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In order to improve the quality and efficiency of music teaching, we try to automate the teaching of music notation. With the
addition of computer vision technology and note recognition algorithms, we improve the generative adversarial network to
enhance the recognition accuracy and efficiency of music short scores. We adopt an embedded matching structure based on
adversarial neural networks, starting from generators and discriminators, respectively, to unify generators and discriminators
from the note input side. Each network layer is then laid out according to a cascade structure to preserve the different layers of note
features in each convolutional layer. Residual blocks are then inserted in some network layers to break the symmetry of the
network structure and enhance the ability of the adversarial network to acquire note features. To verify the efficiency of our
method, we select monophonic spectrum, polyphonic spectrum, and miscellaneous spectrum datasets for validation. 'e ex-
perimental results demonstrate that our method has the best recognition accuracy in the monophonic spectrum and the
miscellaneous spectrum, which is better than the machine learning method. In the recognition efficiency of note detail in-
formation, our method is more efficient in recognition and outperforms other deep learning methods.

1. Introduction

Computer simulations play a very important role in teaching
music today. 'e greatest advantage of multimedia tech-
nology is cross-media presentation. 'e traditional school
board is limited to written and face-to-face instruction, and
much virtual knowledge cannot be displayed, so students
cannot feel the main points of learning in a personal way.
'us, the development of computer technology today has
made education presentable, and it can realize the con-
version from text data to image video, also the conversion of
music notation to audio, and also the virtual performance of
musical instruments. 'e combination of computer tech-
nology and education has added more fun to education, and
the novel teaching methods can mobilize students in all
aspects, make the teaching mode more active, and improve
the quality of teaching significantly.

'e traditional model of music education is one-on-one
teaching between teacher and student, and music-type art
training is usually a small course. Lessons involving music

notation are rather boring, and classroom-style instruction
prevents students from getting a first-hand feel for the tones
and distinctions of each musical notation. All music nota-
tion and musical notation require rote memorization by
students to remember, which drastically reduces the quality
of music notation instruction [1]. 'e advent of computer
technology has improved the efficiency of teaching music
notation [2]. With the aid of computer technology, various
music software was born to bring great convenience to
students’ extracurricular music learning. Music software
contains virtual instrument functions, digital score pre-
sentation functions, virtual arranging tools, and digital
tuners. A series of music assistance programs have emerged
to make self-learning music more convenient and are sought
after by a large number of amateur music lovers [3].

Music notation initially existed in the form of hand-
writing, the construction of music scores in the early period
of music festivals was based on the sense of sound, and the
writing of all music symbols varied from person to person,
which brought great challenges to the work of automatic
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music notation recognition. 'e fusion technology of
computer vision and image recognition algorithm to realize
the music score recognition can improve the working effi-
ciency and save the working cost. To orderly carry out the
music score recognition work and solve the problem of
variation of handwritten scores, the researcher specially
designed a notation frame, and each music notation frame
can learn the handwriting habits of different musicians
independently and will automatically label the information
of music source, author, and genre after recognition [4–6].
'e computer input work is performed by scanning the
music notation manuscript, and each music symbol is
designed in advance as a label for easy learning of the score.
After the recognition is completed, musicians can download
and edit the music from theMusic Resource Sharing website.

Music notation recognition systems give more promi-
nence to image recognition techniques, yet ignore the ho-
mogeneous heterogeneity of music notation handwriting.
For this problem, the researchers used computer vision
techniques for the same specification. Each handwritten
music notation has a different representation, and different
types of music notation cannot be processed with the same
heuristic [7]. According to the frequency of music notation
usage, the scanned music notation needs to be reconstructed
phonetically, and themusic notation is assigned according to
different weights as a way to cater to the fluency of the music
notation. With the development of machine learning
techniques, each note symbol in a musical notation can be
generalized and model training can be achieved by manually
building a note symbol dataset. So far, some researchers have
demonstrated that the combination of note symbols and
machine learning techniques is not suitable for all music
notation, where note symbols captured by pentatonic scores
need to be preprocessed with images to be applicable, and
special music element classification requires dataset-inde-
pendent production based on specific notes. Although the
machine learning method is the first innovation in the re-
search of music short score recognition, the method adds a
lot of work cost to the method due to the lack of a clear and
explicit engineering framework and the tedious manual
labeling work, plus the accuracy and real-time performance
of the machine learning method are not good enough.
'erefore, there is still a lot of research space in the field of
music score recognition [8, 9].

