reported to show insecticidal activity. Specifically, the 15 ring-seco
limonoids included 10 ring D-seco type chemicals (gedunin, photogedunin epimer mixture,
6α-acetoxy-gedunin, 7-deacetylgedunin, photoacetic acid acetate mixture, 7-deacetoxy-
7-oxogedunin, photogeduninepimeric mixture, photogeduninepimeric acetate mixture,
photogedunin, and 1,2-dihydro-3β-hydroxy-7-deacetoxy-7-oxogedunin) [28,47,49,102],
4 rings A, D-seco type chemicals (11β,19-diacetoxy-l-deacetyl-l-epidihydronomilin, 11β-
acetoxyobacunyl acetate, 11β-acetoxyobacunol and odoralide) [29], and 1 rings B,D-seco
type chemical cedrelanolide I [44]. The nine rearranged limonoids consisted of eight mexi-
canolides (swietenolide, swietemahonolide, 3β-acetoxycarapin, 8β,14α-dihydroswietenolide,
3β,6-dihydroxydihydrocarapin, 3β-hydroxyindoline, xyloccensin K, cedrodorin) and
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cipadesin B, a chemical belonging to 10,11-linkage limonoids [29,103]. In contrast, the
above-mentioned mexicanolides belong to the 2,30-linkage group.

3.6.1. The Ring Intact Limonoid: Cedrelone

Cedrelone showed no antifeedant effect. However, cedrelone could affect the develop-
ment and reproduction of the variegated cutworm P. saucia. After 9 days of feeding, the
EC50 value of growth inhibition of cedrelone on P. saucia was found to be 53.1 µg/mL. By
injection to the 6th instar of P. saucia, cedrelone inhibited growth, delayed development,
and resulted in considerable larval mortality [43,50,104,105].

3.6.2. Ring D-seco Limonoids

Gedunin, photogedunin epimer mixture, and photoacetic acid acetate mixture have
shown insecticidal activity. The LC50 values (7 d) of these compounds against the fall
armyworm S. frugiperda were shown to be 39, 10, and 8 µg/mL, respectively [47,49,97,105].
Photogedunin, 6α-acetoxy-gedunin, 7-deacetylgedunin, 7-deacetoxy-7-oxogedunin, and
1,2-dihydro-3β-hydroxy-7-deacetoxy-7-oxogeduni possessed insecticidal activity on the
leaf-cutting ant, A. sexdens rubropilosa. At 100 µg/mL, the S50 values (S50—survival average
50% (S50)/d) of these chemicals on A. sexdens rubropilosa varied from 8 to 11 d [28,106].
When treated with photogeduninepimeric acetate mixture at 10 µg/mL, the survival rate
of the fall armyworm S. frugiperda was 50%. However, the photogeduninepimeric mixture
showed a higher activity, as shown by the 17% survival rate of S. frugiperda when treated at
10.0 µg/mL after 24 h [49].

3.6.3. Rings A,D-seco Limonoids and Rings B,D-seco Limonoids

At 1000 µg/mL, 11β,19-diacetoxy-l-deacetyl-l-epidihydronomilin, 11β-acetoxyobacunyl
acetate, 11β-acetoxyobacunol, and odoralide showed antifeedant activity on the cotton
leafworm S. littoralis [29]. At 50 µg/mL, cedrelanolide I exhibited a significant weight
reduction on the European corn borer O. nubilalis [51].

3.6.4. The Rearranged Limonoids

8β,14α-dihydroswietenolide showed antifeedant activity on the cotton leafworm S.
littoralis, which was active at 500 µg/mL. Swietemahonolide and 3β-acetoxycarapin pos-
sessed insecticidal activity on the leaf-cutting ant A. sexdens rubropilosa. At 100 µg/mL, both
S50 values of swietemahonolide and 3β-acetoxycarapin were 8 d [103]. Swietenolide, xyloc-
censin K, cedrodorin, and 3β,6-dihydroxydihydrocarapinand 3β-hydroxydihydrocarapin
showed antifeedant activity on the cotton leafworm S. littoralis at 1000 µg/mL [29].

As for the 10,11-linkage limonoid cipadesin B, it was reported to possess an effect on
A. sexdens rubropilosa. At 100 µg/mL, the S50 values of cipadesin B on A. sexdens rubropilosa
was 9 d [103].

3.6.5. Pentacyclic Triterpenes

The two pentacyclic triterpenes, oleanolic acid and oleanonic acid, belong to oleanane
triterpenes. They were reported to possess an effect on A. sexdens rubropilosa and the S50
values of oleanolic acid and oleanonic acid at 100 µg/mL on this insect were 6 d and 8 d,
respectively [103].

