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Palmitoyl acyltransferase DHHC21 mediates
endothelial dysfunction in systemic inflammatory
response syndrome
Richard S. Beard Jr.1,*, Xiaoyuan Yang1,*, Jamie E. Meegan1, Jonathan W. Overstreet1, Clement G.Y. Yang2,

John A. Elliott1, Jason J. Reynolds1, Byeong J. Cha1, Christopher D. Pivetti3, David A. Mitchell4, Mack H. Wu2,5,

Robert J. Deschenes4 & Sarah Y. Yuan1,2

Endothelial dysfunction is a hallmark of systemic inflammatory response underlying multiple

organ failure. Here we report a novel function of DHHC-containing palmitoyl acyltransferases

(PATs) in mediating endothelial inflammation. Pharmacological inhibition of PATs attenuates

barrier leakage and leucocyte adhesion induced by endothelial junction hyperpermeability and

ICAM-1 expression during inflammation. Among 11 DHHCs detected in vascular endothelium,

DHHC21 is required for barrier response. Mice with DHHC21 function deficiency

(Zdhhc21dep/dep) exhibit marked resistance to injury, characterized by reduced plasma

leakage, decreased leucocyte adhesion and ameliorated lung pathology, culminating in

improved survival. Endothelial cells from Zdhhc21dep/dep display blunted barrier dysfunction

and leucocyte adhesion, whereas leucocytes from these mice did not show altered

adhesiveness. Furthermore, inflammation enhances PLCb1 palmitoylation and signalling

activity, effects significantly reduced in Zdhhc21dep/dep and rescued by DHHC21

overexpression. Likewise, overexpression of wild-type, not mutant, PLCb1 augments barrier

dysfunction. Altogether, these data suggest the involvement of DHHC21-mediated PLCb1

palmitoylation in endothelial inflammation.
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M
any critically ill patients present with systemic
inflammatory response syndrome (SIRS), one of the
most challenging conditions resulting from infection

(sepsis) or non-infectious injury (trauma, pancreatitis,
haemorrhage)1–3. Despite improved patient care, their mortality
and morbidity remain high owing to the development of multiple
organ failure. Following injury, SIRS is triggered by an array of
danger-associated molecular patterns and mediators released into
the circulation, including histamine, thrombin and cytokines,
most of which target vascular endothelium causing microvascular
leakage, coagulopathy and leucocyte diapedesis4. Multiple
etiologies and complex receptor-signalling pathways are
attributed to this disease state; however, therapies directed at
targeting the upstream of inflammatory cascades (cytokine
inhibitors, histamine antagonists, so on) show limited
efficacy1,3,5. Likewise, blockades of innate immunity (TLR4
antagonist) or coagulation (anti-thrombin) fail to demonstrate
improved survival6,7. Recently, recognizing the central role of
endothelial dysfunction in inflammation, the FDA approved
recombinant human activated protein C for treating sepsis.
Unfortunately, it was quickly withdrawn due to minimal
mortality benefit and increased bleeding risk8. Currently, several
new therapies, including anti-HMGB1 and sphingosine-1-
phosphate analogous are being investigated1,3,9,10; many of
them are not designed to specifically treat endothelial
dysfunction. The underdevelopment of endothelial-targeting
interventions highlights the need for further studies.

A hallmark of endothelial dysfunction during SIRS is
opening of cell–cell junctions promoting plasma and leucocyte
extravasation. Because barrier breakdown or loosening often
occurs rapidly (within minutes) after stimulation, it is plausible
that dynamic modifications of the endothelial barrier serve as the
major mechanism for vascular hyperpermeability11–13. Many
studies have focused on phosphorylation of molecules involved in
the initial establishment of barrier structure or upstream
signalling such as kinase receptors14–16. However, it is
becoming increasingly apparent that phosphorylation alone
may not account for all signalling or structural changes in the
barrier under infectious or injurious conditions17–19. The purpose
of this study is to evaluate our hypothesis that another dynamic
regulatory mechanism, namely protein palmitoylation, plays a
critical role in altering endothelial function during inflammation.

Palmitoyl acyltransferases (PATs) are a family of enzymes that
catalyse protein S-palmitoylation, a thioester linkage of palmitic
acid to cysteine residues. All PATs share a signature catalytic
domain containing a zinc finger aspartate-histidine-histidine-
cysteine (DHHC) motif20. Since the initial discovery of a
DHHC-PAT in yeast by Roth21 and Deschenes22, the DHHC
family has grown to 23 members in human and 24 in mouse
genomes. Functionally, PAT-catalysed palmitoylation is shown to
rapidly change protein locations, activity and ability to interact
with other proteins23. Recent studies of palmitoylation kinetics
have underscored the potential of PATs as a ‘kinase-like’ factor in
signal transduction24–27. So far, the biologic effects of PATs
have been primarily investigated in the fields of cell growth,
lipid metabolism and neuroscience. Studies have also
reported their involvement in Wnt-driven carcinogenesis28,
insulin-promoted angiogenesis29, neurologic diseases30 and
metabolic disorders31,32. Most recently, an in vivo study
demonstrated a role for DHHC21-PAT in mediating vaso-
constriction by palmitoylating a-adrenergic receptor33,
suggesting the possibility that PATs serve as an important
dynamic regulator of circulatory functions.

Since there is currently no direct evidence for PATs regulating
endothelial function during inflammation, we sought to deter-
mine if and how PATs affect vascular barrier properties and

leucocyte-endothelium interactions under SIRS relevant condi-
tions, using animal models of systemic inflammation caused by
traumatic injury (burns) and septic insult (LPS injection), as well
as microvessels and endothelial monolayers stimulated by typical
inflammatory mediators (histamine, thrombin or IL-1b). Four
sets of experiments were designed to study the DHHC21-PLCb1
pathway in endothelial inflammation. In the first set of
experiments, we evaluated the effects of general pharmacologic
inhibition of PATs in vivo during trauma or endotoxemia and
in vitro during inflammatory stimulation. We also verified the
underlying cellular responses focusing on endothelial cell–cell
junction permeability and ICAM-1 expression. In the second set
of experiments, after confirming the expression of individual
PATs in vascular endothelium, we conducted a functional
screening in endothelial monolayers subjected to individual gene
knockdown to determine that the presence of specific PATs,
namely DHHC21, is required for barrier responses. In the third
set of experiments, we used a genetically modified mouse model
of DHHC21 function deficiency (Zdhhc21dep/dep) to evaluate
the contribution of this PAT to SIRS-induced organ injury
and mortality. The relative importance of endothelial-specific
DHHC21 was also evaluated. In the fourth set of experiments, we
identified PLCb1 as a target of DHHC21. Further mechanistic
studies were directed at measuring PLCb1 palmitoylation,
subcellular distribution and signalling activity in Zdhhc21dep/dep

cells. Moreover, comparisons were made in endothelial cells
subjected to PLCb1 knockdown, PLCb1 wild-type overexpression
and PLCb1 C17 mutant overexpression to determine the
mechanistic contribution of PLCb1 to endothelial dysfunction.
The results from these experiments show that protein palmitoyla-
tion plays a critical role in mediating aberrant activation of
vascular endothelium during inflammation. We suggest targeting
DHHC21 as potential therapy of inflammatory diseases.

Results
PAT inhibition prevents vascular barrier breakdown.
Two-bromopalmitate (2-BP) is a general inhibitor of PAT activity
that acts by suppressing the formation of acyl-intermediates34.
To determine the pathophysiological involvement of PATs
in inflammation, we tested the effects of 2-BP to reduce
microvascular leakage. In healthy rats, intravenous
administration of 2-BP did not cause mortality or obvious
abnormalities in cardiorespiratory function or mesenteric
circulation for the duration of our experiments. However,
animals receiving 2-BP prior to SIRS induction displayed
drastically reduced plasma extravasation through mesenteric
vessels indicated by transvascular flux of FITC-albumin
(Fig. 1a,b). Moreover, 2-BP ameliorated vascular barrier injury
in the lungs, measured by tissue uptake of Evans Blue, a marker of
albumin leakage (Fig. 1c,d), and by interstitial deposition of
sulfo-NHS-biotin, a marker of small molecule efflux (Fig. 1e).