In the experiments of adversarial generative networks,
we try to fuse music notation features into the generator to
accomplish the task of music notation recognition by
stimulating the generation of pseudo-samples. 'e musical
notation recognition method we designed consists of symbol
recognition and score reconstruction. 'e flowchart is
shown in Figure 1. We adopt an embedded matching
structure based on adversarial neural networks, starting
from generators and discriminators, respectively, to unify
generators and discriminators from the note input side.
'en, each layer of the network is laid out according to the
cascade structure, and then the residual blocks are inserted
in some network layers to break the symmetry of the net-
work structure and enhance the ability of the adversarial
network to acquire note features. Finally, we validate the

effectiveness of our method on a public dataset of music
notation.

'e rest of the paper is organized as follows. Section 2
introduces the research history and research results of
musical notation recognition. Section 3 details the principles
and implementation procedures related to the improved
adversarial music notation recognition network. Section 4
shows the experimental datasets and the analysis of the
experimental results. Finally, Section 5 summarizes our
research and reveals some further research work.

2. Related Work

'ere are many branches of music notation recognition
research, among which optical music recognition is one of
the well-known research branches. Optical music recog-
nition mainly relies on optical factors to achieve the
recognition of music symbols. 'e literature [10] has a very
in-depth study on optical music recognition, and the
authors try to establish a series of different stages to deal
with the grading of music symbols. Considering the dif-
ferences between low-order to high-order notes, the au-
thors propose a general optical music recognition
framework and supplement it with different note seg-
mentation methods to achieve the task of nondifferentiated
recognition of musical short scores. For special notes, the
authors default to note segmentation for preprocessing and
then unify all music symbols and treat them as indepen-
dent phonemes for optical scanning.

Researchers in literature [11] tried to improve the rec-
ognition accuracy of music notation from the perspective of
images, and they proposed a binarization algorithm, which
can temporarily solve the problem of a small number of
music notation images. However, the method lacks gener-
alization, has limited applications, requires adaptation for
note images with different characteristics, relies heavily on
optical music recognition methods in the conversion be-
tween high and low order for different music scores, and
becomes less applicable due to the lack of flexibility of a
unified note recognition framework. Researchers in the
literature [12–14], after validating a large number of machine
learning methods, found that DNN models have a high
degree of generalizability and are better at musical score
recognition with better recognition accuracy. 'e applica-
tion potential of deep learning methods in music short
scores is high, but the method requires more stringent
datasets. In the construction of the musical score dataset, the
skewed manuscript content needs to be corrected in ad-
vance, and the overlapping notes need to be separated in
advance according to the correct score. In addition, to
improve the inclusiveness and increase the volume of the
dataset, the literature [15, 16] proposed data enhancement
algorithms to improve the coverage of different angles and
sizes of note features in the dataset.

