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1  |  INTRODUC TION

Despite the advances made in the treatment of human immunode-
ficiency virus (HIV), the global HIV prevalence remains unaccept-
ably high.1 The primary determinants of HIV transmission include 
the accessibility of target cells for infection and viral characteristics 
such as quantity and fitness. Female genital inflammation contrib-
utes to both the availability of HIV target cells and reduced mucosal 
barrier integrity.2,3 Genital inflammation, defined by elevated pro-
inflammatory and chemotactic cytokines, has also been linked to 
a three-fold greater risk of acquiring HIV in women.2 Additionally, 
microbial dysbiosis contributes to inflammation through increased 

cytokine production, mucosal barrier disruption and immune cell re-
cruitment at the female genital tract (FGT).4-7 These studies empha-
sise the role of genital inflammation in HIV acquisition in women and 
highlight the need to determine factors that contribute to genital 
inflammation and then limit their relative impact on HIV risk.

The immune altering capacity of semen is often overlooked in 
heterosexual HIV transmission and semen is merely considered a 
vehicle for viral transmission to women during condomless sex.8,9 
Semen induces mucosal changes at the FGT to increase the chances 
of pregnancy,10-14 and also contains several immunologically ac-
tive molecules known to both promote and inhibit female genital 
inflammation.10-13,15-22 Initially, the presence of semen in the female 
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Abstract
In order to establish productive infection in women, HIV must transverse the vaginal 
epithelium and gain access to local target cells. Genital inflammation contributes to 
the availability of HIV susceptible cells at the female genital mucosa and is associ-
ated with higher HIV transmission rates in women. Factors that contribute to genital 
inflammation may subsequently increase the risk of HIV infection in women. Semen is 
a highly immunomodulatory fluid containing several bioactive molecules with the po-
tential to influence inflammation and immune activation at the female genital tract. In 
addition to its role as a vector for HIV transmission, semen induces profound mucosal 
changes to prime the female reproductive tract for conception. Still, most studies of 
mucosal immunity are conducted in the absence of semen or without considering its 
immune impact on the female genital tract. This review discusses the various mecha-
nisms by which semen exposure may influence female genital inflammation and high-
lights the importance of routine screening for semen biomarkers in vaginal specimens 
to account for its impact on genital inflammation.
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reproductive tract results in an inflammatory response involving 
cytokine production and leukocyte recruitment for the removal of 
excess and abnormal sperm.10,11,20,21 The alkaline pH of semen and 
the microbial content of the ejaculate also contribute to alterations 
in the vaginal microbiome which are known to promote genital in-
flammation and HIV risk in women.4,5,7,23-28 A semen-induced pro-
inflammatory immune response to prime the female reproductive 
tract for conception may also promote genital inflammation and HIV 
acquisition in women.11,20-22

Conversely, semen also contains factors to help regulate this 
pro-inflammatory response at the FGT since excessive inflammation 
may lead to adverse pregnancy outcomes. This results in the induc-
tion of a regulatory T-cell (Treg) immune response for tolerance to 
the paternal antigens and to facilitate embryo implantation.16,29-32 
A semen-induced tolerogenic immune response may also inhibit the 
clearance of HIV and other pathogens at the FGT. Taken together, 
these studies suggest that semen directly alters the biology of the 
FGT and may have significant consequences for the risk of HIV in-
fection in women. Here, we review the relationship between female 
genital immunity and male partner semen and its implications for 
HIV risk in women.