We then examined the effects of PAT inhibition on endothelial
cell–cell adhesive barrier morphology and function in human
umbilical vein endothelial cells (HUVEC) during inflammatory
stimulation. Consistent with our in vivo findings, 2-BP inhibited
barrier dysfunction, indicated by reduced transendothelial
electrical resistance (indicator of cell–cell adhesive barrier
property) in response to thrombin in a time-dependent and
dose-related manner (Fig. 2a). Given that the barrier integrity of
microvascular endothelium is largely determined by adherens
junctions (AJs)35, we focused on the changes in VE-cadherin, the
primary AJ molecule. As shown in Fig. 2b, VE-cadherin staining
under unstimulated conditions was characterized by continuous
distribution at endothelial cell–cell contacts. Upon inflammatory
stimulation by thrombin (Fig. 2b), it became discontinuous,
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diffuse or thinner. Intercellular gaps were formed (arrows).
Quantitative results showed that 2-BP significantly reduced
thrombin-induced junction discontinuity (Fig. 2c). Similar
inhibitory effects of 2-BP on histamine-induced microvascular
hyperpermeability (Fig. 2d) and junction dissociation were
observed (Fig. 2e,f). Further, we confirmed the direct effects of

2-BP on intact postcapillary venules, which are known to serve as
the major vascular bed for plasma leakage and leucocyte
diapedesis during inflammation. Using a modified Landis
micro-occlusion technique, we measured hydraulic conductivity
(Lp; indicator of permeability to water filtration along
pressure gradient) in single perfused venules. Perfusion of 2-BP
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Figure 1 | Inhibition of PATs attenuates microvascular leakage during systemic inflammatory response to burn injury. The palmitoyl acyltransferase

inhibitor 2-bromopalmitate (2-BP, 2 mg kg� 1) was intravenously administrated 20 min prior to SIRS induction. (a,b) Transvascular flux of FITC-albumin

from mesenteric microvessels observed via intravital microscopy 3 h postburn. (a) Representative images (Scale bars, 100 mm). (b) Quantification of

transvascular flux (n¼ number of animals). For each group, values were normalized to its own t¼0 min and presented as mean±s.e.m. *Po0.05 versus

shamþ vehicle, #Po0.05 versus SIRSþ vehicle. (c,d) Plasma protein leakage in the lungs measured as tracer Evans Blue extravasation. (c) Representative

images showing tracer leakage captured at 700 nm with infrared imaging scanner and pseudo-colored with a heat-map colour scheme. (d) Quantitative

extravasation assay (n¼6). Values were normalized to vehicle-treated group subjected to sham operation and presented as mean±s.e.m. **Po0.01

versus shamþ vehicle, #Po0.05 versus SIRSþ vehicle. (e) Microvascular leakage in the lungs measured as interstitial deposition of small molecule tracer

sulfo-NHS-biotin. Upper panels: representative transverse lung slices (500mm) probed for extravasated sulfo-NHS-biotin with IRDye 800-conjugated

streptavidin (SA-IRD) and scanned with infrared imaging system (800 nm). Images were pseudo-colored with heat-map colour scheme (blue¼ low

intensity, red¼ high intensity). Lower panels: representative confocal micrographs of lung sections probed for sulfo-NHS-biotin with Texas Red-streptavidin

(SA-TR). Nuclei were stained with DAPI. Scale bars, 100mm.
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significantly reduced the increase in Lp caused by histamine
(Fig. 2d), consistent with 2-BP attenuation of histamine-induced
AJ disruption in vitro (Fig. 2e,f).

PAT inhibition reduces leucocyte adhesion/ICAM-1 expression.
Leucocyte-endothelial interactions were observed in rat
mesenteric microvessels via intravital microscopy (Fig. 3a).
During inflammation slow-rolling leucocytes are more likely to be
arrested by endothelial cells leading to firm adhesion. We thus
evaluated the effects of PAT inhibition on leucocyte adhesion
along with their slow-rolling flux, slow-rolling fraction and rolling
velocity. As shown in Fig. 3b, SIRS significantly increased

leucocyte adhesion and slow rolling. Compared with vehicle-
treated animals, 2-BP-pretreated animals demonstrated an
attenuated response in leucocyte adhesion. Additionally, adhesion
of human leucocytes to HUVEC monolayers after stimulation by
interleukin-1b (IL-1b) was measured. In basal conditions or cells
treated with 2-BP alone, minimal adhesion was observed.
However, after IL-1b stimulation, there was a significant increase
in the number of adherent leucocytes; the response was
attenuated by 2-BP treatment (Fig. 3c,d). Because ICAM-1
expression on the surface of endothelium is required for leucocyte
adhesion, we also tested the efficacy of 2-BP to reduce ICAM-1
surface expression under these conditions. Indeed, there was a
significant increase in endothelial cell surface expression of
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Figure 2 | Inhibition of PATs reduces inflammatory mediator-induced endothelial cell–cell junction hyperpermeability. (a) Time- and dose-dependent

effects of 2-BP on thrombin (10 U ml� 1)-induced reduction in transendothelial electric resistance (TER), an indicator of cell–cell adhesive barrier function.

Values at each time point were normalized to their baseline at t¼0. Solid line tracing represents the mean resistance, and shadow represents standard

error. Embedded graph indicates peak TER values and presented as mean±s.e.m. (n¼ 3 independent experiments). *Po0.05. (b) Representative confocal

images of the adherens junction molecule VE-cadherin (green) and nuclei (blue) 30 min after thrombin with or without pretreatment of 2-BP. Arrows point

to discontinued VE-cadherin strands or intercellular gaps. Scale bars, 10mm. (c) Quantification analysis of VE-cadherin junction discontinuity from three

independent experiments, presented as mean±s.e.m. *Po0.05. (d) Histamine-induced changes in hydraulic conductivity (Lp) in intact perfused venules

without or with 2-BP (given 30 min prior to histamine and continuously perfused until the end of the observation). Lp indicates venular permeability to

water which transports mainly via paracellular pathway. n¼ number of segment measurements; values in parentheses indicate number of independent

experiments. *Po0.05 versus baseline, #Po0.05 versus histamineþ vehicle. (e) Representative confocal images of VE-cadherin (green) and nuclei (blue)

10 min after histamine in endothelial cells pre-treated with 2-BP. Arrows point to discontinued VE-cadherin strands or intercellular gaps. Scale bars¼ 10mm.

(f) Quantification analysis of VE-cadherin junction discontinuity from three independent experiments. Data are presented as mean±s.e.m. *Po0.05.
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ICAM-1 in response to IL-1b, a response prevented by 2-BP
(Fig. 3e,f). Altogether, these findings indicate the involvement of
DHHC-PATs in vascular inflammation.

Inflammation increases PLCb1 palmitoylation and signalling.
In an effort to quantify protein palmitoylation in endothelial cells,
we employed Click chemistry to measure the level of total
palmitoylated proteins in HUVECs under basal conditions
and during stimulation by SIRS plasma or inflammatory agents
(thrombin, histamine). Palmitoylated proteins were metabolically
labelled with a palmitic acid analogue, o-alkynyl palmitic acid
(Alk-C16), and further probed with fluorescent Oregon Green

488 azide by copper-catalysed click reaction for observation
under confocal microscopy. The data showed that following
inflammatory stimulation by histamine, thrombin or SIRS
plasma, there was a significant increase in total palmitoylated
proteins. Treatment with 2-BP prevented this response (Fig. 4a).

We then tried to identify specific proteins that undergo
palmitoylation in inflammation. In initial screening, we con-
ducted a proteomic analysis combining acyl-biotin exchange
(ABE) with LC–MS/MS. ABE is a series of biochemical reactions
involving the exchange of protein palmitoylation moieties with
biotin, which can be detected via pull-down with streptavidin
beads. We identified a protein that undergoes increased
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Figure 3 | PAT inhibition suppresses leucocyte adhesion and ICAM-1 expression on endothelial surface during inflammatory stimulation.

(a,b) Leucocyte-endothelium interactions were assessed via intravital microscopic analysis of mesenteric microcirculation in rats subjected to SIRS elicited

by bacterial lipopolysaccharide (LPS, 10 mg kg� 1, IP, 4 h). A group of animals received intravenous 2-BP (2 mg kg� 1) immediately after LPS injection.

Leucocytes were labelled with acridine orange. (a) Representative images of leucocyte adhesion in postcapillary venules. Scale bars, 30mm.

(b) Quantification of leucocyte slow-rolling flux (number of cells per min), slow-rolling fraction (% of slow rolling cells to total rolling cells), rolling velocity

and adhesion. Increased slow-rolling flux or decreased rolling velocity indicates the likelihood of firm adhesion. Data are presented as mean±s.e.m. from

4 rats with Z10 venules per group. *Po0.05 versus shamþ vehicle, #Po0.05 versus SIRSþ vehicle. (c,d) The effects of 2-BP on human leucocyte

adhesion to human umbilical vein endothelial cells with or without stimulation by IL-1b (100 ng ml� 1, 4 h). 2-BP (10 mM) or vehicle was given

simultaneously with IL-1b. (c) Representative images of adherent leucocytes (green) on endothelial cells (red) with nuclei stained with DAPI. Embedded

images show green channel (leucocytes) alone. Scale bars, 25mm. (d) Quantification of adherent leucocytes to IL-1b-stimulated ECs. Bar graph represents

mean±s.e.m. from three independent experiments. *Po0.05 versus unstimulatedþ vehicle, #Po0.05 versus IL-1bþ vehicle. (e,f) The effects of 2-BP

on IL-1b-induced ICAM-1 expression on endothelial surface. Endothelial cells were treated with 100 ng ml� 1 IL-1b for 4 h with or without 10mM 2-BP

(given simultaneously with IL-1b). (e) Representative confocal images. Scale bars, 50mm. (f) Quantification of ICAM-1 surface expression. Results

represent mean±s.e.m. from three independent experiments. *Po0.05 versus unstimulatedþ vehicle, #Po0.05 versus IL-1bþ vehicle.
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palmitoylation in endothelial cells upon SIRS stimulation,
phospholipase C b1 (PLCb1), an important signalling molecule
downstream of the G-protein coupled receptors (GPCR) known
to mediate the effects of inflammatory mediators such as
thrombin and histamine. Thus, we sought to focus on PLCb1
in the following experiments. Our data demonstrated that
thrombin induced a significant increase in PLCb1 palmitoylation,

which was inhibited by 2-BP treatment (Fig. 4b) (see full-scanned
western blots and gels in Supplementary Figs 1–5). Consistently, a
pull-down assay with azide agarose resin based on metabolic
labelling and Click chemistry showed that histamine stimulation
was able to increase the level of PLCb1 palmitoylation (Fig. 4c).
Since it is well established that PLCb1 activation leads to IP3
production, we next examined the concomitant changes in IP3
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levels as an indicator of PLCb1 signalling activity. The results
showed that histamine increased IP3 production and this effect
was not observed in cells treated with 2-BP (Fig. 4d), suggesting
the potential involvement of palmitoylation-coupled PLCb1
signalling activity in inflammation.

