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Abstract: There are many tool condition monitoring solutions that use a variety of sensors. This
paper presents a self-powering wireless sensor node for shank-type rotating tools and a method
for real-time end mill wear monitoring. The novelty of the developed and patented sensor node is
that the longitudinal oscillations, which directly affect the intensity of the energy harvesting, are
significantly intensified due to the helical grooves cut onto the conical surface of the tool holder horn.
A wireless transmission of electrical impulses from the capacitor is proposed, where the collected
electrical energy is charged and discharged when a defined potential is reached. The frequency of
the discharge pulses is directly proportional to the wear level of the tool and, at the same time, to the
surface roughness of the workpiece. By employing these measures, we investigate the support vector
machine (SVM) approach for wear level prediction.

Keywords: sensor node; energy harvesting; tool vibrations; tool condition monitoring (TCM);
support vector machine (SVM); end milling; piezoelectric transducer

1. Introduction

During the machining process, severe tool wear can lead to quality degradation of
the workpiece or to the breakage of the tool itself, resulting in unexpected production
downtime, or even in damage to the equipment or injuries to the operator [1]. In the
production process, more than 75% of equipment failures are attributed to direct tool wear
or failure, which accounts for up to 6.8% of the total machining process. Tool change and
its wear can also lead up to 3% to 12% of total production costs [2]. The lifespan of the
tool depends on a number of parameters, such as lubrication. During milling operation,
when lubrication is applied, tool life is estimated to last 75 min, while the process of milling
without lubrication cutter tool lifespan is expected to end after 45 min [3].

A generic tool condition monitoring (TCM) system consists of sensors, signal process-
ing, classification and tool condition detection components [4,5]. Sensors are deployed
in order to directly or indirectly measure physical signals such as: cutting force, torque,
vibration, acoustic emission, current and power, sound and temperature. These physical
signals are evaluated for detection of tool wear, chatter or breakage conditions in real-time.
General requirements for sensors used in the industrial applications are: low cost, small
size, robustness, reliability and non-invasive installation. Sensors that comply with such
requirements can be integrated with cloud manufacturing frameworks that enable smart
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online machining process monitoring, forming cyber-physical systems that are able to
learn from data generated by such sensors [6,7]. Such implemented smart tool condition
monitoring systems can significantly increase machining productivity and reduce tool costs
by optimizing its life. This is achieved by implementing condition-based tool replacement
strategies instead of time-based tool replacements, which is especially important in high
precision, high speed and complex machining processes.

Implementation of a TCM system in production can ensure early detection of tool wear
resulting in a decrease of the production costs as well as increasing production efficiency
and ensuring the safety of operators. The use of TCM systems can generate 10–50 % cutting
speed increment, reduce up to 75% downtime and 30% maintenance costs. Thus such
economic incentives for implementation of tool monitoring systems have led to significant
research interest in developing reliable and robust systems to be deployed in industrial
environments [4].

To meet the set of requirements for TCM systems to be used in industrial environments,
wireless self-powered sensor nodes can be employed. They should consist of transceiver for
wireless data transmission, microcontroller for data processing and battery for storing the
energy collected from the environment [8–10]. Ambient energy harvesting from immediate
environment enables increasing the sensor lifespan as well as reducing or eliminating
altogether the need for maintenance [11,12]. During milling operation, the common source
of ambient energy is the vibration of the tool and/or workpiece, which can be harvested
using electromagnetic, piezoelectric, electrostatic and magnetrostrictive principles [13].

The authors of [14] propose the use of an attachable electromagnetic energy harvesting
driven wireless vibration-sensing TCM system, which can detect cutter wear and breakage
conditions during milling process. Such energy harvester is enough to power a sensor
node consisting of power management circuit, three accelerometers and wireless data
transmission capability. In [15] the authors discuss the use of a circular bimorph piezo-
electric transducer that assures a resonant frequency in the same mode as the turning
tool. Such a device is attached to the turning tool collecting vibrations present during
operation. Paper [16] discusses the use of bimorph piezoelectric cantilever with an inertial
mass attached to a milling tool. The electric energy by the piezoelectric transducer when
it is excited by the vibrations of the cutter caused by the impact of its cutting tooth on
the workpiece. As the wear of the milling tool increases, the angular acceleration exerted
on the tool increases as well, leading to up to two times higher voltage output from the
piezoelectric transducer, thus relating the increase in the output voltage to changes in the
condition of the tool over time.

The data collected from the sensor node can be analyzed in parallel while the milling
operation is in progress by implementing machine learning (ML) algorithms and provide
feedback on the condition of the milling tool to the equipment as well as the operator.

The use of machine learning approach for tool wear estimation is being adopted
quite quickly in factories where intelligent monitoring systems are being deployed. Since
the signals generated by the sensors are non-linear with respect to the tool wear rate,
a support vector machine (SVM) model can be used as a classifier to predict the wear
of milling tools [17]. Accurate predictions in detecting tool wear under various cutting
conditions with rapid response rate are achieved by measuring the audible acoustic signals
and analyzing them in the frequency domain by extracting signal features that correlate
with the actual milling phenomena. The prediction of the wear of the end mill tool can be
considered as the classification task and solved by applying different machine learning
algorithms. Tool wear prediction based on linear axis force and current signals using SVM
and random forest (RF) approach tend to achieve very good classification accuracy results:
98.1 % (SVM) and 86.1 % (RF) respectively [18]. It can be noted, that employing SVM,
tool condition binary classification task into “sharp” and “dull” classes allows to achieve
classification rate of 100% [19], using features extracted from three-axis cutting measuring
forces, torque, three-axis accelerometer and acoustic emission signals.
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Other commonly applied ML methods to tackle this problem include artificial neural
networks (ANN), RF, decision trees (DT) [20], neuro-fuzzy systems [21], or convolutional
neural network (CNN) [22], with a focus on prediction accuracy and training time. A
neuro-fuzzy system (with a feedforward backpropagation neural network) can be used to
perform online tool wear condition monitoring by measuring three parameters—maximum
tool wear, machining time and cutting power that are required to create a certain surface
roughness, thus making the most efficient use of the cutting tool [21]. Deep convolu-
tional neural networks have achieved state-of-the-art results in many imaging recognition
tasks, therefore they are increasingly applied to make predictions analyzing tool wear
images [22–24]. It could be a very efficient method to exclude relative numerical features
as well [25–27]. However, the provided accuracy results of different ML methods vary
considerably, ranging from 50% to 100% [18,19,21,28], depending on the derived features,
experimental conditions, the prediction task (classification or regression), the parameters of
the ML model and etc. Therefore, it is difficult to provide objective insights or to perform
an unbiased comparative study.