2  |  HOST IMMUNE DEFENCES TO 
PRE VENT HIV INFEC TION AT THE FEMALE 
GENITAL MUCOSA

2.1  |  Innate immune responses at the female 
genital mucosa

2.1.1  |  Role of the vaginal epithelium in innate 
immune defence

During male to female HIV-1 transmission, viral particles present in 
semen must transverse the vaginal mucus and epithelium to access 
local cellular targets for infection. However, the FGT has several in-
nate and adaptive immune responses that defend against HIV infec-
tion. The innate immune system involves a rapid and non-specific 
immune response to injury and infection. Tissue-associated phago-
cytes and intact epithelial barriers are among the primary host 
defences that serve as physical and chemical barriers against HIV 
infection.33 During coitus, semen is deposited in the lower FGT, 
consisting of the ectocervix and vagina. The lower FGT is lined with 
several layers of stratified squamous epithelial cells.34,35 These cells 
are held together by tight and adherens junctions, which reduce the 
permeability of the epithelium and prevent viral entry at the lower 
FGT.35-37 Furthermore, the lower FGT has superficial layers of vagi-
nal epithelium consisting of cornified epithelial cells that provide an 
additional layer of protection.38 The upper FGT includes the fallo-
pian tubes and ovaries, uterus, and the endocervix, each lined with 
a single layer of columnar epithelial cells held together by tight junc-
tions. Vaginal epithelium thickness is influenced by sex hormone 

fluctuations during the menstrual cycle phases and with hormonal 
contraceptive use.39-42 Increased progesterone has been associ-
ated with epithelial thinning at the FGT and a greater risk of HIV 
infection.41-45 Tissue-associated phagocytes such as neutrophils en-
gulf and destroy invading pathogens and infected cells through vari-
ous mechanisms.33,46 Neutrophils can release their deoxyribonucleic 
acid (DNA) to form neutrophil extracellular traps that prevent HIV 
infection through viral inactivation.46 In addition, epithelial and in-
nate immune cells produce cytokines and induce leukocyte recruit-
ment in response to infection.33,47

2.1.2  |  Role of the cervicovaginal mucus in innate 
immune defence

The cervicovaginal environment is covered in a thick layer of mucus 
that provides lubrication during coitus, facilitates sperm migration, 
and acts as a physical and chemical barrier to prevent access to the 
underlying epithelium.48-52 Cervicovaginal mucus (CVM) is primarily 
composed of water and mucin glycoproteins but also contains immu-
noglobulin (Ig)G, IgA and several antimicrobial agents which provide 
additional protection at the female genital mucosa.49,50,53-57 The 
lower FGT is populated by commensal microbes that can modify the 
CVM composition and influence its ability to defend against patho-
gens. Acidic CVM associated with Lactobacillus crispatus dominance 
and high levels of D-lactic acid can hinder HIV-1 mobility and prevent 
infection.52,58,59 Conversely, HIV mobility is significantly increased 
in CVM derived from women with bacterial vaginosis (BV).60 This is 
likely since Gardnerella vaginalis, a common BV-associated microbe 
secretes sialidase enzymes that degrade the CVM.61 These findings 
highlight the complex interplay between the vaginal microbiome and 
host innate immunity.

2.1.3  |  Role of the vaginal microbiome in innate 
immune defence

An optimal vaginal microbiome is dominated by Lactobacilli spp., 
which exists in a mutualistic relationship with the host and contrib-
utes to the immune defences at the FGT.62 Commensal microorgan-
isms such as L. crispatus prevent pathogen colonisation by inhibiting 
their growth, preventing biofilm formation, lowering the vaginal pH, 
competing for nutrients and adherence to the epithelium, and by 
producing antimicrobial agents such as lactic acid, hydrogen perox-
ide (H2O2) and bacteriocin.63-67 Lactobacilli metabolise glycogen se-
creted by vaginal epithelial cells to produce L- and D-isomers of lactic 
acid.67,68 Physiological concentrations of vaginal lactic acid are suffi-
cient to inactivate BV-associated microbes and other sexually trans-
mitted agents of infection, including HIV.58,59,69-71 Lactic acid lowers 
the vaginal pH, enhances the activity of other antimicrobial factors 
and upregulates the production of anti-inflammatory cytokines.67,72 
Taken together, these data suggest that a Lactobacillus-dominant 
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vaginal microbiome is highly beneficial and less vulnerable to HIV 
infection.