DHHC5/21 are critical in endothelial barrier response. More
than 20 DHHC-PATs have been identified (Supplementary
Table 1) and are known to have heterogeneous tissue
distribution36; however, their expression profile in the vascular
endothelium has not been fully reported. In this study, we
evaluated DHHC-PAT expression and function in murine lung
microvascular endothelial cells (MLMVECs). Quantitative PCR
was performed to characterize endothelial-specific Zdhhc gene
expression (Fig. 5a). Among the 24 known Zdhhcs, only Zdhhcs 2,
4, 5, 8, 9, 12, 13, 16, 17, 20 and 21 were detected. To investigate
which of these may regulate endothelial injury, we silenced their
expression individually with siRNA and assessed the functional
impact on thrombin-mediated endothelial barrier dysfunction
and IL-1b upregulation of ICAM-1 expression. The efficiency of
the siRNA knockdown was confirmed by RT-PCR (Fig. 5b).
Out of the 11 endothelial-expressing Zdhhcs, only knockdown of
Zdhhc5 or Zdhhc21 significantly ameliorated barrier dysfunction
(Fig. 5c,d) and ICAM-1 expression (Fig. 5e,f). These data
demonstrate an important role for DHHC5- and DHHC21-
PATs in endothelial response to inflammatory stimulation.

Zdhhc21dep/dep mice are resistant to organ injury in SIRS. After
determining the importance of DHHC21 in inflammation-
mediated endothelial injury, we focused on in vivo studies
utilizing a DHHC21 deficient mouse model, Zdhhc21dep/dep. Its
genetic background involves a spontaneous 3bp deletion in the
coding region of the Zdhhc21 gene rendering DHHC21 function
deficiency37. The effect of DHHC21 deficiency on overall SIRS
outcomes was determined. Specifically, lung injury 24 h after
SIRS-induction was evaluated by histological H&E staining in
both wild-type controls (Zdhhc21þ /þ ) and Zdhhc21dep/dep mice.
In Zdhhc21þ /þ mice, thickening of alveoli-capillary membrane
and leucocyte infiltration were observed; these pathologies were
significantly ameliorated in Zdhhc21dep/dep mice (Fig. 6a–c,e).
Furthermore, as shown in Fig. 6d, thermal injury-induced SIRS
caused B30% mortality in Zdhhc21þ /þ mice by 48 h, whereas
no deaths were observed in Zdhhc21dep/dep mice during the
same time course. Similarly, as shown in Fig. 6f, LPS-induced
SIRS caused 100% mortality of Zdhhc21þ /þ mice within 60 h,
whereas there was still a 60% survival rate in Zdhhc21dep/dep mice
at 72 h.

Endothelial DHHC21 is important for leucocyte adhesion.
To evaluate the effects of DHHC21 deficiency in leucocyte-
endothelial interactions, we measured leucocyte rolling and
adhesion in postcapillary venules of Zdhhc21þ /þ and
Zdhhc21dep/dep mouse ears. Zdhhc21dep/dep mice displayed basal
circulatory characteristics comparable to wild-type controls,
but with a blunted vascular injurious response to SIRS. In
Zdhhc21þ /þ mice subjected to burn- or LPS-induced SIRS, the
number of slow-rolling leucocytes, the fraction of slow-rolling
leucocytes and leucocyte adhesion to the microvessel wall were
significantly increased, and the average leucocyte rolling velocity
was greatly reduced; however, Zdhhc21dep/dep mice were resistant
to these responses (Fig. 7a,b).

Furthermore, primary MLMVECs and leucocytes were isolated
from Zdhhc21þ /þ and Zdhhc21dep/dep mice to characterize the
cell-specific effects of DHHC21 deficiency contributing to the
reduced leucocyte-endothelial interactions. Wild-type leucocytes
adhered normally to IL-1b activated wild-type ECs, but adhesion
to Zdhhc21dep/dep ECs was greatly attenuated. Interestingly,
Zdhhc21dep/dep leucocyte adherence to wild-type ECs was
unaffected, indicating the relative importance of endothelial
DHHC21 in this process (Fig. 7c,d).

DHHC21 deficiency ameliorates endothelial barrier dysfunction.
The vascular barrier function was also determined in
Zdhhc21dep/dep mice during inflammation. Upon LPS or
burn-induced SIRS, less protein leakage from lung microvessels
indicated by interstitial Evans Blue intensity was detected in
Zdhhc21dep/dep mice compared with that in Zdhhc21þ /þ mice
(Fig. 8a,b). Consistently, following histamine stimulation,
increased FITC-albumin leakage was observed in mesenteric
vessels of Zdhhc21þ /þ mice, but this response was significantly
reduced in vessels of Zdhhc21dep/dep mice (Fig. 8c,d).

The key role of endothelial DHHC21 in regulating barrier
dysfunction was further confirmed in our in vitro inflammatory
models. As shown in Fig. 8e, Zdhhc21 knockdown MLMVECs
and Zdhhc21dep/dep ECs exhibited attenuated hyperpermeability
to FITC-albumin upon thrombin stimulation, and the endothelial
hyperpermeability was nearly completely blocked in
Zdhhc21dep/dep ECs treated with 2-BP. Zdhhc21dep/dep ECs also
displayed significantly reduced transendothelial electric resistance
(TER) response to thrombin (Fig. 8f); however overexpression of
wild-type Zdhhc21 in Zdhhc21dep/dep ECs restored their barrier
responsiveness to thrombin (Fig. 8g).

Zdhhc21dep/dep reduces PLCb1 palmitoylation and signalling.
Since PLCb1 was identified as a specific palmitoylation target

Figure 4 | Inflammatory stimuli increase PLCb1 palmitoylation and its signaling activity. (a) Increased palmitoylation was detected in endothelial cells

after stimulation with SIRS plasma or inflammatory stimuli. Representative images of palmitoylation in cells treated with vehicle, histamine (10 mM, 15 min),

thrombin (10 U ml� 1, 30 min) or SIRS plasma (20% dilution, 1 h) in the absence or presence of 2-BP (pretreatment at 10mM). Palmitoylated proteins were

metabolically labelled with a palmitic acid analogue o-alkynyl palmitic acid (Alk-C16). Labelled proteins were visualized by further probing with fluorescent

azide via Click chemistry reaction. Palmitoylated proteins are shown in green and nuclei blue. Scale bar, 30mm. Bar graph shows quantification of total

palmitoylation signal intensity. Results are from three independent experiments presented as mean±s.e.m. *Po0.05 versus controlþ vehicle, #Po0.05

versus stimulusþ vehicle. (b,c) The levels of palmitoylated PLCb1 in endothelial cells were determined using two different methods. (b) Acyl-biotin

exchange. Whole cell lysates from thrombin (10 U ml� 1) or vehicle treated ECs, with or without 2-BP, were subject to acyl-biotin exchange to isolate

palmitoylated proteins in the presence of hydroxylamine (NH2OH). The samples were then used in Western blotting for PLCb1. Band intensity was

quantified and normalized to control. Results represent three independent experiments. *Po0.05 versus vehicleþ control, #Po0.05 versus

vehicleþ thrombin. (c) Pull-down of palmitoylated proteins and immunoblotting for PLCb1. ECs were incubated with Alk-C16 overnight and then treated

with histamine (10 mM) or vehicle. Whole cell lysates were collected, and palmitoylated proteins were pulled down using Azide Agarose Resin via Click

chemistry reaction. Palmitoylated protein samples were subject to Western blotting for PLCb1. Band intensity was quantified and normalized to control

group. Bar graph represents four independent experiments. *Po0.05 versus vehicle. (d) IP3 levels in ECs subjected to histamine stimulation (10 mM) with

or without 2-BP (10mM). Bar graph represents mean±s.e.m. from three independent experiments. *Po0.05 versus vehicle, #Po0.05 versus

vehicleþ histamine.
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involved in inflammation, we hypothesized that
PLCb1 might serve as the substrate of DHHC21 that accounts
for inflammation-mediated endothelial injuries. The effects
of DHHC21 function on the PLCb1 palmitoylation during
inflammation were determined by resin-assisted capture, an assay

that allows palmitoylated proteins to be cleaved by hydro-
xylamine (NH2OH) and captured with thiol-reactive Sepharose
resin. Our data demonstrated that thrombin induced a detectable
increase in PLCb1 palmitoylation in Zdhhc21þ /þ ECs,
which was attenuated in Zdhhc21dep/dep ECs (Fig. 9a). Given that
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palmitic acid attachment can alter protein hydrophobicity and
membrane association23, we then compared membrane locali-
zation of PLCb1 between Zdhhc21þ /þ and Zdhhc21dep/dep ECs.
However, no significant difference of PLCb1 plasma membrane
localization was found between these two cells under baseline or
inflammatory conditions (Fig. 9b).