'e study of musical notation is not a smooth process, in
which music notation segmentation is a great challenge.
Music notation is different from characters, which have a
professional character library that can be used as a database
to unfold the mapping. However, music symbols are a new
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task in the early stage of research, and without a huge music
symbol library as data support, the music symbol database
needs to be built from scratch, which undoubtedly brings
great difficulties to the work of music score recognition. At
the initial stage of music symbol database establishment,
researchers chose to define the scanned documents of notes
with poor image quality with small element labels and then
separated the notes from pseudo-notes by noise threshold.
Based on the former research method, the literature [17]
proposed the principle of object reconstruction at the initial
stage of notes, which solved the problem that the over-
lapping of notes and pseudo-notes at the initial stage of notes
could not be separated. Considering that the workflow of the
traditional note detection method is too tedious and
the accuracy is low, the literature [18, 19] first tried to apply
the region-based neural network method to note feature
extraction, abandoning the note separation step, directly
starting from note features, and training the model to di-
rectly complete note recognition. However, the method has
high requirements on the dataset. Researchers in the liter-
ature [20] were again inspired by the musical notation
baseline and used the baseline as the note criterion to build a
variety of note and notation models to achieve excellent note
recognition accuracy with an adaptive fusion approach.

To avoid differentiated conversions between higher and
lower orders of notes, researchers in the literature [21, 22]
chose a neural network approach that starts with the overall
musical notation. 'ey transformed the output of the neural
network as a sequence of notes and then annotated the notes
of higher and lower orders in the sequence position. 'e
released note elements are converted to actual notes in
backpropagation, preventing multiple repetitions of detec-
tion during postprocessing. 'e experimental results dem-
onstrate that themethod is faster and takes less time to detect
in music notation detection. To ensure the wholeness of
music notation in note separation, the literature [23] pro-
posed a method to reshape music notation using hidden
Markov models and achieved good results in experiments.
'e researchers in the literature [24] transferred the method
to the handwritten data of music notation based on the
former and proposed a fusion algorithm of neural network
and discriminative algorithm [25], which was able to identify
the handwritten data completely and accurately under the
ideal situation of unstructured environmental factors.

Among the methods of music notation recognition, most
researchers prefer the end-to-end neural network method
because the music notation needs to do note segmentation
process during the preprocessing process, due to the variability
problem of manuscript notes. In the process of note image

acquisition, poor image quality, note overlap, note occlusion,
and other problems can affect the integrity of note segmen-
tation work. To solve this problem, researchers have used end-
to-end neural network recognition methods to extract local
and overall note features to ensure the integrity of local features
and correct recognition of damaged notes [26, 27]. In addition,
researchers in the literature [28, 29] proposed a deep neural
network-based note synthesis method for the problem of
damaged notes that cannot be correctly recognized, which is
mainly based on the local features of notes and automatically
improves the defective notes against the note learning library,
which has a high dependency on the note learning library. In
other words, the richness of the note learning library deter-
mines the note recognition accuracy of the method.

3. Method

3.1. Basic Pipeline. To ensure the feature integrity of the
musical score, a generative adversarial network is chosen as
the basis for learning from note local features through an
unsupervised training mode, which can perform undiffer-
entiated feature reorganization for various images with the
aid of computer vision techniques. 'e generative adversarial
network consists of two parts, a generator and a discrimi-
nator, which are used to simulate the note features to be
learned and generate pseudo-samples with high feature
similarity to match them. In the data input stage, only the real
note samples that have been preprocessed are segmented, and
then the generator simulates similar pseudo-samples based on
the feature analysis.'e discriminator will score the similarity
between the fake samples and the real samples, and the fake
samples that meet the specified scoring range will be output
directly through the simulator, while the fake samples that do
not meet the scoring range will be fed back to the front end to
regenerate the fake samples until the fake samples that meet
the scoring criteria are generated. 'e structure of the gen-
erative adversarial network is shown in Figure 2.

Generative adversarial networks are based around mu-
tual game learning methods as mathematical principles and
are effective in obtaining independent note features in music
notation recognition work. For note separation of penta-
tonic and characteristic scores, the generative adversarial
network will optimize the feature editing of the characteristic
notes using a pseudo-sample generation model to control
the sample output of the note features by editing between
discriminator parameters. Such an approach can indirectly
control the local and overall features from the notes,
avoiding the problem of feature loss in feature separation.