3.7. Chisocheton

Four species, C. ceramicus, C. paniculatus, C. siamensis, and C. erythrocarpus, have been
reported to exhibit insecticidal activity.

From C. paniculatus, three ring intact limonoids, azadiradione, 7-deacetylazadiradione
(namely, nimbocinol), chisocheton compound F, and 2 mexicanolides (14-deoxy-∆14,15-
xyloccensin K, 14-deoxyxyloccensin K), were reported to exhibit insecticidal activity. Par-
ticularly, the three chemicals belonged to azadirones. Azadiradione was isolated from
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the acetone/hexane (1:1) extract of the seeds of C. siamensis. Moreover, gedunin was also
contained in this plant [38,46,107,108].

Azadiradione showed growth inhibitory activity on the tobacco budworm H. virescens.
The EC50 value (EC50 value was the effective concentration of additive necessary to reduce
larval growth to 50% of the control values) was 560 µg/mL. In addition, the EC50 of its
alkaline hydrolysis product, 7-deacetylazadiradione, was 1600 µg/mL [27,30,109]. Chiso-
cheton compound F, isolated from C. paniculatus, showed antifeedant activity against the
large white butterfly P. brassicae [38].

Mexicanolides 14-deoxy-∆14,15-xyloccensin K and 14-deoxyxyloccensin K, isolated
from C. ceramicus and C. erythrocarpus, showed larvicidal activity on the mosquitoes A.
aegypti, A. albopictus, and C. Quinquefasciatus. After 24 h, the LC50 values of 14-deoxy-∆14,15-
xyloccensin K on them were 10.2, 12.16, and 16.82 µg/mL, respectively; while the LC50
values of 14-deoxyxyloccensin K on them were 3.19, 3.01, and 3.64 µg/mL, respectively [46].

3.8. Chukrasia

C. tabularis has been reported to show insecticidal activity.
From this species, five rearranged limonoids, belonging to tetranortriterpenoids, were

isolated. Specifically, they were phragmalins, which belonged to the 2,30-linkage group of
the rearranged limonoids. The five chemicals were tabulalin, tabulalide A, tabulalide B,
tabulalide D, and tabulalide E. They all showed antifeedant activity against the third instar
larvae of the cotton leafworm S. littoralis. Among them, tabulalin and tabulalide D were
active at 500 µg/mL. Tabulalides A, B, and E were active at 1000 µg/mL at 2–12 h after the
treatment [42,110–113].

4. Structures and Structure–Activity Relationship (SAR) of the Insecticidal Chemicals
4.1. Structures of the Insecticidal Chemicals

In total, 102 insecticidal chemicals have been summarized, including 96 nortriterpenes,
4 tetracyclic triterpenes, and 2 pentacyclic triterpenes. The structures of the chemicals are
shown in Figures 3–21.

The 96 nortriterpenes include 87 tetranortriterpenoids, 7 pentanortriterpenoids, and 2
octanortriterpenoids. Further, the 87 tetranortriterpenoids contain 17 ring intact limonoids,
53 ring-seco limonoids, and 17 rearranged limonoids. Specifically, the 53 ring-seco limonoids
include 4 ring A-seco chemicals, 18 ring C-seco limonoids, 12 ring D-seco limonoids, 13
rings A,B-seco limonoids, 4 rings A,D-seco limonoids, and 2 rings B,D-seco limonoids. The
17 rearranged limonoids include 16 2,30-linkage limonoids and one 10,11-linkage limonoid.

4.2. Structure–Activity Relationship (SAR) of the Insecticidal Chemicals

Traditional insecticide discovery effectively contributes to the development of new
insecticides but is limited by high costs and long cycles. Structure–activity relationship
(SAR) methods were introduced to evaluate the activity of compounds virtually, which
saves significant costs for determining the activities of the compounds experimentally [114].