2.2  |  Adaptive immune responses at the female 
genital mucosa

Adaptive immunity at the FGT involves either cell-mediated or hu-
moral immunity. Cell-mediated immunity involves the removal and 
destruction of intracellular pathogens and virus-infected cells by 
T lymphocytes. Antigen-presenting cells process and display anti-
gens to T cells to trigger a pathogen-specific immune response and 
promote immunological memory. This adaptive immune response is 
characterised by the involvement of various CD4+ T cell (eg, T-helper 
[Th]1, Th2, Treg, T follicular helper [Tfh] and Th17 cells) and CD8+ T 
cell subsets. Cytotoxic T cells (CD8+) recognise antigens presented 
on major histocompatibility complex (MHC) class I molecules and 
directly kill virus-infected cells by inducing apoptosis through per-
forin and granzymes.73 Conversely, CD4+ T cells recognise antigens 
presented on MHC class II molecules and respond by secreting cy-
tokines to activate CD8+ T cells, macrophages, and B cells to destroy 
infected cells.74,75

Humoral immunity is mediated by B cells and their secreted an-
tibody products. Antibodies prevent and fight infections by binding 
to antigens on the pathogen and preventing their entry into host 
cells, coating the pathogen for phagocytosis, inducing antibody-
dependent cell-mediated cytotoxicity, and by activating the comple-
ment pathway.76,77 IgG is the predominant immunoglobulin isotype 
found in genital secretions of both HIV-infected and uninfected 
women.78,79 T-cell immunity and the abundance of immunoglobulins 
at the FGT are highly regulated by sex hormones.73,80

One to two weeks after infection, effector CD4+ and CD8+ T 
cells die, leaving behind antigen-specific memory T cells that persist 
long after infection. Memory T cells mount a rapid immune response 
upon reinfection with the same pathogen and can be subdivided into 
central memory cells that circulate between the blood and lymph 
nodes, and resident and recirculating effector memory cells in non-
lymphoid tissue.75,81,82 Tissue-resident memory T cells (TRMs) re-
side in mucosal tissues and rapidly respond to local infections by 
producing cytokines to induce immune cell activation and recruit-
ment at the FGT.75,83-85 Although the physiological role of TRMs is 
to defend against infections, these cells have also been identified as 
major targets for HIV at the lower FGT.86,87

3  |  GENITAL INFL AMMATION INCRE A SES 
HIV ACQUISITION RISK IN WOMEN

Although the female genital mucosa has several defences to prevent 
infection and the probability of heterosexual HIV transmission is 
relatively low, 9,88 inflammation can increase the risk of HIV acquisi-
tion at this site. This is supported by observations of infection by less 

fit HIV variants in women with genital inflammation than without.89 
Inflammation is the body's natural response to injury or infection and 
involves the influx of immune cells and their products to the site of 
infection. However, inflammation also contributes to the availability 
of HIV susceptible cells at the female genital mucosa. Masson et al2 
demonstrated that genital inflammation, characterised by elevated 
concentrations in at least 5 of 9 pro-inflammatory cytokines, was as-
sociated with a greater risk of HIV infection in South African women. 
The study also identified specific cytokines (macrophage inflam-
matory protein [MIP]-1α, MIP-1β, and interferon gamma-induced 
protein [IP]-10] that were independently associated with HIV sero-
conversion.2 The chemokines MIP-1α, MIP-1β and IP-10 are involved 
in recruiting HIV target cells to the female genital mucosa.90-93 
Additionally, elevated cervicovaginal cytokines also contribute to 
HIV risk in women through mucosal barrier disruption.3,94

A compromised vaginal epithelium facilitates HIV entry and ac-
cess to local immune cells for infection. Elevated pro-inflammatory 
cervicovaginal cytokines have been associated with several proteins 
involved in protease activity, epithelial barrier function, tissue re-
modelling, and actin cytoskeleton organisation.3 Arnold et al3 also 
demonstrated that increased concentrations of matrix metallopro-
teinases (MMP)-8 and 9, proteins involved in the remodelling of 
the extracellular matrix, are associated with raised cytokine bio-
markers of inflammation. Elevated levels of MMPs in vaginal fluid 
from women with BV were also shown to disrupt endocervical ep-
ithelial polarisation and increase HIV transmigration through the 
endocervical epithelium.6 Additionally, a study conducted in mice 
demonstrated that tissue inflammation induced remodelling of the 
extracellular matrix and altered CD4+ T cell motility.95 Tissue re-
modelling and degradation may result in reduced epithelial barrier 
integrity thereby facilitating access to HIV target cells at the FGT. 
Consistent with this, studies have demonstrated an increased risk of 
HIV infection in women with reduced epithelial barrier function.96-98 
A compromised epithelial barrier may also facilitate microbial trans-
location6,94 and vaginal microbial diversity known to increase HIV 
infection rates in women.4,5,7