Input Recognition Reconstruction Output

Music Notation
Analysis

Music Notation
Reconstruction

Music Notation
Encoding

Symbol
Classification

Figure 1: Music notation recognition process.
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3.2. Generator. 'e generator is a combination of a fully
connected neural network and a deconvolutional network.
'e generator can automatically obtain the key features of
the input notes and spectral data based on them and generate
pseudo-samples with similar features at the terminals. 'e
principle of generator action is shown in Figure 3. For the
pseudo-sample output by the generator, we will discriminate
the feature parameters from different dimensions and
feedback to the training layer to adjust the feature dimension
parameters to get better quality pseudo-samples.

Researchers in the literature [30, 31] aimed to implement
the embedded matching problem in feature encoding and
decoding. 'ey designed feature encoders with similar
specifications at the input and consistent feature decoders at
the output, and experimentally demonstrated that such a
matching design improved the efficiency of pseudo-sample
generation in generative adversarial networks, reduced the
number of parameters, and improved the robustness of the
networks. 'erefore, we also adopt the same combination of
decoding and encoding embedded matching, and to make
the note feature encoding more adaptable to the embedded
model, we also adopt the cascade structure as the network
skeleton connection. 'e input of the encoder is an inde-
pendent downsampled convolutional layer that can retain
the expressed intensity features of the input note features,

assuming that the retained features are Ilow. After down-
sampling, the note features will be converted to the hidden
layer as a backup. 'e literature [32] refers to the residual
network in the structure design of the decoder, which avoids
the problem of note feature information omission during the
decoding training process and makes the whole decoding
network more compact. We also adopt the same decoder
design strategy, and we introduce different levels of residual
blocks in the decoder to ensure that note features of different
strengths can be fully decoded. In addition to the intro-
duction of residual blocks, the decoder uses the upsampling
deconvolutional layer as the main network to realize the
conversion between the prescribed expression ranges of note
features of different intensities. 'e convolutional layers in
the decoder and encoder uniformly employ normalization
operations and ReLU linear activation with a step size of 2.
We used the X conv operator mentioned in the literature
[33], assuming that the given K input is (p1, p2, . . . , pk) and
theK input is the result of amulti-layer perceptron weighting.
'en, the K × K transform matrix Χ � MLP(p1, p2, . . . , pK)

is executed and the convolution summation gives the
transformed features of the convolution operator X. To solve
the adjacency effect between different note features, we have
the following mathematical definition for the X conv
operator.

Fp � Χ_conv(K, p, P, F),

Χ_Conv(K, p, P, F) � Conv K,MLP(P − p)(

× MLPδ(P − p), F ),

(1)

where p denotes the note feature points, K denotes the
adaptive convolution kernel, P � (p1, p2, . . . , pk)T denotes
the K points in its neighborhood, and F � (f1, f2, . . . , fK)

denotes the features of different notes. Using the principle of
Χ conv operator, we construct amusical short note generator
representing different intensity features, as shown in Table 1.
We replace the connection of the encoder and decoder and
use a jump connection structure to ensure that the location
information of the random note features matches each other.

3.3. Discriminator. 'e discriminator is the same as the
generator and has the same deconvolution network hier-
archy. 'e discriminator evaluates the pseudo-sample
output by the generator by using the feature parameters of
the real samples as the discriminant criteria. If the evaluation
result is not up to the standard, the pseudo-sample is fed
back to the generator and the pseudo-sample is generated
again. 'e discriminator is capable of adjusting the pa-
rameters according to the note characteristics on its own or
manually on demand. 'e working principle of the dis-
criminator is shown in Figure 4.