An SAR study on the antifeedant effects and developmental delays of three different
azadirachtin A derivatives against E. varivestis showed that the hydroxy group at C-11
is important for high mortality rates and a single bond between C-22 and C-23 increases
the degree of efficiency. An exchange of the large ester group ligands at C-1 and C-3 with
hydroxy groups in combination with a single bond between C-22 and C-23 and a hydroxy
group at C-11 leads to high feeding activity and a degree of efficiency of about 100% [115].
Interestingly, another study aiming to understand the structure-related bioactivities of the
limonoids based on the insect antifeedant and growth-regulating activities of 22 limonoids
(both natural and their derivatives) against the tobacco cutworm, S. litura, indicated that the
C-seco limonoids (azadirachtins A, B, D, H, and I) were the most effective compounds as a
group, while the intact limonoids (cedrelone and its derivatives) were the least effective.
The cyclohexenone A ring and the α-hydroxy enone group in the B ring appear to be
important for antifeedant activity. The presence of a cyclohexenone or 1,2-epoxide in the A
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ring coupled with an α-hydroxy enone in the B ring correlated well with growth regulatory
activity. An acetoxy at C-7 instead of α-hydroxy enone, and perhaps the carbonyl at C-16,
increase growth regulatory activity. The absence of 14–15 epoxide may not drastically
reduce antifeedant activity and growth regulatory activity [41].
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Based on 25 limonoids isolated from the fruits of A. polystachya, including seven new
prieurianin-type limonoids, aphapolynins C-I, and one new C3-C6 connected aphanamolide-
type limonoid aphanamolide B, along with 17 known compounds, a structure–activity
analysis revealed that the α,β-unsaturated lactone and 14,15-epoxy moieties were essen-
tial for insecticidal activity [19]. Further structure–activity relationship analysis of the
aphanamixoids indicated that the olefinic bond, the ∆2,30 configuration, and the substituent
at C-12 significantly affected the antifeedant potency [18]. Antifeedant effect comparison of
prieurianin, prieurianin acetate, epoxyprieurianin, and epoxyprieurianin acetate revealed
that, first, epoxy compounds are more efficacious and, second, that acetylation enhances
the activity of these rings A,B-seco-type limonoids [34].

A structure–activity study based on 11 molecules (nimbandiol, 17-hydroxyazadiradione,
deacetylnimbin, 17-epiazadiradione, deacetylsalannin, azadiradione, nimbin, and deacetylge-
dunin), gedunin, salannin, and epoxyazadiradione) revealed that the furan ring, αβ-
unsaturated ketone, and hydroxyl group each played an important role in determining
the antifeedant activity. Specifically, a hydroxyl group at C-7 increased the antifeedant
activity of gedunin [23]. Later, a further structure–activity study revealed that a hydroxyl
group at C-7 reduced the insect growth inhibitory activity and the antifeedant activity of
azadiradione, while a hydroxyl group at C-17 increased the activity of azadiradione and 7-
deacetylazadiradione. Compared with 7-deacetylazadiradione, the parent natural product
contained hydroxyl groups at both the C-7 and C-17 positions, which might contribute to
the activity [27,30,109]. Hydroxyl groups in other groups of limonoids were also found to
influence biological activity. For example, acetylation or ketonization of the C-7 or C-l 2
hydroxyl groups in the trichilins rendered them inactive as antifeedants against larvae of
the southern armyworm, S. eridania (Cramer). On the other hand, deacetylation of the C-1
acetate group in nomilin rendered it inactive as a growth inhibitor against larvae of the
fall armyworm and the corn earworm [23,30]. Additionally, comparison of the activities of
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β-photogedunin and gedunin indicated that oxidation of the furan ring led to a decrease in
insecticidal activity [48].

An SAR study of rearranged limonoids was also investigated. By comparision of the
antifeedant activity of tabulalin, tabulalide D, tabulalide E, tabulalide A, chukvelutilide
I, chukvelutilide N, chukvelutilide J, chukvelutilide K, chukvelutilide L, tabulalide B,
chukvelutilides O, and chukvelutilides M on the third instar larvae of the cotton leafworm,
S. littoralis, it was concluded that acylation of the 30-hydroxy group on the tricyclodecane
ring system reduced activity [42,110–113].

5. Insecticidal Mechanism of Action

A study of the insecticidal mechanism of action (MOA) of triterpenoids mainly focused
on the MOA of azadirachtin with few MOA studies on other molecules. For example, it
was demonstrated that both rings A,B-seco-type limonoids aphapolynin C and aphanalide
H inhibited a nicotine response with IC50 at 3.13 µg/mL (aphapolynin C) and 1.59 µg/mL
(aphanalide H), respectively, and aphanalides H also inhibited a GABA response with
IC50 at 8.00 µg/mL [19]. Currently, azadirachtin is widely recognized as one of the most
promising plant compounds for pest control in organic agriculture and one of the best
alternatives to conventional insecticides in IPM programs [71,116]. The MOA study of
azadirachtin has been a hot topic. However, even after many years of study, the exact
molecular mechanism of action of azadirachtin has yet to be fully understood [117,118].
So far, the principal azadirachtin action on insects could be categorized into four groups:
effects on neuro-endocrine activity, effects on reproduction, anti-feedancy, and cellular and
molecular effects [116].