The support vector machine—regression (SVR) approach is used to predict tool wear
condition. During milling, tool wear changes the surface roughness of the workpiece and
therefore the surface roughness values are used as an indirect measure of the tool wear
condition. The corresponding empirical and newly derived attributes have been calculated
from the original data, i.e., the variation of the capacitor charge level over time, obtained
from the proposed sensor node. Common time-series features such as running averages,
autocorrelation and entropy were calculated as well. The ten most valuable features
were selected for SVR model training. Among the three types of kernels, the prediction
model with a radial basis function (RBF) kernel was the best for predicting the value of
the workpiece surface roughness. The SVR-RBF model reveals that it is able to provide
the lowest average errors of 2.420% based on mean absolute percentage error (MAPE).
Furthermore, the results show a significant inverse correlation between the variance of
the capacitor charging time (the length of the capacitor charging cycle) and the surface
roughness of the workpiece.

The paper is structured as follows: After the introduction, Section 2 presents a method
for converting the rotational vibrations of a shank-type rotating tool into longitudinal
vibrations by embedding it into a cone-shaped horn with helical slots in the spindle of
the machine tool. The advantages of embedding such a tool compared to a conventional
one are demonstrated in Section 3. Experimental results on the prediction of tool wear
condition using the SVR approach are provided in Section 4. Additional experiments,
including time serious features and different machine learning algorithms, are presented
in Section 5. Finally, Section 6 concludes the paper.

2. Material and Methods
2.1. Design of a Horn-Type Waveguide with Helical Slots

A cone-shaped tool holder, also referred as horn, is usually used in machining pro-
cesses where the excited vibrational response of the tool reduces cutting forces and im-
proves the surface quality of the workpiece. The cone-shape of the tool holder was chosen
because it would act as a concentrator-resonator of ultrasonic vibration energy and be as
rigid as possible for lateral loads; other shapes (stepped, exponential, catenoidal and etc.)
are less rigid, and the helical grooves formed on their lateral surfaces would further reduce
their lateral stiffness and be less efficient. The motion generated at the tool-workpiece inter-
face is typically longitudinal, torsional or a composite of longitudinal and torsional (L&T).
It can be achieved either by the use of a transducer capable of synchronously generating
both vibrational modes simultaneously, or by the introduction of geometric features on the
surface of the horn waveguide that enable transformation of longitudinal motion by the
transducer into L&T form at the tool.

In this study, a cone-shaped type tool holder design with helical slots formed on its
planar surface has been developed using the Solidworks (Dassault Systèmes SolidWorks
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Corporation, Waltham, MA, USA) computer-aided design (CAD) software package. As
presented in Figure 1, the designed cone-shaped tool holder has three uniformly distributed
helical slots of 45 mm length, 3 mm width and 3 mm depth, with an angle of 30◦ on its
planar surface with the longitudinal axis of the tool holder. The selected material for the
tool holder is C45 steel (EN 1.0503) whose chemical composition and mechanical properties
are provided in Table 1.

Figure 1. Horn type tool holder model design with helical slots formed on its planar surface.

Table 1. Chemical composition and mechanical properties of C45 (EN 1.0503) type steel.

Chemical Composition, %

C Si Mn Ni P S Cr Mo
0.43–0.5 Max. 0.4 0.5–0.8 max. 0.4 max. 0.045 max. 0.045 max. 0.4 max. 0.1

Physical Properties

Brinell hardness Young’s modulus Poissons ratio Density
180 210 Gpa 0.3 7800 kg/m3

Introduction of helical slots on the surface of the cone-shaped tool holder enable
coupling of L&T vibrational mode in the 14.1 kHz and 15.2 kHz vibrational frequency
bandwidth, thus creating an L&T vibrational mode. This L&T vibrational mode can be
used in a reverse action during milling operation as compared to the traditional application
of horn-type waveguides with helical slots. In our design, when the end mill tool is excited
during milling by torsional vibrations entering or exciting the workpiece, these vibrations
are transferred to the tool holder where they are partially transformed into longitudinal
vibrations due to the generation of the L&T vibration mode. The longitudinal vibrations
generated in the tool holder are transferred to an axially poled piezoelectric transducer,
where they are used to deform it, thus generating an electric charge.

The assembly of a cone-shaped tool holder with an end milling tool made of high
speed steel (HSS) material is presented in Figure 2. The tool holder is rigidly attached to
the entire outer flange surface. Such configuration was used in subsequent FEM modeling
work.

Figure 2. Tool holder with end mill tool geometrical model—rigid fix constraint boundary conditions.
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2.2. Simulation of Horn-Type Waveguide with Helical Slots

The COMSOL Multiphysics (COMSOL, Inc., Burlington, MA, USA) software package
was used to model the vibration response of the horn type tool holder with helical slots. In
FEM modeling, the flange surface of the tool holder was firmly attached (Figure 2), and the
milling forces were applied to the end mill tool, the principal block diagram of the created
FEM simulation model is provided in Figure 3. The evaluation of the vibrational modes
and the conditions for the longitudinal-torsional mode coupling effect to take place for the
tool holder model and the frequency dependence of the L&T modes on the geometrical and
material parameters was performed by modeling. The analysis of the surface displacements
of the contact surface of the toolholder with the piezoelectric transducer was carried out
in the Solid Mechanics (solid) module in the frequency domain. The complete simulation
of the tool holder with the piezoelectric transducer, was performed by integrating the
Electrical Circuit (cir), Electrostatics (es) and Solid Mechanics (solid) modules.

Figure 3. Principal block diagram of the FEM simulation model.