'e conversion between low-order note features and
high-order note features is prone to pitch confusion, and we
filter the high-order note features in the generator, com-
pensate the high-order note features by the underlying data
density, and distinguish the similarity between high-order
and low-order note features by the high-density note feature
layer in the discriminator. Researchers in the literature [34]
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Figure 2: Generative adversarial network architecture.
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proposed an alternating training model on the problem of
optimizing note feature discretization and replaced the
mathematical computation in principle with the iteration of
maximum and minimum values. We have adopted the same
approach, and we have the following mathematical definition
for the maximum and minimum value turnover in the
evaluation of high- and low-order note features.

min
Gen

max
Dis

� ΕhighI log Dis I
high

  

+ ΕlowI log 1 − Dis Gen I
low

   ,

(2)

where Gen denotes the note features generated by the
generator and Dis denotes the note features determined by
the discriminator. Ilow, Ihigh  denotes a pair of musical
notations with different feature strengths but the same note

order. 'e adversarial loss function equations for generator
Gen and discriminator Dis are shown below.

LG adv �−
1
N



N

n�1
log Dis Gen I

low
n   ,

LD adv �−
1
N



N

n�1
log Dis I

high
n  + log 1−Dis Gen I

low
n    ,

(3)

where N denotes the total number of training note samples.
In the process of adversarial neural network convergence,
different discriminator parameters are set according to
different note strata, and hierarchical restriction means are
adopted for pseudo-sample convergence to screen high-

Music notation Input

Generator

Fake Sample

Figure 3: Music notation generator process.

Table 1: Detailed hierarchy of generators.

Layer Type Detail
1 Input 5001× 3
2 X conv Np� 2400, C� 16, K� 8, D� 1
3 X conv Np� 800, C� 64, K� 16, D� 2
4 X conv Np� 200, C� 256, K� 24, D� 2
5 X conv Np� 800, C� 64, K� 24, D� 2
6 X conv Np� 2400, C� 16, K� 16, D� 2
7 X conv Np� 5001, C� 16, K� 16, D� 1
8 Fully connected C� 3
9 Output 5001× 3

Discriminator
Real samples

Fake samples

REAL

FAKE

Output

Feedback to the
generator

Figure 4: Music notation discriminator process.
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order notes and feedback to the generator to generate high-
density note features. For this purpose, we established
discriminator network layers with different hierarchical
structures, and the network layer density information is
shown in Table 2.

3.4. Loss Function. 'ere is a clear problem of differential
differentiation between high-order and low-order notes in
the hierarchical feature representation, and the real note
feature Ihigh, modulated by the high-intensity density pa-
rameter, guides the generator to synthesize pseudo-samples
with highly similar intensity of feature Gen(Ilow). 'e lit-
erature [35] mentions a point-by-point loss optimization
approach in the pseudo-sample optimization strategy, which
constrains the loss function by controlling the relative
distance between high-intensity features and low-intensity
features. In this paper, we control the feature distance be-
tween high-intensity and low-intensity features, constrain
the features using the L1 loss function, and increase the
integration of features of different classes using the L2 loss
function. Our loss function constraint equation is shown
below.

Lnote �
1

Nnote


Nnote

i�1
Gen I

low
 

i
− I

high
i

�����

�����, (4)

where Nnote denotes the note features in the low-order
samples and also denotes the tone spectrum data points in
the high-order samples. Combining the above loss functions,
the systematic loss function formula of our optimized
generative adversarial network is as follows.

L � ω1LG adv + ω2Lnote, (5)

where ω1 denotes the weighting coefficient. We adopt the
alternating training network iteration mode, and the gen-
erator-side network can generate pseudo-samples with very
high feature similarity in iterations, which can reduce the
discriminator parameter adjustment step when discrimi-
nating with the real samples.