Thrombin-induced increased membrane localization of PKC, a
downstream effector of PLCb1 signalling known to translocate to
cell membranes upon activation, was inhibited in DHHC21
deficient ECs (Fig. 9b), supporting the involvement of DHHC21-
induced PLCb1 palmitoylation in PLCb1 signalling activation.
Two other effectors of PLCb1, namely IP3 and intracellular
calcium, were also evaluated as the indication of PLCb1
downstream signalling activation. The level of IP3 was increased
by thrombin stimulation, which was greatly attenuated in
Zdhhc21dep/dep ECs (Fig. 9c). Consistently, thrombin-elicited
intracellular calcium spike was diminished in Zdhhc21dep/dep

MLMVECs compared with Zdhhc21þ /þ ECs (Fig. 9d,e).

DHHC21-PLCb1 pathway in endothelial barrier dysfunction.
The critical role of PLCb1 in mediating endothelial dysfunction is
supported by the data that knockdown of PLCb1 in Zdhhc21þ /þ

ECs led to a significantly attenuated TER response to thrombin

(Fig. 10a,c). Furthermore, in an in silico analysis using the
CSS palm palmitoylation algorithm38, only cysteine residue 17
of PLCb1, with a high CSS-palm score of 27, was above the
medium threshold and predicted to be palmitoylated. We thus
created a mutant PLCb1 by replacing Cys17 with serine to disable
palmitoylation at this site. Comparative analyses were performed
in Zdhhc21þ /þ or Zdhhc21dep/dep ECs overexpressing the
mutant or wild-type PLCb1 (Fig. 10b,d–f). The results indicated
that overexpression of wild-type PLCb1 in Zdhhc21þ /þ ECs
augmented TER reduction upon thrombin stimulation (Fig. 10d),
whereas overexpression of C17S mutant PLCb1 exerted no
additional barrier dysfunction (Fig. 10e). Moreover, over-
expression of wild-type PLCb1 in Zdhhc21dep/dep ECs failed to
augment thrombin-induced barrier dysfunction (Fig. 10f). These
data suggested the key role of DHHC21-catalysed PLCb1
palmitoylation in mediating inflammation-induced endothelial
barrier dysfunction.

Discussion
The present study demonstrates a novel function of palmitoyl
acyltransferases in mediating endothelial dysfunction during
inflammation. We employed multiple in vivo, ex vivo and
in vitro models relevant to SIRS, including trauma, endotoxemia
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and inflammatory stimuli. Our data reveal several new findings:
(1) PAT inhibition attenuates inflammation-induced endothelial
barrier dysfunction, microvascular leakage and leucocyte
adhesion; (2) the cellular processes underlying PAT-induced
injury involve endothelial cell–cell junction hyperpermeability
and increased expression of ICAM-1; (3) 11 DHHC-PATs are
detected to be expressed in vascular endothelium: DHHC2, 4, 5,
8, 9, 12, 13, 16, 17, 20 and 21, of which DHHC5 and 21 are
required for barrier response to inflammatory stimulation;
(4) mice with DHHC21 function deficiency are resistant to
plasma leakage and leucocyte infiltration; they also display
attenuated lung pathology and improved survival following
traumatic or septic challenge; (5) DHHC21 deficiency confers
protection against inflammatory injury via an endothelial-
dependent pathway; and (6) DHHC21-mediated PLCb1
palmitoylation and activation of its downstream signalling play
an important role in mediating endothelial dysfunction during
inflammation.

Remarkable heterogeneity exists in PATs with respect to their
tissue/cell distributions and N- or C-terminal extensions23,36.
Comparing mRNAs from multiple tissues, Ohno et al. showed
that Zdhhcs 4, 5, 7, 8, 10, 12, 13, 17 and 22 were ubiquitously
expressed, while others were highly tissue-specific36. For example,
Zdhhc11 was found only in testis, Zdhhc19 in testis, thymus and
small intestine, and Zdhhc21 was found in multiple tissues
including blood vessels, but is absent in leucocytes33,36. Within

this context, although Zdhhcs 2, 3, 7, 8 and 21 have been
identified in human umbilical vein endothelial cells39, our
experiments are the first to screen endothelial cells from
different vascular beds for expression of all 24 Zdhhcs. We
identified the presence of Zdhhcs 2, 4, 5, 8, 9, 12, 13, 16, 17, 20 and
21 in mouse lung microvascular endothelial cells, cells frequently
implicated in acute systemic inflammation and commonly used as
a clinically relevant cell model. While the absence of Zdhhcs 3 and
7 in our findings is not in perfect agreement with a previous
report39, the discrepancy could be attributed to organ or species
heterogeneity. Interestingly, Zdhhc21 appears to be ubiquitous
among endothelial cells from different vascular beds and between
species, supporting its common involvement in the circulatory
system. This is important because different DHHC-PATs may
contribute to different cellular or pathological processes. For
example, DHHC8 has been linked to schizophrenia30, DHHC9
to intellectual disability40, DHHC17 to type 1 diabetes and
Huntington’s disease41, and DHHC2, 9, 11 and 17 to cancer42.
We believe our study is the first to demonstrate the
pathophysiological significance of DHHC21 in inflammatory
injury.

Proteins spanning from signalling molecules to membrane
proteins have been shown, or predicted by proteomics
analyses, to be palmitoylated in response to extracellular or intra-
cellular stimulation23,43. Unlike other fatty acid modifications,
S-palmitoylation is reversible as depalmitoylation can be catalysed
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Figure 9 | DHHC21 deficiency reduces inflammation-induced PLCb1 palmitoylation and signaling activity. (a) The level of palmitoylated PLCb1 in

Zdhhc21þ /þ and Zdhhc21dep/dep ECs with or without thrombin (10 U ml� 1) was determined using resin-assisted capture. Palmitoylated proteins in whole

cell lysate were isolated by thiol-reactive sepharose resin in the presence of hydroxylamine (NH2OH) and then used for immunoblotting with anti-PLCb1.

Blot is representative of four independent experiments. (b) Membranous and cytosolic fractionation assay showing the subcellular distribution of PLCb1

and its downstream signal PKC in Zdhhc21þ /þ and Zdhhc21dep/dep ECs with or without thrombin (10 U ml� 1). Images are representatives of three

independent experiments. Gapdh and caveolin-1 were used as internal loading controls (Gapdh for whole cell and cytoplasm fraction, caveolin-1 for plasma

membrane fraction). (c) IP3 levels indicative of PLCb1 signaling activity in Zdhhc21þ /þ and Zdhhc21dep/dep ECs subjected to thrombin (10 U ml� 1)

stimulation. Bar graph represents mean±s.e.m. from three independent experiments. *Po0.05 versus Zdhhc21þ /þ ECþ control, #Po0.05 versus

Zdhhc21þ /þ ECþ thrombin. (d,e) Intracellular calcium spike indicative of PLCb1 activation in ECs isolated from Zdhhc21þ /þ or Zdhhc21dep/dep.

Data represents three independent experiments. (d) Representative images of live EC monolayers labelled with the calcium indicator Fluo-4 before

and after thrombin stimulation. (e) Representative tracings of intracellular calcium concentration.
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by acyl protein thioesterases (APTs) 20. The multi-functionality
and reversibility of palmitoylation has attracted rising interests in
drug research. Inhibitors of palmitoylating enzymes have been
developed and tested as therapies for cancer and autoimmune
disease. Among the PAT inhibitors available in the market, 2-BP
is best studied and most commonly used because of its relative
selectivity and high potency toward PATs with minimal
toxicity44–46. Cell culture experiments with 2-BP demonstrated

considerable tolerability in endothelial cells, while 2-BP
simultaneously prevented glucose-mediated toxicity 47. There
are also reports on its short-term use as a tracer for in vivo
experiments 48. In our study, we did not detect any obvious
morphological or functional changes in endothelial cells
incubated with 2-BP, and administration of the drug in animals
did not cause mortality or significant abnormalities in circulatory
function. In view of its potent protective effect on endothelial
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barriers without obvious adverse actions in vivo, the drug may
have therapeutic potential as an anti-inflammation adjuvant.
However, we do acknowledge the limitation of the
pharmacological approach, as 2-BP might exert off-target effects
that are not specific to vascular tissues. The drug could also affect
other signalling processes than palmitoylation, or inhibit enzymes
such as APTs and PPARg 49. Although we conducted time-course
and dose-response studies with 2-BP and compared its
effects with other palmitoylation-altering agents including
2-hydroxymyristate and palmostatin-B, further studies
are warranted to establish the pharmacokinetics and
pharmacodynamics of these drugs under specific disease
conditions. Nevertheless, the primary purpose of the current
study was to provide proof-of-principle for the involvement of
PATs in inflammatory signal transduction.

A particularly novel aspect of our study is the demonstration
that DHHC21 function deficiency confers protection against
endothelial injury during inflammation. The Zdhhc21dep/dep is a
genetically altered mouse model resulting from 3-base pair
deletion in the Zdhhc21 exon rendering its loss-of-function in
catalysing palmitoylation. Compared with knockouts, this model
offers a unique opportunity to specifically study its enzymatic
activity so that pharmacological or molecular tools can be
designed to manipulate its function without demolishing its
expression. The mouse phenotype is characterized by depilation
and heavily pigmented greasy skin 37. In our experiments, these
mice were born at a normal gestational rate, were weaned into
adulthood with no complications, and did not display obvious
abnormalities in their basal cardiopulmonary or microcirculatory
function. A more recent phenotypic characterization revealed
attenuated a1 adrenergic-dependent vasomotor reactivity to
phenylephrine and transient hypotension; however, no fluid
imbalance, renal impairment or gross histological differences in
the heart or kidney were found 33. Importantly, endothelial-
dependent vasodilation was unaffected, making the Zdhhc21dep/
dep model advantageous for studying barrier-specific regulation of
fluid dynamics with minimized confounding variables from
hemodynamics. We chose to focus on Zdhhc21dep/dep in this
study because DHHC21 was one of the only two DHHCs
required for endothelial hyperpermeability, as verified in our
functional screening analysis using individual gene knockdown.
Further, the absence of DHHC21 in leucocytes36 serves as a tool
for distinguishing endothelial-dependent pathways in barrier
regulation and leucocyte recruitment, processes regulated by
molecules present in both cell types. It is noteworthy that
DHHC5 was also identified to be present in endothelial cells and
silencing its gene was able to attenuate endothelial barrier
response. However, DHHC5 is ubiquitously expressed in
circulating and parenchymal cells36, and relatively limited

information is accessible regarding the cardiovascular
phenotypes of Zdhhc5 knockout mice.