In such applications, the motion generated at the tool-workpiece interface is typically
longitudinal, rotational, or longitudinal and rotational, which can be achieved either
by using a transducer that can simultaneously generate both vibration modes, or by
introducing geometric elements on the tool holder surface that allow the transducer to
transform the longitudinal motion at the tool into L&T form.

In the considered FEM formulation, the dynamics of the tool is described by the
following equation of motion in block form, taking into account that the fundamental law
of motion is known and defined by the node displacement vector uK:[

MNN MNK
MKN MKK

]{ ..
uN..
uK

}
+

[
CNN CNK
CKN CKK

]{ .
uN.
uK

}
+

[
KNN KNK
KKN KKK

]{
uN
uK

}
=

{
0
r

}
(1)

where the node displacement vectors uN , uK correspond to the displacements of
the free and kinematically excited nodes; M, C, K are the mass, stiffness and damping
matrices, respectively; r is a vector representing the reaction forces of the kinematically
excited nodes.

The displacement vector of unconstrained nodes is expressed as uN = uNrel + uNK,
where uNrel denotes the component of the relative displacement with respect to the displace-
ment uNK, of the moving base. The vectors uN and uNK correspond to the displacements
of the rigid body that do not cause internal elastic forces in the structure. The proportional
damping method takes the form C = αM + βK, where α and β as Rayleigh damping
constants. Thus, by performing algebraic Equation (1), the following matrix equation
is obtained:

MNN
..
uNrel + CNN

.
uNrel + KNNuNrel = M̂ (2)
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where the left side of the equation contains structure matrices constrained at the nodes of
the determined kinematic excitation, and the right side reflects the kinematic excitation
applied by the vector of inertial forces acting on each node of the structure.

The model verification was performed to validate the adopted tool modeling approach
and thus to ensure that the constructed FEM model can accurately predict the dynamic
behavior of the vibration-controlled tool. The degree of agreement between the measured
and simulated frequency responses was chosen as a quantitative criterion describing the
accuracy of the model. One of the main factors determining the vibrational response
of a tool is related to its boundary conditions. The main challenge was to achieve a
proper frictional locking of the tool in the gripper. In addition, considerable effort was
made to ensure that the dynamic analysis applied a kinematic excitation to the FEM
model that corresponded to the actual vibration excitation induced by the tool. During
the model adjustment phase, the most suitable values of stiffness kz, kr and kϕ were
captured: the values of these coefficients were adjusted until a sufficiently close match
between the simulated and measured eigenfrequencies was reached. This procedure
was performed by conducting a sequence of frequency response analyses in the range of
0–20 kHz with different values of stiffness coefficients. For the frequency response analysis,
the displacements of the tool holder surface in the longitudinal direction opposite to the
position of the end mill were measured and the results are shown in Figure 4.

Figure 4. Average displacement amplitude in longitudinal direction for horn with and without slots.

The obtained results show that a tool holder with uniformly distributed helical slots
formed on its conical surface and excited to resonate at its torsional vibrational mode
will result in surface displacements more than six times higher than those compared to
a conventional design horn type tool holder without surface modifications. Conversely,
if the tool holder with helical slots is excited in the longitudinal vibrational mode, the
amplitudes of the surface displacement in the longitudinal direction will be more than twice
as higher as those obtained from tool holder without helical slots. Across the full generated
L&T vibrational mode frequency bandwidth we can see that the surface displacement
amplitudes in longitudinal direction at about 15 kHz are at least twice as large as the results
obtained with the tool holder without helical slots. This effect is obtained due to the partial
conversion of torsional vibrations into longitudinal vibrations in the tool holder.

Tool holder assembly with a piezoelectric transducer allows to evaluate energy harvest-
ing properties under L&T mode excitation. For this purpose an axially poled piezoelectric
(material PZT-5H) transducer of OD× ID× H = 40 mm× 32 mm× 10 mm dimensions
has been selected.

The size and type of this piezoelectric transducer were chosen with respect to the
position of the appearance of the maximum amplitudes of displacement of the tool holder
flat surface in longitudinal direction, under end milling tool excitation conditions resonating
at torsional mode (Figure 5). During milling operation the cutting tool is predominantly
excited by torsional forces, thus it is important that the piezoelectric transducer shape
would be selected ac-cording to formation of surface displacement at this vibrational mode.
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According to Figure 5, we can see that maximum surface displacement at torsional mode
is formed at the outer diameter of the contact surface, for this reason axially polled, ring
shape PZT has been selected to optimize harvesting of vibrational energy.

Figure 5. Tool holder with slots surface displacement heat map in longitudinal direction of the
transducer at (a) torsional, (b) axial excitation vibrational modes.

Repeated results of the frequency response of the piezoelectric transducer output
voltage in the 20 kHz frequency range are presented in Figure 6. The results show that the
transducer, when embedded together with the tool holder with helical slots on its surface,
generates a significantly higher output power over frequency range where the L&T mode
coupling effect is present, compared to the case where a tool holder without helical grooves
is used instead. This confirms the previously obtained results presented in Figure 4, where
the highest longitudinal surface displacement is obtained when the tool holder with helical
slots is excited to resonate at its torsional mode.

Figure 6. Piezoelectric transducer generated voltage output for tool holder with and without heli-
cal slots.

This voltage, generated by the axially poled piezoelectric transducer, can be used to
power low-power electronics, such as sensor nodes, which can be embedded inside the
tool holder for measuring tool wear parameters during milling operation such as change
in capacitor charge over time.

2.3. Design of Sensor Node Embedded inside Cone-Shaped Tool Holder for Cutter Wear Monitoring

The voltage obtained from the piezoelectric transducer under deformations when the
tool holder is excited to resonance in L&T mode can be harvested by low-power senor
nodes. To this end, the design of such a sensor node has been proposed in this study.

During operation, when the tool holder is excited, the voltage generated by the
piezoelectric transducer is fed to electronics assembled as printed circuit board assembly
(PCBA). The designed PCBA (Figure 7) consists of power management, data processing
and wireless communication units.
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Figure 7. Front, back and isometric views of PCBA with MCU and Bluetooth module. Back view of
the designed PCBA shows the introduced placement for coin type battery.