3.5. Music Notation Recognition Network. For applying a
deep neural networkmodel to the recognition of short scores
for music teaching, we compared several neural networks in
the selection of the underlying network and finally chose a
generative adversarial network. 'e most unique advantage
of the generative adversarial network is that it does not affect
the original note feature structure, which is regenerated by a
generator simulating real samples. We propose an improved
generative adversarial network method based on this net-
work to improve the recognition accuracy and recognition
speed of music notation. In our improved strategy, the
generator and discriminator are embedded together in the
residual structure, which can successfully resolve the rec-
ognition differences between notes with different data
densities. For low-order note data, the convolutional neural
network can generate auxiliary samples by downsampling.
For high-order note data, the inverse convolutional network
upsampling can get the note feature intensity, and then the

pseudo-samples can be generated by the feature calculation
through the X conv operator. In the joint output, different
layers of music notation are modeled and filtered with
features in the form of note features, and the classifier
obtains key features from real samples to provide guidelines
for pseudo-sample generation, fusing comprehensive note
features. 'e detailed music notation recognition network is
shown in Figure 5.

4. Experiment

4.1. Datasets. To validate our method for music notation
score recognition, we chose a public dataset for experimental
validation. 'e dataset of the music notation series contains
4 categories, which are a monophonic spectrum, polyphonic
spectrum, polyphonic spectrum, and mixed spectrum. 'e
most representative dataset in the monophonic category is
the Bach Chorales (BC) dataset [36], which is in XML format
for the whole series and contains four vocal parts and
multiple melodic parts. 'is dataset has an important role in
the melodic generation and harmonic modeling studies. 'e
most famous dataset for polyphonic spectra is the MAE-
STRO (MO) dataset [37], which is a collection of MIDI-
enabled piano melodies, each corresponding to a different
audio spectrum, and on which many of Google’s spectral
studies have been conducted. 'e most representative dataset
for polyphonic scores is the Video Game (VG) dataset [38],
where most of the scores are derived from video game music
and are mainly used for electroacoustic synthesis. 'e most
famous dataset for mixed scores is the Lakh (LH) dataset [39],
which has the advantage of a large number and is mostly used
for model pretraining. Besides, we added a wild dataset the
Largest MIDI (LM) dataset [40] to ensure the diversity of
music notation and to improve the generalization of the
music notation recognition model. Details are dataset in-
formation as shown in Table 3.

4.2. Analysis of Results. To verify the effectiveness of our
method for note recognition in music notation, we com-
pared machine learning methods and deep learning
methods. Among the machine learning methods, we chose
the most representative logistic regression (LR) and decision
tree (DT), and among the deep learning algorithms, we
chose recurrent neural network (RNN) and long short-term
memory network (LSTM). To ensure independent validation
relationships between each method, we conducted five sets
of experiments during the training process to independently

Table 2: Detailed hierarchy of discriminator.

Layer Type Detail
1 Input 5001× 3
2 X conv Np� 2400, C� 16, K� 8, D� 1
3 X conv Np� 800, C� 64, K� 16, D� 2
4 X conv Np� 200, C� 256, K� 24, D� 2
5 Fully connected C� 1
6 Mean —
7 Output 1× 1
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verify the efficiency of each group of methods for sound
spectrum recognition. We use recognition accuracy (P), F1
score, and recall rate (R) as the evaluation criteria of the
music short score recognition methods. Each method de-
tection result will be directly fed into the statistical calcu-
lation part of the dataset, and the final evaluation result will
be obtained by the balance between the total number and
quality of the dataset. To verify the preference of each
method in different source datasets, we divided the dataset
into two groups.'e first group is composed of monophonic
scores, polyphonic scores, and polyphonic scores, and this
dataset is mainly used to verify the efficiency of the music
notation recognition methods for independent recognition
of monophonic and polyphonic notes. 'e experimental
results are shown in Table 4.

From the experimental results in the above table, it can
be seen that the machine learning method does not perform
well enough in the independent recognition experiments for
both monophonic and polyphonic spectra, and the accuracy
is below 70%. 'e deep learning method maintains the
recognition accuracy between 70% and 86% in the spectrum
recognition experiments, and our method achieves an av-
erage recognition accuracy of 90% in the spectrum recog-
nition. 'e experimental results demonstrate that our
method has the best independent recognition in both
monophonic and polyphonic phonetic spectra. In the sec-
ond experimental dataset, we chose mixed and wild tone
spectra as the base dataset, and this set of experiments is
mainly to verify the recognition effect of the tone spectral
recognition method in the miscellaneous tone spectra. 'e
experimental results are shown in Table 5.