The precise molecular mechanisms by which DHHC21
loss-of-function confers protection against aberrant endothelial
activation require further studies. Given the recent report about
low blood pressure in Zdhhc21dep/dep mice33, we do not rule out
the possibility that the observed protection was related to limited
access of inflammatory mediators to important tissues under a
relatively low perfusion pressure. However, our in vitro
experiments using cells isolated from these mice suggest a
direct effect of DHHC21 on endothelial junction and ICAM-1
expression. This is further supported by the fact that silencing
DHHC21 produced similar protection as DHHC21 function
deficiency. While the barrier effect of gene silencing appears
small, it could be due to some residual expression of the enzyme.
Alternatively, these relatively modest molecular reactions could
translate into a significant phenotypic change in vivo altering
microvascular transport and leucocyte recruitment in important
organs. Endothelial barrier opening can further promote
leucocyte transmigration thereby exacerbating inflammatory
injury. Within this context, our imaging analysis of endothelial
junctions showed that VE-cadherin staining became thinner
and disrupted upon inflammatory stimulation, consistent
with the notion that both junction protein degradation
and conformational changes contribute to paracellular
hyperpermeability.

The role of DHHC21 in regulating PLCb1 palmitoylation and
activity is supported by the data that DHHC21 deficiency
attenuates inflammation-stimulated PLCb1 palmitoylation
coupled with activation of its downstream signalling as indicated
by IP3 production, intracellular calcium spike and PKC
membrane translocation. Moreover, endothelial cells overexpres-
sing wild-type PLCb1 displayed significantly augmented barrier
dysfunction response to stimulation, whereas DHHC21 deficient
cells or cells overexpressing PLCb1 C17 mutant did not show
such a phenotype, further indicating PLCb1 palmitoylation as a
target of DHHC21. Consistent with these mechanistic
experiments, our proteomics analysis combining ABE with mass
spectrometry identified a number of endothelial proteins under-
going palmitoylation upon stimulation by SIRS plasma, including
PLCs and proteins related to the GPCR signalling pathway.
How palmitoylation activates these signalling molecules remains
an interesting question. Since palmitic acid attachment can
alter the hydrophobicity of a protein thereby increasing its
association with cell membranes23 where several DHHCs are
located20,24,29,36, we initially hypothesized that palmitoylation
might promote PLCb1 recruitment to the cell membrane. To our
surprise, however, we did not observe any significant difference of
PLCb1 distribution in the cytosolic and membranous fractions of

Figure 10 | DHHC21-mediated PLCb1 palmitoylation contributes to barrier dysfunction in inflammation. Molecular manipulations of DHHC21 or PLCb1

via knockdown and site-specific mutagenesis indicate the involvement of DHHC21-PLCb1 palmitoylation in endothelial barrier response. (a) Verification of

PLCb1 siRNA knockdown by Western blotting. b-actin serves as loading control. Results represent mean±s.e.m. from three independent experiments.

*Po0.05 versus control siRNA. (b) Verification of wild-type PLCb1 or C17S mutant PLCb1 (V5 tagged) overexpression in Zdhhc21þ /þ or Zdhhc21dep/depECs.

PLCb1 C17S mutant was created by site-specific mutagenesis at Cys17, the highly predicted palmitoylation site. Empty pLX304 vector serves as vector

control. b-actin serves as loading control. (c) Dynamic recording of TER responses to thrombin (10 U ml� 1) in PLCb1 knockdown ECs. Solid line tracing

represents the mean resistance, and shadow represents±s.e.m. Embedded bar graph shows peak TER changes and presented as mean±s.e.m. from three

independent experiments. ***Po0.001. (d) The effect of overexpressing wild-type PLCb1 on TER responses to thrombin (10 U ml� 1) in Zdhhc21þ /þ ECs.

Solid line tracing represents the mean resistance, and shadow represents±s.e.m. Embedded bar graph shows peak TER value changes. Bar graph

represents mean±s.e.m. from three independent experiments. ***Po0.001. (e) The effect of overexpressing C17S mutant PLCb1 (palmitoylation impaired)

on TER responses to thrombin (10 U ml� 1) in Zdhhc21þ /þ ECs. Solid line tracing represents the mean resistance, and shadow represents s.e.m. Embedded

bar graph shows peak TER value changes. Bar graph represents mean±s.e.m. from three independent experiments. n.s.¼ not significant. (f) The effect of

overexpressing wild-type PLCb1 on TER responses to thrombin (10 U ml� 1) in Zdhhc21dep/dep ECs. Solid line tracing represents the mean resistance, and

shadow represents s.e.m. Embedded bar graph shows peak TER changes. Bar graph represents mean±s.e.m. from three independent experiments.

n.s.¼ not significant.
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endothelial cells, regardless of inflammatory states or the presence
of DHHC21 function. In contrast, the membrane localization of
PKC, a downstream effector of PLC signalling known to
translocate to cell membrane upon activation, was increased
after stimulation and this effect was attenuated in DHHC21
deficient cells. The PKC activation response correlates with those
of other PLCb1 downstream effectors such as IP3 and calcium,
supporting a common role of PLCb1 palmitoylation at the
upstream of the signalling pathway. Thus, we propose that in
response to inflammatory mediators or GPCR ligands (histamine,
thrombin), endothelial signalling proteins downstream of their
receptors (PLCb1) undergo DHHC21-catalysed palmitoylation
rendering enhanced signalling activities. Similar to kinases,
DHHC21 may activate PLCb1 by altering its enzymatic activity,
molecular conformation, intracellular location, or ability to
interact with other molecules. The possibility of PATs
acting as kinase-like factors is supported by the similarity
of palmitoylation-depalmitoylation and phosphorylation-
dephosphorylation with respect to their reversible kinetics and
rapid nature of reactions. The molecular mechanisms by which
PLC activation induces endothelial cell contraction and
paracellular permeability have been extensively investigated in
our lab and others18,50–52. The downstream effectors of PLC
(PKC, IP3 and calcium) and their interactions with cell–cell
adhesion molecules including ICAM-1 are discussed in more
detail elsewhere53–56.

In addition to the PLC cascade, other signalling or structural
molecules may be involved in palmitoylation-mediated endothe-
lial responses. In particular, several endothelial palmitoylproteins
have been identified as direct substrates of DHHC2139,57,58,
including platelet endothelial cell adhesion molecule (PECAM-1),
eNOS, caveolin-1, SOD1 and Fyn, many of which have
been implicated in endothelial inflammation51. For example,
PECAM-1 facilitates leucocyte transendothelial migration, Fyn
mediates dissociation of endothelial cell–cell junctions, and
eNOS-derived NO increases vascular permeability50,59,60. In a
recent study, DHHC21 knockdown resulted in decreased eNOS
palmitoylation and impaired NO release39. Another study showed
that inactivation of fatty-acid synthase caused endothelial barrier
dysfunction via decreased eNOS palmitoylation61. The discrepant
findings from these two studies might result from different
experimental conditions used to manipulate palmitoylation; in
particular, fatty-acid synthase is not a PAT but a multifunctional
enzyme associated with palmitate production. Overall, the
limited availability of PAT knockout models, along with
the well-recognized technical difficulties in quantification of
DHHC-specific activities, contributes to the paucity of
information regarding palmitoylation substrates and functions.
Thus, further work elucidating the full spectrum of quiescent and
inflammation-induced DHHC21 targets in vascular endothelium
would advance the pathophysiology of SIRS, while facilitating
cell-targeting drug development. In this regard, our novel findings
build an important foundation for future studies in this rapidly
expanding field.

In summary, the present study demonstrates that DHHC21-
PAT plays a critical role in mediating endothelial dysfunction
during inflammation. The underlying mechanisms involve
endothelial junction hyperpermeability and increased ICAM-1
expression mediated by palmitoylation of endothelial signalling
molecules including PLCb1. Targeting specific PATs, especially
DHHC21, may serve as an effective therapeutic tool for treating
vascular diseases or inflammatory injury.

Methods
Reagents and supplies. A complete list of reagents, supplies, company
information and catalogue numbers can be found in Supplementary Tables 2–5.

Animals. All rats used in these studies were male Sprague–Dawley (SD) purchased
from Harlan Laboratories weighing 300–350 g. All mice (20–30 g) used in these
studies were either wild-type (Zdhhc21þ /þ ) or homozygous depilated mice
that contain a spontaneous mutation in the Zdhhc21 gene, Zdhhc21dep/dep mice.
These mice were purchased from Jackson Laboratory 37. To confirm murine
genotype, tissue samples were sent for sequencing (Genewiz, Inc., NJ, USA). The
primers for sequencing Zdhhc21dep/dep were: AGCTGACTGAAGGGCACC (F);
AAAACCTGTAACGCATTTCCA (R). Animals were maintained under a
12/12-hour light/dark cycle with food and water ad libitum. Animals were
randomly allocated to experiment groups using random number table by
investigators. The information regarding the animal strain, age and sex are
provided in Supplementary Table 6. All surgical and experimental procedures
involving animals were approved by the University of South Florida Institutional
Animal Care and Use Committee.