As the designed device is expected to operate on low power all electronic components
have been selected with low power budget requirements in mind. For this reason, an
MCU ULP MSP-430G2553 microcontroller (Texas Instruments, Dallas, TX, USA) has been
selected. A MLT BT-05 type 4.0 Bluetooth serial communication module is also included
for wireless communication with a smartphone. Detailed electrical schematics of the PCBA
are provided in Figure 8.

Figure 8. Electrical schematics of the prototype PCBA used with designed sensor.

Here, voltage from the piezoelectric transducer generated during milling operation is
fed to a voltage multiplier consisting of Schottky diodes (D1A and D1B) and capacitors
(C2, C3, C5, C6) where it is converted into a DC signal. From here the voltage is used to
charge capacitor C4. The change in the charge level of the capacitor over time is measured
by the MCU (microcontroller) and sent via Bluetooth. The denoted charge level change
over time is directly related to the vibrations of the tool, which amplitudes depend on
the wear state of the tool. As the tool gradually wears out, the amplitude of the torsional
vibrations present in the tool during interaction with the workpiece are also increasing [29].
As these vibrations are partially transformed into longitudinal vibrations deforming the
piezoelectric transducers, the piezoelectric transducer is subjected to higher stresses during
operation with increasing tool wear over time, resulting in higher output voltages. When
the MCU measures the capacitor voltage, it also compares it to a set voltage threshold
value. In case this threshold value is exceeded, the MCU triggers N-channel field transistor
Q1, discharging the capacitor C4 through the resistor loads R1 and R2. Once the capacitor
is discharged, another measuring cycle is initiated.

During discharge, the voltage from the C4 capacitor is fed to the power accumulation
unit, in our case a super capacitor, where it is stored and used for powering the electronics.
This enables the self-powering capability of the sensor node. The principle of operation of
the developed device, to be used during milling operation, is presented graphically in the
flow chart (Figure 9).
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Figure 9. Working process flow of the wireless energy harvesting sensor node used to detect end mill tool condition
wear state.

As provided in Figure 9, during the milling operation (1), the predominantly random
torsional vibrations exciting the cutting tool (2 & 3) are transmitted to the tool holder with
helical slots (4). At the tool holder, these torsional vibrations are partially transformed
into longitudinal vibrations (5) and transferred to deform an axially polled piezoelectric
transducer (6). The voltage (7) from the piezoelectric transducer (6) is converted into a
DC signal and continuously fed to the “C4” capacitor (8). During milling, the charge level
of the capacitor “C4” (8) is measured (9) by an embedded microcontroller (10) at every
250 ms time interval. The microcontroller performs the following tasks: it compares the
charge level of the capacitor “C4” with a predetermined value (11), in case the measured
capacitor charge level exceeds the predetermined threshold, the microcontroller initiates
the discharge of the capacitor (12). Here, the capacitor (13) voltage (14) is discharged into
the power accumulation unit (15), which is used as a power source by the sensor it-self
and the charging cycle of the capacitor “C4” (8) is restarted. In addition to controlling the
discharge of the capacitor, the microcontroller (10) also initiates wireless data transmission
(16) via Bluetooth to the smartphone (17). The data transmitted contains information on the
charge level of the capacitor at the time of measurement. The smartphone is used here to
display the received data (19) and to store it on a local hard drive (20) for later processing
and analysis.

Thus, the proposed sensor design not only enables the energy harvested by the
piezoelectric transducer to be used as an alternative power source of the sensor, but also to
measure and record the change of the generated voltage over time, expressed as the change
in the charge level of the capacitor. Here, the exponential increase of the capacitor charge
level over time can be related to the gradual wear of the end mill tool.

3. Experimental Setup

In order to experimentally verify that the use of helical slots on the planar surface
of the tool holder lead to higher voltage from piezoelectric transducer, two tool holders
have been prepared, one with and one without slots. These two manufactured tool holders
was used during vibrational response experimental study as presented in block diagram
(Figure 10), while the actual experimental setup is presented in Figure 11. The experimental
setup was kept identical for both tool holders.
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Figure 10. Vibrational response test setup used for tool holder with and without helical slots. (1)—
Positioning of the tool holder with and without helical slots during the experiment.

Figure 11. Actual experimental set-up of the vibration response of the tool holder with and without helical slots. (a)—view
of the tool holder with a fixed piezoelectric actuator and a linear amplifier P200 (FLC Electronics AB, Partille, Sweden),
(b)—a view of the Polytec PSV-500 3D laser doppler vibrometer-scanner (Polytec GmbH, Widbronn, Germany).

As presented in the block diagram of the experimental set-up, a piezoelectric actuator
was fixed at the end of the tool holder, where the end milling tool is to be mounted to excite
the tool holder. The piezoelectric actuator was connected to a waveform generator exciting
it by a chirp type signal in the 50 kHz frequency range.

A PSV-500 3D laser doppler vibrometer (Polytec, Bake Parkway Irvine, CA, USA) was
used for non-contact surface displacement measurements. These measurements were made
on the surface of the tool holder, which is dedicated for contact with piezoelectric transducer
(opposite position of piezoelectric actuator). Results from the performed vibrational
response experiment are presented in Figure 12.

The acquired results show that for the tool holder with helical slots, if it is excited to
resonate at its axial mode, the surface displacement amplitude is twice as high, compared
to the obtained results for the tool holder without helical slots, when it is excited to resonate
at the longitudinal mode. The vibrational response study results are consistent with the
results obtained during FEM modeling of the tool holder (Figure 4), showing that under
the same excitation condition, the longitudinal surface displacement amplitudes of the
tool holder with helical slots are significantly higher when compared to the tool holder
without these helical slots. The frequency differences when compared to the FEM model
are due to the different mounting position: in the FEM model, the tool holder is mounted
to its outer flange surface (Figure 2), whereas in the experimental study it is mounted
to its own free weight. Nonetheless, study results show a trend, observed during FEM
studies, that the introduction of helical slots on the tool holder lead to the increase of
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longitudinal vibrations. This is achieved, because the introduction of helical slots enables
partial transformation of the torsional vibrations generated at the input surface of the tool
holder into longitudinal motion reinforcing the longitudinal vibrations that already exist.
These combined longitudinal vibrations are transmitted through the tool holder deforming
a piezoelectric transducer.