Although a lactobacillus-dominant vaginal microbiome is bene-
ficial to host immunity, South African women tend to have greater 
microbial diversity.4,5 Microbial diversity and BV are linked to an in-
creased risk of HIV infection in women4,5,7 and higher rates of both 
sexual and vertical HIV transmission.99,100 Specific BV-associated 
bacteria (Prevotella, G.  vaginalis, Sneathia, Parvimonas and Gemella) 
have been significantly associated with genital inflammation and an 
increased risk of HIV acquisition in women.4,5,7,101 These microbes 
contribute to inflammation through activation of the nuclear factor 
kappa B (NF-κB) pathway, increasing genital cytokines, immune cell 
recruitment, reduced epithelial barrier integrity, and impaired wound 
healing.4,6,49,102 These studies highlight the role of genital inflamma-
tion in susceptibility to HIV infection in women. A better under-
standing of factors that modulate genital inflammation is required 
to prevent HIV transmission in women at high risk of acquiring the 
virus. Here, considering that HIV is predominantly transmitted to 
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women via heterosexual transmission, we review the potential for 
semen exposure and condomless sex to foster the genital immune 
environment linked to HIV risk in women.

4  |  THE STRUC TURE OF THE MALE 
GENITAL TR AC T AND HIV INFEC TION

The male genital tract (MGT) is comprised of the penile urethra and 
the testes (Figure  ). In uncircumcised males, the foreskin provides 
both physical and immunological protection to the glans103 but is 
also highly susceptible to HIV infection.104,105 The outer surface of 
the foreskin is lined by a double layer of keratinised stratified squa-
mous epithelium that covers the glans/corona and the opening of 
the penile urethra (meatus).104,106 The epithelium of the foreskin is 
relatively resistant to HIV infection unless microabrasions are in-
duced during condomless sex, which may facilitate access to target 
cells within the underlying epithelium.104,106,107 The subpreputial 
cavity, which is the inside of the foreskin, provides an anoxic and 
moist microenvironment that harbours a diverse array of anaero-
bic microbes.27,108-110 The presence of these anaerobic microbes 
increases the susceptibility of the neighbouring epithelium and the 
urethral opening to HIV infection via activation of target cells.108-113 
Additionally, when the penis is erect, the foreskin retracts, expos-
ing the glans and inner foreskin, which are more susceptible to viral 
infection.114 The inner foreskin contains HIV target cells that are 

directly exposed to the vagina during sexual intercourse.105,114-118 
Medical male circumcision involves the surgical removal of the 
foreskin resulting in a dry keratinised epithelial surface that is more 
resistant to HIV infection.119-121 Circumcision also reduces the diver-
sity of the penile microbiota and may decrease HIV acquisition risk in 
both men and women.108,122-128

Urine and semen are secreted from the penile urethra, which 
originates at the bladder and is approximately 20 cm in length and 
1–2  cm in diameter.106,117 In contrast to the foreskin, the urethra 
is lined with non-keratinised pseudostratified glandular columnar 
epithelium, which is less resilient to HIV infection.117,129,130 Given 
that the epithelium of the penile urethra confers reduced protec-
tion against HIV entry and contains a high density of intraepithelial 
immune cells, this serves as a primary site for infection by sexually 
transmitted infections (STIs), including HIV.106,107,117,130-133 The epi-
thelium of the urethra also contains several deep invaginations called 
the periurethral glands of Littre.117 These Littre glands are responsi-
ble for pre-ejaculate secretion that neutralises residual urine in the 
urethral lumen and acts as lubrication during condomless sex.117

The testes can be divided into two main regions; these are the 
interstitial spaces between the tubules and the seminiferous tu-
bules.131,134 The testes are responsible for the production of tes-
tosterone134,135 and spermatogenesis, which occurs in the coiled 
seminiferous tubules.136-138 The seminiferous tubules connect to 
the head of the epididymis and then to the vas deferens via the rete 
testes.137 The seminiferous tubules are made up of Sertoli cells that 