The primary antifeeding effect of azadirachtin seems to be mediated by gustatory
chemosensillas and linked to inhibition on the rate of firing of sugar-sensitive cells of
the gustatory chemoreceptors by activating bitter sensitive gustatory cells [119–121]. An
internal feedback mechanism called secondary antifeedancy, including a long-term reduc-
tion in food intake, and deleterious effects on different insect tissues (muscles, fat body,
gut epithelial cells), has also been reported [122–124]. In addition, azadirachtin showed
an agonistic effect on dopaminergic neurons and can induce aversive taste memory in
Drosophila melanogaster, and such memory is regulated by dopaminergic signals in the brain
resulting in inhibition of the proboscis extension response (PER) [125].

Azadirachtin is an antagonist of 20-hydroxyecdysone (20E) and juvenile hormone
(JH), two principal hormones in insects. The major action of azadirachtin has been its effect
on hemolymph ecdysteroid and JH titers by inhibition of the secretion of morphogenetic
peptide hormone (PTTH) and allatotropins from the corpus cardiacum complex, resulting
in the IGD effects such as a failure of adult emergence, reduced pupation, or malformation.
Moreover, azadirachtin could influence the activity of ecdysone 20-monooxygenase, which
is a cytochrome P450-dependant hydroxylase responsible for the conversion of the steroid
hormone ecdysone to its more active metabolite, and 20E. Furthermore, azadirachtin can
cause degenerative structural changes in the nuclei in all endocrine glands (prothoracic
gland, corpus allatum, and corpus cardiacum) responsible for controlling molting and
ecdysis in insects, which would contribute to a generalized disruption of neuroendocrine
function [117,122]. It was reported that the inhibition of growth and development in
the fruit fly, D. melanogaster, after azadirachtin treatment was similar to those caused
by disruption of the IIS pathway. In addition, azadirachtin can inhibit the excitatory
cholinergic transmission and partly block the calcium channel, and this might interfere
with different endocrinological and physiological actions in insects [126].

Owing to the interference of azadirachtin with yolk protein synthesis and or its up-
take into oocytes, azadirachtin reduced the fecundity and fertility of several insects [127].
Sterility effects in females due to interference with vitellogenin synthesis and uptake
into oocytes were also reported. In males, azadirachtin significantly decreases the num-
ber of cysts and the apical nuclei within the cysts in D. melanogaster, thereby inhibiting
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spermiogenesis [128–130]. In addition, azadirachtin was found to alter reproductive be-
havior, mating behavior, and oviposition behavior [128,131].

Additionally, the molecular insecticidal mechanisms of azadirachtin have been in-
vestigated and several explanations have been presented. For instance, it was found that
azadirachtin could induce apoptosis through caspase-dependent pathways and could
also inhibit protein synthesis and release by binding to specific proteins (such as heat-
shock protein, hsp 60), affected genes encoding key enzymes such as the gene encoding
cytochrome oxidase-related proteins CYP307A1 and CYP314A1, which catalyze the 20-
hydroxyecdysone [132], and the gene encoding JH epoxide hydrolase, responsible for JH
degradation by hydrolyzing the epoxide of JH [133–135].

In sum, recent work has demonstrated the MOA of azadirachtin to be complex
and is not yet fully understood. Therefore, continued research is needed to reveal the
ultimate MOA.

6. Future Outlook

Research on the insecticidal activity of Meliaceae plants has always received consider-
able attention. Investigations of Meliaceae plants over the past decades have led to some
significant achievements.

Azadirachtin is the most successful botanical insecticide among the active compounds
extracted from Meliaceae. Accordingly, the progress of the worldwide application of
azadirachtin in controlling insect pests is inspiring. The application of azadirachtin can
control insects, and at the same time, be safe for non-target arthropods. Such work demon-
strates the effectiveness of a phytochemical for sustainable pest control in contrast to any
negative effects of synthetic insecticide use.

In addition to azadirachtin, some azadirachtin analogs have also demonstrated strong
insecticidal activities. Moreover, some compounds in Meliaceae possess more than one type
of favorable activity, such as 7-deacetylgedunin, salannin, gedunin, azadirone, salannol,
azadiradione, and methyl angolensate; some of which have multiple activities (poisoning,
antifeeding, or growth inhibition). Among them, 7-deacetylgedunin and gedunin can be
extracted from many Meliaceae plants. However, they are still in the primary stages of
research and further studies on these compounds are needed. Their activities on insects
should be systemically evaluated as well as their effects on non-target organisms and the
environment. It is expected that 7-deacetylgedunin, gedunin, and so on, could be important
molecules for managing insect pests in the near future.

Most of the compounds with obvious activity are only in the primary stages of research,
and their mechanism of action and structure–activity relationship warrant further study.
Generally, tetranortriterpenoids have complex structures and are difficult to synthesize.
Therefore, it is of considerable significance to study the synthesis of tetranortriterpenoids
with outstanding activity in Meliaceae.
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