Figure 12. Measured surface displacement amplitudes for the tool holder with and without helical
slots excited at axial mode.

For experimental research to monitor the condition of rotating shank-type tools an
instrument design was proposed and developed. According to the FEM results obtained
in the previous section, the device consisted of a cone-shaped tool holder with three
helical grooves uniformly distributed on its planar surface, a piezoelectric transducer and
a PCBA board with integrated electronics. A 3D CAD model of the device, designed in the
Solidworks (Dassault Systèmes SolidWorks Corporation, Waltham, MA, USA) software,
is shown in Figure 13, providing cross-sectional and exploded views and the assembly
elements presented in Table 2.

Figure 13. (a)—Energy harvester device assembly section view, (b)—Energy harvester device assem-
bly exploded view.



Sensors 2021, 21, 3137 12 of 25

Table 2. Components constituting a condition monitoring device for a rotating shank type tool.

Number Component Description

1 Holder’s Morse cone for assembly inside CNC center
2 Antenna for wireless data transmission
3 PCBA holder inside tool holder
4 PCBA with data processing and transmission components
5 Back-mass
6 Stack type piezoelectric transducer
7 Flange for assembling tool holder with Morse cone cover
8 Cone shaped tool holder with helical slots
9 End mill tool

For the experimental investigation aimed at evaluating the energy harvesting perfor-
mance of the developed device under actual milling conditions and its dependence on the
milling process parameters, the developed device (Figure 13) has been assembled inside the
spindle of V-20 CNC milling center (Figure 14, Leadwell, Taichung City 421, Taiwan). This
experiment has been repeated for a tool holder with and a tool holder without helical slots
on its planar surface. Throughout the milling process, a one-way Bluetooth connection was
established with an Android smartphone and the information about the charge level of the
C4 capacitor was sent and stored every 250 ms.

Figure 14. Wireless sensor node used for tool condition monitoring assembled inside Leadwell V-20 CNC milling center
(Leadwell CNC Machines MFG., Corp., Taiwan), (a)—outside CNC view, (b)—inside CNC view.

The experiments were carried out by machining the entire top surface of a workpiece
with the following dimension: length = 250 mm, height = 50 mm and width = 50 mm.
The selected workpiece is made from 1.0037 type carbon steel. The chemical composition
and mechanical properties of this type of material are provided in Table 3.

Table 3. Chemical composition and mechanical properties of 1.0037 type steel.

Chemical Composition, %

C Mn P S
0.17–0.20 1.40 0.045 0.045

Physical Properties

Brinell hardness Young’s modulus Poissons ratio Density
324 200 GPa 0.29 7700 kg/m3
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The HSS end mill cutting tool was selected for machining the workpiece. The main
parameters of the end mill tool are provided in Table 4.

Table 4. The main parameters of the end mill tool used during the machining operation.

Tool type HSS
End type Straight

Number of teeth, Z Four
Helix angle 35◦

Shank diameter 10 mm
Cutting part diameter 10 mm

Shank diameter 10 mm
Working part length 25 mm

Overall length 75 mm

The milling operation parameters were selected according to the workpiece and the
cutting tool when used without lubrication, as provided in Table 5.

Table 5. Milling process parameters used during experiment.

Parameter Spindle Speed, n Feed Speed, vf Feed Per Tooth, fz Axial Depth of Cut, ap Radial Depth of Cut, ae

Value 1210 RPM 148 mm/min 0.031 mm/tooth 1 mm 9.8 mm

During milling operation, the wireless sensor node was configured to discharge the
capacitor C4 if its voltage level reached or exceeded a set threshold of 0.7 V, which would
re-set and repeat the capacitor charging process cv.

The results of the capacitor charging levels over time, recorded on the smartphone
during the milling experiment, are shown in Figure 15.

Figure 15. Experimental results of capacitor C4 charging times when tool holder without (a) and with (b) slots is used
during milling operation.

Figure 15a presents the capacitor charging period during milling operation when
the tool holder is implemented without helical slots and Figure 15b shows the capacitor
charging rate where the tool holder with three uniformly distributed slots is assembled
with our device. From the obtained results, we can see that the average time to charge the
capacitor to the set threshold of 0.7 V is 7.38 s when using the tool holder with helical slots
and 25.53 s when using the tool holder without slots. The results show that the tool holder
with helical slots is charged more than 3.45 times faster, which means that up to 3.45 times
more vibrational energy is harvested during milling operation over the same time interval
if the device is implemented using the tool holder with helical slots.
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In the next step, the experiment was carried out by changing the parameters of the
milling process. The spindle speed remained the same at 1210 RPM, but the milling depth
was increased from 1 mm to 1.5 mm. The experiment was performed with both tool holders,
with and without helical slots, and the results of this study are presented in Figure 16.

Figure 16. Experimental results of the capacitor C4 charging times when the tool holder without (a) and with (b) helical
slots is used during milling operation, with the depth of cutting increased from 1 mm to 1.5 mm.

The obtained results show that increasing the depth of cut from 1 mm to 1.5 mm
resulted in a significant decrease of the capacitor charging time up to the set threshold for
both tool holders, with and without helical slots.

The average charging time recorded for the C4 capacitor when assembled with the
tool holder without helical slots was 17 s, whereas for the tool holder with helical slots
it was 4.9 s. The results show that, as in the last step of the experiment, the difference
between the tool holder with helical slots leads to a 3.47 times faster capacitor charging
when compared to the one with the tool holder without helical slots.

It is important to note that the charging time of the capacitor C4 decreased significantly
with increasing milling depth in tool holders with and without helical grooves, which
means that the process parameter has a significant effect on the amplitude of the vibrations
excited in the end mill tool during operation. However, the difference in the generated
voltage between the tool holder designs remains relatively the same.

The increase in the amount of the harvested energy can be anticipated with the increase
in spindle speed, because it leads to the increased frequency of tool tooth contact with
the workpiece and hence the frequency of excitation of the milling tool. As the milling
depth increases, the cutting edge of the milling tool is subjected to higher forces during the
impact cycle.