F I G U R E  1 Structure of the male genital tract. The male genital tract is made up of the penile urethra and the testes. The penile urethra 
is lined with a less resilient non-keratinised pseudostratified glandular columnar epithelium and is a primary site for infection in men. 
The testes can be divided into two main regions, the seminiferous tubules and the interstitial spaces between the tubules. The testes are 
responsible for the production of testosterone and spermatogenesis
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surround the spermatogenic cells and provide essential nutrients 
to the spermatozoa.134,135 The peritubular myoid cells are smooth 
muscle cells that surround the seminiferous tubules of the testis and 
provide structural integrity to the tubules.137 Peritubular myoid cells 
are contractile cells that are involved in the maturation and transport 
of the spermatozoa into the epididymis.139 Leydig cells are adjacent 
to the seminiferous tubules and are the most abundant cells within 
the interstitial space. These cells are responsible for the production 
of testosterone and small amounts of oestradiol which facilitate the 
development of spermatozoa.137

5  |  SEMEN COMPOSITION AND 
IMPLIC ATIONS FOR HIV INFEC TION

Semen contains a mixture of spermatozoa, seminal plasma (SP), mi-
crobes and several bioactive molecules known to both promote and 
inhibit female genital inflammation. Semen contains secretions from 
the prostate gland and seminal vesicles.137 These secretions contain 
high levels of E-series prostaglandins (PGE) and transforming growth 
factor (TGF)-β, which are known to have potent immunomodula-
tory effects.12,16,29-31,140 TGF-β and PGE2 in semen are commonly 
associated with anti-inflammatory properties, including suppress-
ing neutrophils, natural killer cells and dendritic cells (DCs).29,141,142 
However, in cervical biopsies, PGE2 was shown to stimulate the 
production of the chemotactic cytokine interleukin (IL)-8 and inhibit 
the production of the secretory leukocyte peptidase inhibitor, an 
enzyme with anti-HIV activity.15 Semen also contains several other 
cytokines (including IL-1α, IL-1β, IL-2, IL-7, IL-8, IL-10, IL-15, IL-17, 
granulocyte-macrophage colony-stimulating factor [GM-CSF], gran-
ulocyte colony-stimulating factor [G-CSF], monocyte chemoattract-
ant protein (MCP)-1, MIP-1α, MIP-1β, regulated on activation, normal 
T cell expressed and secreted [RANTES], fibroblast growth factor 
[FGF]-2, growth-related oncogene [GRO]-α, tumour necrosis factor 
[TNF], vascular endothelial growth factor [VEGF], and fractalkine), 
hormones, immunoglobulins and other proteins.10,13,17-20,143,144 
These semen-derived cytokines are involved in immune cell recruit-
ment and the maturation and proliferation of monocytes, T cells, B 
cells, DCs and natural killer cells.145-147 Semen contains high levels 
of IL-7, which at similar concentrations in cervicovaginal and lym-
phoid tissues were shown to enhance HIV-1 replication and prevent 
apoptosis of CD4+ T cells.19,148 Additionally, semen contains endog-
enously produced lymphocytes including CD4+ and CD8+ T cells.149 
Semen also harbours a diverse array of microbes derived from the 
penile urethra and upper MGT.24-26 The most abundant bacterial 
taxa in semen include among others Streptococcus, Staphylococcus, 
Corynebacterium, Lactobacillus, Prevotella, Anaerococcus, Finegoldia, 
etc.24-26 Additionally, protein deposits known as amyloid fibrils have 
also been identified in semen, their physiological function is to me-
diate the selection and clearance of damaged sperm.150 However, 
these semen-derived amyloid fibrils also greatly enhance HIV infec-
tion by facilitating the binding of HIV virions to their cellular targets 
for infection.151-155 Importantly, semen composition may be altered 

in the presence of HIV and other STIs resulting in an increased pro-
inflammatory immune response at the FGT, which may further im-
pact HIV susceptibility in women.18,156-161