Induction of Systemic Inflammatory Response Syndrome (SIRS). SIRS was
induced in animals subjected to thermal trauma (sterile inflammation) or septic
injury (infectious inflammation). Thermal injury was performed based on a
modified Walker and Mason burn model 62. Briefly, mice or rats were anesthetized
with 1.75� 103 mg kg� 1 urethane. The sides and back of the anesthetized animals
were shaved carefully. Hot water at 100 �C was applied for 9 s on the dorsal surface
of the mouse to induce a full-thickness scald burn covering 25% total body surface
area (TBSA) (40% TBSA in rats). For resuscitation 37 �C Lactated Ringer’s (LR)
fluid (4 ml kg� 1� per cent TBSA, according to Parkland formula62) was injected
subcutaneously on the dorsum of the animal immediately post burn. For sham
groups, animals were subjected to the same treatment except the water temperature
was 37 �C. To induce septic SIRS, ultra-pure E. coli lipopolysaccharide (LPS) was
freshly dissolved in LR. Rats or mice were injected (IP) with LPS at the dose of
10 mg kg� 1. Control rats or mice received LR alone. For thermal injury survival
studies, SIRS was induced as mentioned above, except isoflurane was used for
anaesthesia during induction. All animals were monitored 48 h post-induction. For
LPS survival studies, mice were monitored 72 h post-induction.

Lung injury score survey. SIRS induction was performed as above. After 24 h,
mice were anesthetized, exsanguinated by transcardial perfusion with PBS, and
perfusion fixed with 4% paraformaldehyde. The lungs were carefully excised,
post-fixed in 10% neutral buffered formalin for 48 h, and sent to HistoWiz Inc.
for processing, embedding, sectioning, staining, and imaging. The lung injury
was evaluated and scored by two blinded investigators based on the following
histological features: (1) alveolar wall thickness, (2) exudate accumulation and
(3) interstitial leucocyte infiltration63. The extent of injury for each parameter was
graded from 0 to 3 based on the severity. A composite score was calculated for each
mouse on a scale of 0–6.

Intravital microscopy analysis of protein transvascular flux. Plasma protein
flux across mesenteric microvessels was measured. Mice or rats were anesthetized
with an intramuscular injection of urethane at 1.75� 103 mg kg� 1. Cannulation of
the left jugular vein was performed for IV infusion of drugs or solutions. Animals
were restrained and body temperature was maintained at 37 �C with a heating pad
(Fine Science Tools, North Vancouver, BC). The abdomen of the animal was
shaved, a midline laparotomy was performed, and a section of mesentery from the
proximal ileum was exteriorized over an optical stage for microscopic observation.
To prevent the exteriorized mesentery from drying it was constantly superfused
with 37 �C LR solution. Continuous IV infusion of LR at 0.04 ml min� 1 kg� 1 body
weight was given to replenish fluid loss during the experiment. The mesenteric
microcirculation was examined using a Nikon Eclipse E600FN Microscope under a
� 10 working distance objective (Nikon Instruments Inc., NY, USA) equipped
with a Cascade 512F digital camera (Photometrics, AZ, USA). To quantify trans-
vascular flux of plasma proteins animals were given an IV bolus of fluorescein
isothiocyanate conjugated bovine albumin (FITC-albumin) at 100 mg kg� 1 (rats)
or 15 mg kg� 1 (mice), followed by continuous infusion at 0.15 mg kg� 1 min� 1 to
maintain a constant plasma concentration. Postcapillary venules were selected for
measurement of FITC-albumin flux. FITC-albumin leaking into extra-vascular
space was accumulated over time. Fluorescent images were acquired every 5 min
for 1 h and analysed using ImageJ (v1.48i; NIH, USA). Fluorescence intensity (I)
was measured from windows positioned inside (Ii) and outside (Io) a selected
venule. Time dependent FITC-albumin transvascular flux was calculated with the
following equation: 1� Ii� Io

Ii

� �
ð1Þ. Mesenteric transvascular flux in SIRS and

sham-SIRS was started 3 h after the thermal injury. 2 mg kg� 1 2-BP or vehicle was
given IV 20 min before thermal injury. For histamine challenge in Zdhhc21þ /þ

versus Zdhhc21dep/dep mice, baseline transvascular flux was obtained
followed by exchange of 10mM histamine in LR as the superfused buffer.

Measurement of hydraulic conductivity. Microvascular permeability to water
was determined using a modified Landis micro-occlusion technique that measures
fluid filtration across unit areas of the microvascular wall under a set of controlled
perfusion pressures. Briefly, rats were anesthetized with 1.75� 103 mg kg� 1

intramuscular injection of urethane. The rat mesentery was exteriorized and
superfused with LR solution at 37 �C. The microcirculation was observed through a
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CKX41 Inverted Microscope (Olympus, PA, USA) under a � 20 working distance
objective, and images were recorded via a CoolSNAP ES2 video camera
(Photometrics). A single postcapillary venule (30–50 mm in diameter) was
cannulated with a micropipette containing 10 mg ml� 1 BSA and red blood cells as
markers. The micropipette was connected to a water manometer, allowing
continuous flow of the perfusate under controlled intraluminal hydrostatic
pressures. After equilibration, the downstream of the vessel was occluded with a
glass rod. The initial transvascular flow per unit area of the vessel wall (Jv/A) was
measured. Hydraulic conductivity (Lp) was calculated as the ratio of Jv/A to
perfusion pressure: Lp¼ (Jv/A)/P(2). 2-BP was administrated 30 min before
histamine stimulation and continuously perfused until the end of the observation.
Measurements were made for a 30-min period at 5-min intervals.

Lung solute extravasation assays. Vascular permeability to solutes was assessed
by measuring extravasation of the plasma albumin marker Evans blue (EB) and
small molecule marker Sulfo–N-hydroxysuccinimide (NHS)–biotin. For EB
extravasation, mice or rats received 160 mg kg� 1 EB IV allowing circulation for
30 min. Circulation was replaced with LR fluid by performing transcardiac
perfusion. To determine EB concentration, the flushed lungs were removed and
homogenized in 1 ml PBS. Lung homogenates were incubated with 2 ml formamide
(Sigma, F9037) at 60 �C for 18 h to extract EB and centrifuged at 5000g for 30 min.
The concentration of EB in the supernatant was detected by a dual wavelength
spectrophotometric method at 620 and 740 nm using the following formula:
E620(corrected)¼ E620� (1.426� E740þ 0.030) (3). A standard solution of EB in
formamide was freshly made at the concentrations of 0, 1, 2, 4, 8, 16, 32,
64 ng ml� 1, and the results are presented as ng of EB per mL by comparing with
the standard curve. To visualize EB extravasation, lungs were flushed, perfusion-
fixed, and post-fixed overnight in 4% paraformaldehyde (PFA, ACROS, 41678).
Following PBS washes, the entire left lobe was imaged for EB autofluorescence at
700 nm with an infrared imaging system (Odyssey CLx; Li-Cor) at a resolution of
21mm. The same lobe was then embedded in 3% agarose and sliced into 1 mm
transverse sections and imaged as above. The images were pseudo-colored with a
heat-map colour scheme to highlight inter-sample signal intensity. For small solute
permeability, sulfo–N-hydroxysuccinimide–biotin extravasation was performed64.
Briefly, sham and SIRS rats were perfused with 30 ml 0.3 mg ml� 1 of the low
molecular weight lysine-reactive biotinylation reagent, followed by perfusion
fixation with 2% PFA, lung-excision and post-fixation in 2% PFA. Lung slices of
1 mm and 100–150 mm vibratome sections were incubated overnight in
streptavidin conjugated with either IRdye-800 or Texas-Red (Vector, SA-5006)
diluted in PBSTC (PBSþ 0.5% Triton-X100þ 0.1 mM CaCl2) with 10% normal
goat serum, and washed for 6 h in PBSTC. Slices were imaged as above in the
Odyssey CLx at 800 nm. Vibratome sections were mounted in vectashield with
DAPI and confocal micrographs were obtained with Olympus FV1000 MPE laser
scanning microscope.