The next step of the experimental study investigated the ability of the proposed sensor
node to detect gradual tool wear during milling operation. For this purpose, the device
(Figure 13) was assembled with a sharp (new) four flute HSS end mill tool (see Table 4), which,
according to the process parameters defined in Table 5, was used to machine the top surface
of a 1.0037 type steel (see Table 3) workpiece, with a length = 250 mm, height = 50 mm
and width = 50 mm. The experimental study was carried out by machining the top surface
of the workpiece 61 times continuously, starting with a sharp (new) end mill tool, gradually
(over milling operation) achieving its wear. During the milling of the top surface of the
workpiece, once the machining was started, data from the sensor node with the capacitor
charge level were sent every 250 ms. A smartphone with Bluetooth connectivity was used
for the receiver to visually display the data on the screen in real time and store it for later
processing. Each time milling operation of the workpiece top face was completed, its
surface roughness was measured and logged at 15 different points using Mitutoyo SJ-210
surface roughness tester (Mitutoyo America Corp., Aurora, IL, USA). A flowchart of the
experimental process, showing the steps involved in each milling iteration carried out during
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the experiment, is given in Figure 17. Two parameters were recorded during the experiment:
the capacitor charge level during continuous milling and the workpiece surface roughness
measurements after each milling iteration. Both parameters recorded at the sensor node were
fed as input data to an SVM-based prediction model to assess whether they can be used to
detect the gradual tool wear in real time during milling operation, which is expressed by the
relationship between the change of the capacitor charge level and the increase in workpiece
surface roughness.

Figure 17. The flow chart of process steps used during experiment execution.

4. Experimental Results
4.1. Features’ Extraction for an SVM-Based Prediction Model

Support Vector Machines (SVMs) are one of the most popular supervised learning
algorithms applied for both classification and regression problems [30]. The Support vector
regression (SVR) approach is able to solve nonlinear problems with a comparably small
number of model parameters. Unlike other machine learning algorithms, the algorithm
does not suffer from the problem of overfitting [31]. Moreover, the SVR based prediction
model is very suitable for edge devices due to its decision-making time. In the development
of an intelligent monitoring system for the cutter wear process, the speed and robustness of
the decision are the most important factors, because changes of the capacitor charge level
can be observed within milliseconds. Since the effectiveness of an SVR depends upon the
selection of kernels, the parameters of those kernels and soft margin parameter, different
experiments have been carried out in this study.

Each milling iteration of the top surface of the workpiece lasted on average 10 min,
during which 2400 data points were recorded to determine the charge level of the capacitor
and 15 different surface points were taken to measure the average surface roughness after
the milling operation. The average surface roughness values are considered as the output
of the SVR model. However, the raw data representing the charge level of the capacitor,
measured every 250 ms, are not suitable as input data for the model. Therefore, seven
common statistical measures [32] have been calculated from the distribution of the capacitor
charge level as provided in Table 6:

Feature Avg- is the simple average value of all 2400 data points, denoting capacitor
charge level. Variation Var and standard deviation Sd are calculated accordingly.

The autocorrelation function (ACF) is a useful characteristic for finding recurring
patterns. This characteristic indicates the degree of similarity between values of the same
variables over two time intervals. This concept has been used for defining the attribute
ACorr, which refers to the average autocorrelation value calculated between two measures
of the capacitor charge level at times xt and xt−k [32]:

ACorr =
1

n− 1

n

∑
i = 1

ACF(xi, xi−k), k = 1, 2, 3 . . . . (3)

where value k—is the time interval (the lag), which represents autocorrelation between
values that are one time interval apart.
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Table 6. Calculated statistical features used as SVR model input data.

Feature Name Explanation

Avg Average value of the capacitor charge level values
Var Variability value of the capacitor charge level values
Sd Standard deviation of the capacitor charge level values
ACorr Autocerrelation value of the capacitor charge level values
M4 Avg 4 data point simple moving averages of the capacitor charge level values
InterQ Interquartile value of the capacitor charge level values
Energy Absolute energy of the capacitor charge level values

The feature M4 Avg calculates moving averages. In our case, four data points are taken
and their average is calculated [33]:

MAF =

(
xi + xi+1 + . . . + xi+(M−1)

)
M

(4)

M4 Avg =
1

n− (M− 1)

n−(M−1)

∑
i = 0

MAFi (5)

where n—data points, where M is the size of the sliding window, and in our case M = 4.
Another quite informative characteristic is interquartile InterQ, which calculates the

difference between the third quartile and the first quartile for a data [33]:

InterQ = Q3 −Q1. (6)

where Q1—the first quartile, and Q3—the third quartile.
Feature Energy is the sum of the squared data values [34]:

Energy =
n−1

∑
i = 0

(xi)
2 (7)

Three specific measures have been derived using expert’s knowledge:

• Energy provides the percentage amount of very high values of the capacitor charge
level, xi > 360, i = 1, n. It has been noticed, that the amount of such values has a
positive relationship with surface roughness and correlation coefficient is equal to
0.811.

• Signaljump provides the sum of squared differences (∆xi)
2, including the condition:

the value of (∆xi)
2 has to be greater than 0.9 of the quantile of differences between

data points, Q∆xi (p), p = 0.9:

Signaljump =
n−1

∑
i=0

(∆xi)
2 > Q∆xi (0.9), where ∆xi = (xi+1 − xi). (8)

where Q—quantile function, p—probability value 0 < p < 1. This feature highly
correlates with the output (see Table 7).

• Avg_cycle is the average length of one capacitor charge cycle, until the set thresh-
old level.

The end of the cycle is determined if the difference between data points is relatively
large ∆xi > h. The most appropriate threshold value for h = 150 has been determined
experimentally. The average cycle length Avg_cycle is calculated by taking into account all
recorded lengths at the capacitor charge level. It has been observed that higher values of
workpiece surface roughness (Ra) have lower values of average capacitor charge cycle. For
example, for a roughness of 1.959, the average capacitor cycle length is 59 time intervals
(1 time interval = 250 ms), which is 59× 250 ms = 14, 750 ms = 14.759 s, meanwhile for
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a roughness of more than 4, the cycle is very small averaging about 1.750 s. The relation
between the decrease in the average capacitor charging cycle time and the increase in
surface roughness is provided in Figure 18.