From the experimental results in the table above, it can
be seen that the machine learning method is less efficient in
the recognition of the murmur spectrum than the

monophonic and polyphonic spectra, and the deep learning
method performs generally in the experimental results of the
murmur spectrum, with the overall average recognition
accuracy remaining at 78%, while ourmethod performs even
better in the recognition of the murmur spectrum, with the
overall recognition accuracy remaining above 90%. Since
our method adopts the separated feature twin method,
which does not affect the original note features, it is more
efficient in the process of murmur note feature extraction
and has higher recognition accuracy. 'e combined results
of all experiments show that our method is better compared
to both machine learning methods and deep learning
methods.

To verify whether the note information of music nota-
tion is accurately recognized, we selected four metrics from
the note level: note meta information (NMI), note nodal line
(NNL), note chord (NC), and note segmentation (NS). In
order not to let the difference in datasets affect the efficiency
of note recognition for each method, we selected a common
dataset from the monophonic group and the murmuring
group for validation, respectively. After the previous ex-
periments, we found that there are significant differences
between machine learning methods and deep learning
methods. To save experimental costs, this session of ex-
periments will only validate the note recognition efficiency
of deep learning methods. 'e experimental results are
shown in Table 6.

'e experimental results in the above table show that the
overall recognition rate of note details of monophonic notes
is higher than that of the miscellaneous note spectrum. 'e
reason for this result is that the monophonic score is more
standardized in the segmentation of note detail information,
while the miscellaneous score is a mixed scale, which is not
standardized in the segmentation, causing the problem of
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Figure 5: Music notation recognition network.

Table 3: Dataset information.

Datasets
BC MO VG LH LM

Train 79801 56342 46351 87500 65492
Test 21420 15993 20365 30021 29564
Total 101221 72335 66716 117521 95056
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low recognition efficiency. 'is problem can be adjusted
during data preprocessing. Referring to different methods is
note recognition efficiency, our method note detail infor-
mation recognition efficiency is kept above 80%, and our
method is significantly better than other deep learning
methods.

5. Conclusion

Music teaching is often difficult to grasp the characteristics
of the notes and tones of the musical notation, and tradi-
tional teaching methods do not allow students to have a
comprehensive understanding of the notation. 'is reduces
the efficiency of music teaching. To improve the quality and
efficiency of music teaching, we try to automate the teaching
of music notation. With the addition of computer vision
technology and note recognition algorithms, we improve the
generative adversarial network to enhance the recognition
accuracy and efficiency of music short scores. We adopt an
embedded matching structure based on adversarial neural
networks, starting from generators and discriminators, re-
spectively, to unify generators and discriminators from the
note input side. Each network layer is then laid out
according to a cascade structure to preserve the different
layers of note features in each convolutional layer. Residual
blocks are then inserted in some network layers to break the
symmetry of the network structure and enhance the ability
of the adversarial network to acquire note features. To

validate the efficiency of our method, we selected the
monophonic spectral dataset Bach Chorales, the polyphonic
spectral dataset Video Game, and the miscellaneous spectral
dataset Lakh for validation. 'e experimental results prove
that our method has the best recognition accuracy in both
monophonic and miscellaneous phonetic spectra, and in the
recognition efficiency of note detail information, our
methodmaintains more than 80%, which is better than other
deep learning methods.

Compared with machine learning methods and deep
learning methods, our method still has much room for
improvement in recognition accuracy and recognition ef-
ficiency, although it performs best in the music notation
recognition experiments. In future research, we will try to
add recurrent neural networks as auxiliary classification in
the adversarial network to optimize the recognition of mixed
notes during note segmentation and improve the robustness
and generalization of the network.
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