Intravital microscopic measurement of leucocyte dynamics. Leucocyte-
endothelial interactions were analysed in mesenteric and ear microcirculation.
Rat LPS-SIRS was induced as above with or without 2-BP (2 mg kg� 1; IV). after
induction of 4 h, rats were anesthetized with 1.75� 103 mg kg� 1 urethane. Rats
were prepared for microscopic observation as mentioned above. Briefly, a loop of
proximal ileum was exteriorized over an optical stage after midline laparotomy.
Constant dripping of LR solution was applied to prevent the exteriorized mesentery
from drying. Body temperature was maintained as described above. Leucocytes
were fluorescently labelled with acridine orange (0.25–0.5 ml; 1.65� 10� 4 M) and
visualized in post-capillary venules using a Zeiss Axiovert 200 inverted microscope
under a � 10 Zeiss objective equipped with a Photometrics Cool Snap HQ2 camera
(Photometrics, AZ, USA). The interaction of leucocytes with venular wall was
recorded for 60 s in at least 3 venules per rat. Four parameters were measured to
evaluate leucocyte interaction with mesenteric venular wall65: slow-rolling flux,
slow-rolling flux fraction, leucocyte rolling velocity and leucocyte adhesion. Rolling
leucocytes were defined as leucocytes moving at a significantly reduced velocity
compared with centerline blood flow velocity. Slow-rolling flux was quantified as
the number of leucocytes rolling at the velocity of o5 mm s� 1 in the observed
venule within 60 s; slow-rolling flux fraction was as the percentage of the number of
slow-rolling leucocytes to the total number of rolling leucocytes; leucocyte rolling
velocity was determined as the average velocity of all rolling leucocytes in the
observed venule. Leucocyte adhesion was measured by counting the number of
adherent leucocytes (no visible movement for more than 20 s) per 105mm2. Video
analyses and measurements were performed by an independent investigator
blinded to experimental design. In separate groups of mice, leucocyte-endothelial
interactions were recorded 4 h post-SIRS induction as above, except microscopic
observations were made in venules of mouse ears secured to an optical stage.

Primary endothelial cell culture. Individual reagents, company information and
catalogue numbers can be found in Supplementary Table 2. Cells were seeded in
0.1% gelatin coated culture flasks (Corning, NY, USA). Human umbilical vein
endothelial cells (HUVECs, Lonza, MD, USA) were grown in Endothelial Cell
Basal Medium supplemented with EGM-2 MV Bulletkits (Lonza, MD, USA).
Primary mouse lung microvascular endothelial cells (MLMVECs, Cell Biologics,

Inc.) were cultured in Mouse Endothelial Cell Medium with Supplement Kit
(Cell Biologics, Inc., IL, USA). All cells were incubated in a 5% CO2 humidified
incubator at 37 �C to reach confluence 2–3 days before experiments. Primary
MLMVEC were commercially isolated (Cell Biologics, Inc.) from 5 to 8 day old
Zdhhc21þ /þ and Zdhhc21dep/dep mice.

Leucocyte isolation. Whole blood from mice was obtained by cardiac puncture,
and layered over a Histopaque 1077/1119 gradient. After centrifugation at 700g for
30 min, RBC lysis was performed, and white blood cells were rinsed and collected
for use. Whole blood from humans was obtained commercially (AllCells, LLC).
Leucocytes were isolated by mixing the blood with 6% dextran in normal saline
and incubated for 1 h at room temperature. The supernatant was collected and
centrifuged at 200g for 12 min. Leucocytes were washed, RBC lysis was performed,
and leucocytes were rinsed and collected for use.

Endothelial barrier function assays In vitro. The barrier function of cultured
endothelial cell monolayers was determined by measuring TER, an indicator of
cell–cell adhesive barrier resistance, using an electric cell-substrate impedance
sensing system (Applied Biophysics, Troy, NY) 66. Electric cell-substrate
impedance sensing tracings are expressed as TER normalized to baseline in
untreated conditions. TER changes were recorded and submitted for statistical
analyses of peak changes. In separate experiments, transendothelial flux of albumin
was measured using a Transwell assay66. Briefly, 2� 105 MLMVECs isolated from
either Zdhhc21þ /þ and Zdhhc21dep/dep mice were seeded in the upper ‘luminal’
chamber of 0.4 mm Transwell inserts (Corning, MA, USA) that were coated with
0.1% gelatin and maintained in 24-well culture dishes. Media was maintained at a
ratio of 100 ml in the luminal chamber and 670 ml in the lower ‘abluminal’ chamber
to insure negligible hydrostatic pressure. After culture for 2 days post-confluence,
20 ml of media from luminal chamber was replaced with 10 ml of media containing
FITC-albumin (5 mg ml� 1), followed by 10ml of media containing thrombin
(100 U ml� 1) or vehicle control (0.1% BSA in PBS). After 30 min, samples were
collected from both the luminal and abluminal chambers for fluorometry analysis.
The concentration of FITC-albumin was determined using a standard curve,
and the permeability coefficient of albumin (Pa) was calculated as follows:
Pa¼ [CA/t]� [1/A]� [V/CL] (4), where [CA] is the abluminal FITC-albumin
concentration, t is time (in seconds), A is the area of the membrane (in cm2),
V is the volume of media in the abluminal chamber, and [CL] is the luminal
FITC-albumin concentration.

Leucocyte-endothelial cell adhesion assay. ECs were cultured to confluence on
gelatin-coated coverslips. ECs were pre-stimulated for 4 h with vehicle control or
100 ng ml� 1 IL-1b. After stimulation, ECs were rinsed three times with warm
HBSS. Prior to endothelial-leucocyte incubations, ECs were labelled with CellMask
Deep Red Stain, and leucocytes were labelled with CellTracker Green as per
manufacturer’s instructions. Leucocytes were incubated with ECs for 1 h. Before
fixation (4% PFA for 10 min), non-adherent cells were washed three times with
HBSS. Coverslips were mounted with Vectashield mounting medium containing
DAPI. Images were acquired using Olympus FV1000 MPE laser-scanning
microscope. The number of adherent leucocytes was counted and the results
were presented as the number of adherent leucocytes per 105mm2.

Immunocytochemistry. Immunocytochemistry (ICC) on confluent EC
monolayers was performed per standard protocols. Briefly, after treatment
with or without 1 h pretreatment of 2-BP, coverslips were fixed with 4%
paraformaldehyde� 10 min, permeabilized with 0.05% Triton X-100 in PBS� 10
min, blocked with 5% BSA in PBST� 1 h and labelled with goat anti-VE-cadherin
overnight at 4 �C. Secondary incubation for 1 h was done with donkey anti-goat
AlexaFluor568. Cell-surface ICC for ICAM-1 was performed as mentioned, except
that detergents were omitted from all solutions and secondary antibody was
donkey anti-rabbit Alexa Fluor 488. ProLong Diamond mounting medium with
DAPI was used for mounting coverslips. Fluorescent images were captured with
Olympus FV1000 Olympus MPE laser scanning microscope. Images were analysed
via Imaris software (Bitplane). Briefly, the intensity threshold of VE-cadherin
channel was set for each ICC image to label all the VE-cadherin positive regions
(region of interest, ROI). The number of ROI was then counted without bias using
Imaris. Continuous VE-cadherin staining corresponds with a lower number of
ROI, whereas discontinuous staining corresponds to a higher number of ROI. The
results of VE-cadherin discontinuity were presented as the number of ROI counted
via Imaris.

On-cell western assay for ICAM-1 cell surface expression. On-Cell Western
Assays were performed per the manufacturer’s (Li-Cor) instructions and
standardized protocols. Briefly, ECs were grown to confluence in gelatin-coated
96-well plates. After treatment, ECs were fixed and immunolabeled as per the
ICC protocol for ICAM-1 surface staining. Total cell staining (CellTag) for
normalization was performed during secondary antibody incubations. Images were
scanned and analysed with Li-Cor Odyssey Clx.
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Real-time PCR. Total RNA from MLMVECs was extracted using RNAzol RT per
manufacturer’s instructions. RNA purity and concentration was quantified with an
Agilent 2100 Bioanalyzer (Agilent Technologies, TX, USA). Total RNA of 1 mg was
used per 20mL of iScript cDNA Synthesis Kit. Prime PCR Reverse Transcriptase
control was used during cDNA synthesis per the manufacturer’s instructions.
Wet-lab validated gene-specific PCR primers from Bio-Rad were used to analyse
mRNA expression with PCR. Qualitative PCR amplifications were performed in a
CFX Connect thermocycler with the following programme: 1 step of 2 min at
95 �C, 35 cycles of 15 s at 95 �C, 30 s at 60 �C and 5 s at 72 �C, and the final step of
7 min at 72 �C. PCR amplified products were electrophoresed in 4–20% Criterion
precast polyacrylamide TBE gels B90 min at 150 V and stained with Syto 60 for
visualization on Odyssey CLx.

Acyl-Biotin exchange. Acyl-Biotin Exchange (ABE) was performed per recently
developed protocols with modifications57. HUVECs were treated with
inflammatory stimuli and then lysed with lysis buffer (50 mM Tris, 5 mM EDTA,
150 mM NaCl, 1% NP-40, 10% glycerol, 5 mM MgCl2, a tablet of complete ULTRA
protease inhibitor, pH 7.4) on ice. Lysates were centrifuged at 13,000g for 10 min at
4 �C. Supernatants were collected and protein concentrations were determined
using BCA assay. Proteins were precipitated using several volumes of ice-cold
acetone for 30 min at � 20 �C, collected by centrifugation and resuspended in
37 �C 4SB buffer (4% SDS, 5 mM EDTA, 50 mM Tris, pH 7.4). The solution was
diluted to 1% SDS using lysis buffer. Methyl methanethiosulfonate (MMTS) was
added to a final concentration of 20 mM and the solution was incubated for 30 min
at 50 �C. Proteins were washed by three sequential rounds of precipitation in ice
cold acetone followed by resuspension in 37 �C 4SB. Proteins were diluted to 1%
SDS and split. Both samples were treated with 1 mM biotin HPDP for 60 min at
room temperature (RT). One sample was then treated with 1 M hydroxylamine
(HA, pH 7.4). The other half was treated with Tris buffer (pH 7.4) as control.
Proteins were washed three times with acetone and resuspended in 4SB buffer. The
solution was diluted to 1 ml with dilution buffer (50 mM Tris, 150 mM NaCl, 5 mM
EDTA, 0.2% Triton-X 100, pH 7.4). To each tube 100ml prewashed streptavidin-
conjugated agarose beads were added and rocked overnight at 4 �C. The beads were
washed three times with dilution buffer and the captured proteins were eluted
using 100 ml dilution buffer with 1% b-mercaptoethanol. BCA assay was performed
again, and 4� sample buffer with 2.5% b-mercaptoethanol was added to proteins.
Samples were loaded into gels for mass spectrometry mail-out and/or subsequent
western blotting per standard protocols.