Figure 18. Capacitor charge cycle duration dependence on the surface roughness of the workpiece:
14.759 s vs. Ra = 1.959 µm, 4.25 s vs. Ra = 2.533 µm, 3.25 seconds vs. Ra = 3.138 µm, 1.75 seconds vs.
Ra = 4.03 µm.

The obtained results show that there is a negative correlation (r = −0.743) between
the length of the capacitor charging cycle and the surface roughness of the workpiece,
which is due to the wear of the cutting edge of the milling tool. In this case, the charge
level of the capacitor at the time of the measurement was expressed in integers, where one
unit equals 0.0015 volts, and the MCU was set to discharge the capacitor when it reaches
an integer value of 350, that is when its charge level equals 0.5 volts. During the milling
operation, when the charge on the piezoelectric transducer capacitor voltage reaches or
exceeds the set threshold value, the capacitor is discharged and the cycle repeats itself.

Ten features have been included for the prediction task and the correlation coefficients
(see Table 7) show that the most informative features are ACorr, InterQ, Energy, BigV and
Signaljump. The most irrelevant feature (r = 0.574) is the standard deviation of the capacitor
charge level.

Table 7. Pearson correlation coefficient values.

Avg Var Sd ACorr M4Avg InterQ Energy BigV Signaljump Avg_cycle

Roughness −0.739 0.641 0.574 −0.817 −0.767 0.825 0.812 0.811 0.889 −0.743

4.2. Model Evaluation Metrics and Prediction Accuracy Results

All modeling experiments were carried out using the Python programming language
in Jupyter notebook in the Google Colab environment. The fit of the SVR model was
evaluated by calculating the coefficient of determination and prediction error.

R2 (coefficient of determination) is commonly used to evaluate model performance [33].
R2 is the regression score, which is a statistical measure of how close the data are to the
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fitted regression line. In regression, it is a measure of how well the regression predictions
approximate the real data. When R2 equals to 1, it indicates that the regression predictions
perfectly fit the data:

R2 =
SSR
SST

= 1− ∑m
i=1(yi − ŷi)

2

∑m
i=1(yi − y)2 (9)

where SSR is the sum of squares of residuals, SST—the total sum of squares, yi—the actual
value, ŷi—the predicted value and y the mean value.

The provided results (Figure 19) indicate that R2 value for RBF-SVM model varies
from 0.930 to 0.975, depending on the number of kernels, varying from 1 to 4. These results
denote that the RBF-SVM model explains all the variability of the response data. More R2

scoring variations can be observed with the polynomial SVM model, ranging from 0.838 to
0.911 respectively. The regression score of the linear SVM model is more or less stable at
around 0.77.

Figure 19. Coefficient of determination R2 value for RBF-SVR model depending on the number and the type of kernels.
(a)—4 rbf kernels, (b)—2 rbf kernels, (c)—1 rbf kernel, (d)—4 linear kernels, (e)—2 linear kernels, (f)—1 linear kernel, (g)—4
polynomial kernels, (h)—2 polynomial kernels, (i)—1 polynomial kernel.
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Three error measures for time-series prediction are usually calculated: the root mean
square error (RMSE); the mean absolute deviation (MAD) and the mean absolute percentage
error (MAPE). In our experiments, MAPE is calculated to evaluate the prediction accuracy
of SVM models. MAPE is a relative error measure that uses relative errors to compare the
predicted accuracy between time-series models. The formula for calculating the MAPE is
provided below [33]:

EM =
1
n

n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100 (10)

where n—the number of time point, yi—is the actual value at a given time period i, and
ŷi—is the predicted value.

The data used to test the model (capacitor charge level values over time) are obtained
from 31 different milling operations. The average MAPE value of the SVM model with
a radial basis function kernel and C = 4, predictions are equal to 2.420%. The SVM with
a polynomial kernel and C = 4 resulted in an average MAPE value of 5.431%, while the
highest error was observed with the linear kernel of 8.608%. The predicted and real (actual)
values of the surface roughness during the testing are presented in Figure 20.

Figure 20. Testing results of the SVM model with different kernels: (a)—linear, (b)—polynomial, (c)—radial basis function.

5. Discussion

As the data can be considered as a time series, various additional features such as
entropy, “peak to peak” distance, seasonality and trend can be calculated for prediction.

The Seasonal-Trend Decomposition by Loess (STDL) method [34] can be applied to
time series, because it can decompose a time series into seasonal, trend and remainder
components [35]:

Yt = Tt + St + Rt. (11)

where Ttis the trend component, Stis the seasonal component representing for example the
annual cycles, and Rt is an irregular (remainder).

STDL model diagram for the capacitor charging level seasonal trend when workpiece
surface roughness is Ra = 4.03 µm and Ra = 3.21 µm and dp = 200 (number of presented
data points) is provided in Figures 21 and 22, respectively. STDL parameters: seasonal
period = 12, seasonal window = periodic, seasonal degree = 0, trend degree = 1, low pass
degree = 1, robust loess fitting = False. The experimental results with different model
parameters exhibit almost no seasonality, therefore we can conclude that the STDL model
is not useful for our data analysis.
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Figure 21. STDL of the capacitor charge level data, when workpiece surface roughness Ra = 4.03.

Figure 22. STDL of the capacitor charge level data, when workpiece surface roughness Ra = 3.21.

The feature SE—is the spectral Shannon entropy, often applied to time series [35]:

SE = −
∫ π

−π

ˆ
f (λ) log

ˆ
f (λ)dλ. (12)

here
ˆ
f (λ) is an estimate of the spectral density of the data. It measures the predictability of

the time series. Large SE values are calculated when the time series is difficult to forecast,
while small values indicate a high signal-to-noise ratio.

Another popular time series feature is “peak-to-peak” which calculates the distance
between two peaks: lowest and highest [32]:

PtoP = |max(X)−min(X)|. (13)

The entropy feature has provided promising results for our data, resulting in a sig-
nificant value of correlation coefficient r = 0.858. The peak-to-peak calculation is less
informative and has an inverse correlation with the output value, r = −0.660.

To visualize a linear relationship through regression, scatterplot diagrams of those
two features (SE and PtoP) are provided in Figures 23 and 24, including the regression line
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and the 95% confidence interval of that regression.

Figure 23. Relationship between data entropy value and roughness.

Figure 24. Relationship between data peak-to-peak value and roughness.

Additional experimental investigations were performed by implementing other ma-
chine learning approaches. In particular, decision trees (regression) and convolutional
neural networks were used to compare their performance with SVR on a selected dataset.
A simple dense CNN architecture with a 5-layer dense block was selected [36], because
the direct connection in the dense block can solve the problem of vanishing gradient, as
it is less prone to overfitting compared to the deep CNN [31]. Furthermore, there is no
need to use deep CNN architectures for image recognition, because our input features are
numerical values (not tool wear images). The prediction results of the SVR different model,
the decision tree and the CNN are provided below (Figure 25).

From the obtained results (Figure 25) we can conclude that SVM with radial basis
function is the most accurate algorithm (MAPE error 2.42%), however the average MAPE
error is only slightly different from the results of DT (3.02%) and CNN (2.61%), but the
final decision should be made considering two factors: accuracy and performance speed.
Convolutional neural networks have shown their superiority in terms of accuracy, however,
the larger number of parameters and the complex architecture make this an extremely
time-consuming approach. Besides, CNNs are more efficient in solving problems with a
huge number of instances and attributes. For these reasons, the SVM model is preferable
for this problem, noting that the prediction error is 7.28% lower than that of CNNs.
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Figure 25. Comparison results for different ML algorithms MAPE (SVR with different kernels, DT
and CNN) represented using boxplot.

6. Conclusions

This study presents the design of a sensor node employing piezoelectric energy
harvesting for wear detection in rotating shank-type tools. The results, obtained during
modeling, revealed that the cone-shaped tool holder with helical slots introduces an L&T
vibration mode coupling effect, which allows the torsional forces acting on the tool during
cutting operation to be converted into longitudinal motion. The excited longitudinal
motion can be used to deform the piezoelectric transducer generating the voltage.

• The performed FEM studies of a tool holder with a piezoelectric transducer show
that a tool holder with helical slots, experiences more than two times higher surface
displacement amplitudes in longitudinal direction, when it is excited in the L&T mode.

• A tool holder with helical slots, when assembled with piezoelectric transducer (and
excited to resonate at L&T mode), produces more than two times the voltage compared
to a tool holder without helical slots.

• The experimental studies have confirmed the FEM modeling results, where the excited
tool holder with helical slots has more than 2 times higher surface displacement
amplitudes in the longitudinal direction and is able to generate more than 3 times
higher amount of voltage from the embedded piezoelectric transducer during milling
operation compared to a tool holder without helical slots.

• The sufficient power generated by the device allows it to be used as a wireless sensor
node, that can be used in milling operations for detecting the wear of the end mill tool,
when the voltage generated by the piezoelectric transducer increases exponentially
due to the progressive cutter degradation.

• The machine learning approach was applied to solve the milling wear prediction
problem using surface roughness measurements as the key indicator of tool condition.
SVR with a radial basis function kernel provides the lowest prediction error (2.420%
MAPE) compared to polynomial (5.431% MAPE) and linear (8.608% MAPE) kernels.
However compared to other ML methods, namely CNN and DT, the superiority of
SVR-RBF is not so apparent.

• By exploring the computed empirical features of the SVR model, it was observed that
time series features such as autocorrelation, interquartile, absolute energy, entropy
are the most relevant for solving the problem. However, according to the correlation
coefficient, the most informative feature is the specially created feature Signaljump
(r = 0.889) used for determining signals’ jumps due to the difference in data points at
the 90% confidence level.
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7. Patents

After obtaining positive results during the experimental research, a patent application
entitled: “Wireless sensor to assess the quality of rotating tools” has been submitted for the
developed device to The State Patent Bureau of the Republic of Lithuania.
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Nomenclature

SVM Support vector machine
TCM Tool condition monitoring
MCU Microcontroller
ML Machine learning
RF Random forest
RBF Radial Basis Function
MAPE Mean absolute percentage error
L&T Longitudinal and torsional composite vibrational mode
CAD Computer aided design
Lf Free length of the end mill (mm)
FEM Finite element method
PZT Piezoelectric transducer
OD Outer diameter (mm)
ID Inner diameter (mm)
H Height (mm)
PCBA Printed circuit board assembly
MCU Microcontroller
DC Direct current
3D Three dimensional
CNC Computerized numerical control
HSS High speed steel
n Spindle speed (RPM)
vf Feed seed (mm/min)
fz Feed per tooth (mm/tooth)
ap Axial depth of cut (mm)
ae Radial depth of cut
uK, uN node displacement vectors
M Mass matrix
K Stiffness matrix
C Damping matrix
α Mass proportional damping coefficient
β Stiffness proportional damping coefficient
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Nomenclature

C Carbon (%)
Si Silicon (%)
Mn Manganese (%)
Ni Nickel (%)
P Phosphorus (%)
S Sulfur (%)
Cr Chromium (%)
Mo Molybdenum (%)
Ra Arithmetic mean roughness (µm)
Avg Average value of the capacitor charge level values
Var Variability value of the capacitor charge level values
Sd Standard deviation of the capacitor charge level values
ACorr Autocorrelation value of the capacitor charge level values
M4Avg 4 data point simple moving averages of the capacitor charge level
InterQ Interquartile value of the capacitor charge level values
Energy Absolute energy of the capacitor charge level values
ACF Autocorrelation function
MAF Moving average formula
k Time interval
Q Quantile function
Q1 First quartile
Q4 Fourth quartile
p Probability value (0 < p < 1)
r Negative correlation
R2 Coefficient of determination (0 < R2 ≤ 1)
SSR Sum of squares of residuals
SST Total sum of squares
ŷi The predicted value
y The mean value
PtoP Peak-to-peak
MAPE The root mean square error
STDL Seasonal-Trend decomposition by losses
Tt Trend component
St Seasonal component
Rt Irregular
SE Shannon entropy
ˆ
f (λ) Estimate of the spectral density of data
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