Click chemistry. Confluent HUVEC monolayers were incubated with 100mM
Alk-C16 overnight to metabolically label palmitoylated proteins. Alk-C16 was
prepared as follows: (1) dissolved in DMSO to the stock concentration of 50 mM,
(2) diluted to a final concentration of 100 mM using EC culture medium with
charcoal stripped FBS, (3) sonicated for 15 min at room temperature before use.
Confocal microscopic imaging was then performed to analyse palmitoylated
proteins 67. After metabolic labelling with Alk-C16, ECs grown on coverslips were
then treated with 10 U ml� 1 thrombin, 10mM histamine or 20% SIRS plasma with
or without 3 h pretreatment of 10 mM 2-BP. After washing with HBSS once, cells
were fixed with pre-chilled methanol for 10 min in � 20 �C. Cells were then
permeabilized with 0.1% Triton X-100 in PBS for 5 min and washed with PBS six
times. Click reaction solution was freshly made: 0.1 mM Oregon Green 488 azide
(5 mM stock solution in DMSO), 1 mM Tris (2-carboxethyl) phosphine
hydrochloride (TCEP, 50 mM freshly prepared stock solution in ddH20), 0.1 mM
tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine (TBTA, 10 mM stock solution in
DMSO/tert-butanol (20%/80% V/V)) and 1 mM CuSO4 (50 mM stock solution in
ddH2O) in ddH2O. Cells were treated with click reaction solution for 1 h in dark at
room temperature, and then wash six times with PBS. ProLong Diamond
mounting medium with DAPI was used for mounting coverslips. Images were
acquired using Olympus FV1000 MPE laser-scanning microscope. The
fluorescence intensity of palmitoylated proteins was analysed by Image J
(v1.48i, NIH, USA).

PLCb1 palmitoylation assay. After metabolic labelling palmitoylated proteins,
ECs were treated with 10 mM histamine. Cells were then lysed with 1�RIPA buffer
with a tablet of complete ULTRA protease inhibitor based on standardized
protocol. To remove excess Alk-C16, samples were then subjected to chloroform-
methanol protein precipitate where 4 volumes of methanol, 1 volume of
chloroform and 3 volumes of ddH2O were sequentially added. Samples were then
separated into two layers via centrifugation at 14,000g for 2 min with precipitated
proteins located between the two layers. After removing the top layer, 4 volumes of
methanol were added. Proteins were pelleted by centrifugation at 14,000g for 5 min.
After removing supernatant, samples were air-dried for 5 min. Precipitated protein
pellets were dissolved in 1% SDS and the protein concentrations were determined
using BCA assay. Azide agarose resin was prepared according to manufacturer’s
instructions. Click chemistry solution (2 mM TCEP, 0.4 mM TBTA and 2 mM
CuSO4) was freshly made before use. For each sample, 200mL prepared agarose
resin slurry, 800mL protein sample and 1 ml Click chemistry solution were mixed
thoroughly and incubated with end-over-end rotation for 20 h at 4 �C. Samples
were then washed six times with washing buffer (100 mM Tris, 1% SDS, 250 mM

NaCl, 5 mM EDTA, pH 8.0). After eluted by hydroxylamine (1 M, pH 7.0), proteins
were precipitated and re-dissolved in 1� protein loading buffer. Alternatively,
palmitoylated proteins on agarose resin were eluted by 1� protein loading buffer
containing a high concentration of b-mercaptoethanol (1.43 M). The level of
palmitoylated PLCb1 in eluted samples was then determined with Western
blotting.

Resin-assisted capture. The level of palmitoylated protein was detected by
resin-assisted capture68. Confluent MLMVECs were treated with 20 U ml� 1

thrombin for 5 min and then lysed in lysis buffer (100 mM HEPES, 25 mM NaCl,
1 mM EDTA, 10 mM palmostatin B, protease inhibitors, pH 7.4). Cell lysate was
then sonicated and incubated with blocking buffer (100 mM HEPES, 1 mM EDTA,
2.5% SDS, 6 ml ml� 1 MMTs, pH 7.4) at 50 �C for 30 min with frequent vortexing. 4
volumes of cold acetone were added and incubated at � 20 �C overnight to allow
protein precipitation. Following centrifugation of the solution at 2,500g for 30 min,
the protein pellet was washed with 70% cold acetone three times, and resuspended
into binding buffer (100 mM HEPES, 1 mM EDTA, 1.0% SDS, pH 7.4). Protein
quantification was performed and total protein amount for each group was
normalized. The protein sample was split into two equal parts. Hydroxylamine
(pH¼ 7.4, final concentration of 0.2 M) and prewashed water-swollen thiopropyl
sepharose 6B were added into one part. To the other part, an equal amount of NaCl
and beads were added. The binding reaction of the beads and palmitoylated protein
were carried out at room temperature for 4 h with constant rotation. Beads were
washed five times with binding buffer, then eluted with 1� sample buffer
supplemented with 50 mM DTT at room temperature for 30 min. The solution
mixture was heated to 95 �C for 5 min and centrifuged at 14,000g for 5 min.
Supernatant was collected for SDS-PAGE.

Membranous and cytosolic fractionation assay. Isolated MLMVECs were
treated with thrombin (10 U ml� 1) for 3 min. After washing three times with cold
HBSS, ECs were lysed. Plasma membrane fraction of EC lysate was separated
from cytosol fraction via Plasma Membrane Isolation Kit per manufacturer’s
instructions. Purified cellular fractions were then subject to Western blot.

IP3 ELISA. HUVECs were treated with histamine (10 mM), and or 2-BP (100 mM)
and immediately harvested, frozen and used for determining IP3 concentrations
with an IP3 ELISA Kit per the manufacturer’s instructions.

Time-Lapse Ca2þ Imaging. Primary MLMVECs isolated from wild-type and
Zdhhc21dep/dep mice were grown to confluence on glass bottom culture dishes.
Prior to imaging and thrombin stimulation, cells were prepared with the reagents
from the Fluo-4 Calcium Imaging Kit per the manufacturer’s instructions.
Time-lapse images were acquired with 3i spinning disk confocal system (Intelligent
Imaging Innovations) on an Olympus IX81 inverted microscope equipped with a
stage-top microenvironmental chamber (Pathology Device) for constant 37 �C and
5% CO2. Time-lapse images were obtained with Olympus 20X UPLSAPO
(NA 0.75) objective by acquiring images every second with Slidebook 6.0 software
(Intelligent Imaging Innovations). To minimize spontaneous Ca2þ release due to
exposure to the laser, cells were illuminated with 50% laser power and the
fluorescence was captured with Evolve EMCCD (Photometrics) with a setting of
17-ms exposure and intensification mode. The relative fluorescence intensity
fluctuation during the time-lapse was analysed by Slidebook 6.0.

siRNA Transfection and gene transfer. All Zdhhc and PLCb1 siRNA were
purchased from Santa Cruz Biotech. pCMV6 empty vector, and ZDHHC21
plasmids were purchased from Origene; and pLX304 empty vector and PLCb1
plasmids were purchased from Genecopoeia. MLMVECs grown to 90% confluence
were trypsinized, pelleted, and resuspended in 100 ml of P5 Primary Cell
4D-NucleofectorTM X with 1 mM siRNA or 2 mg plasmid. Cells were rapidly
electroporated using the 4D-NucleofectorTM System (Lonza, MD, USA) and plated
in Endothelial cell complete medium (Cell Biologics) for experiments. Mutation at
potential palmitoylation site of PLCb1 was created by mutagenesis using as
template the pLX304 with PLCb1 transcript variant 1 cDNA clone purchased from
Genecopoeia; and the Q5 Site-Directed Mutagenesis Kit with supplied 5-alpha
competent cells purchased from New England BioLabs. PLCb1 C17S mutagenesis
primers (Fw: 50 AAGCCCGTGTCCGTGTCCGAC 30 ; Rev: 50 GAGTTGCAAGGC
GTGCAC 30) were designed using the NEBaseChanger tool also provided by New
England BioLabs. Successful mutation of C17S was confirmed by sequencing using
(Fw: 50 ACATCAATGGGCGTGGATAG 30 ; Rev 50 GGAAAGCCACGAGATT
CAAATG 30) designed with the PrimerQuest tool provided by Integrated DNA
Technologies and Sanger sequencing of PCR product provided by Genewiz.

Statistical analysis. All statistics were performed using GraphPad Prism (version
6.0f). See Supplementary Table 7 for a list of statistical tests used for all data
analyses. Statistical tests were justified as appropriate. All data meet the normal
distribution assumption. The variance is similar between groups that are being
statistically compared. The sample size was derived from a priori power analysis
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based on the expected effect sizes observed in previous studies in our lab for each
endpoint measurement and literature searches for commonly observed means and
standard deviations between groups.

Data availability. The authors declare that the data supporting the findings of this
study are available within the article and its supplementary information files.
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