6  |  CONTRIBUTIONS OF SEMEN TO 
FEMALE GENITAL INFL AMMATION

6.1  |  Impact of semen exposure on cytokine 
biomarkers of FGT inflammation

The immunomodulatory components of semen induce alterations 
at the FGT to facilitate conception but may also contribute to geni-
tal inflammation and HIV risk in women (Figure  2).14,18,19,22,150,153 
Exposure to semen and SP is associated with short-term alterations 
in several cytokines (including IL-1α, IL-6, IL-8, IL-12p70, TNF-α, TNF-
β, IP-10, leukaemia inhibitory factor [LIF], MCP-1, MCP-3, RANTES, 
GM-CSF, G-CSF, GRO-α, MIP-3α, VEGF, FGF-2 and fractalkine) at 
the lower and upper FGT.10,11,13,20-22,162-165 Of particular impor-
tance is IL-1α, IL-6, IL-8, TNF-α, MIP-3α, MCP-1, RANTES and IP-10, 
which have been used to define female genital inflammation.2,3 The 
β-chemokines MIP-1α, MIP-1β and RANTES are CCR5  ligands that 
recruit HIV target cells to the FGT but also competitively bind to the 
CCR5 co-receptor.93 Vaginal epithelial cells previously exposed to 
semen had elevated concentrations of MIP-3α (CCL20), a chemokine 
involved in the recruitment of Langerhans cells to the epithelium.163 
MIP-3α induces chemotaxis of CCR6+ cells, including Th17 cells, the 
preferential targets for HIV infection,90,166,167 and may therefore 
increase the availability of HIV susceptible cells at the female geni-
tal mucosa. However, in addition to its chemoattractant properties, 
MIP-3α also exhibits anti-HIV activity through competitive binding 
to the CCR6 receptor.90,168 Sharkey et al11 demonstrated that ex-
posure to semen induced the expression of IL-1β, IL-6 and LIF by 
endometrial epithelial cells. Expression of these cytokines triggers 
the recruitment and activation of macrophages, DCs and neutro-
phils.11 Similarly, a study conducted on SP-treated endometrial epi-
thelial cells and stromal fibroblasts demonstrated an upregulation 
of several cytokines.20 The presence of semen in the female genital 
mucosa upregulates the production of pro-inflammatory and chem-
otactic cytokines,10,11,13,20-22,162-165 with several of these associated 
with leukocyte recruitment and reduced mucosal barrier integrity,2,3 
both significant contributors to the ability of HIV to penetrate and 
access target cells at the FGT.

6.2  |  Impact of semen on immune cells at the 
female genital mucosa

Since semen is initially recognised as foreign in the FGT an immune 
response is mounted, resulting in cytokine upregulation and the 
chemotaxis of immune cells. In reproduction, this pro-inflammatory 
immune response is necessary for the removal of excess and abnor-
mal sperm.29,169 However, these semen-induced alterations may also 



6 of 14  |     JEWANRAJ et al.

increase susceptibility to HIV infection in women. Semen-derived 
PGE2 has been associated with the recruitment and activation of HIV 
target cells.162,170 PGE2 in SP was shown to induce prostaglandin-
endoperoxidase synthase-2 (PTGS2) expression in the cervix of 
women, where it regulates the tolerogenic phenotypes of DCs and 
macrophages in the postcoital inflammatory response.11,16 The ex-
pression of PTGS2 in vaginal cells is also related to an increased 
susceptibility to HIV and other STIs.162 Recent condomless sex has 
been associated with an influx of CD14+ macrophages, CD1a+ den-
dritic cells and CD8+ T cells to the cervical epithelium and stroma.11 
Additionally, SP treatment significantly induced chemotaxis of 
CD14+ monocytes and CD4+ T cells in endometrial epithelial cells 
and stromal fibroblasts.20 SP also upregulates the expression of 
the HIV co-receptor CCR5+ on CD4+ T cells and in vitro in HeLa 
cells.171,172 Similarly, we have recently demonstrated that higher 
cervicovaginal Y-chromosome DNA (YcDNA) concentrations and 
prostate-specific antigen (PSA) detection, both indicative of recent 
semen exposure, are associated with increased frequencies of acti-
vated CD4 + HLA-DR + T cells and CD4 + CCR5 + HLA-DR + HIV 
targets, respectively (Jewanraj et al, 2021; accepted).

A Treg immune response is induced soon after semen exposure 
since prolonged inflammation at the FGT may reduce the odds of fer-
tilisation and pregnancy.12,16,30,31,173 Semen-derived TGF-β and PGE 
induce a shift from an initial Th1 to a Th2 immune response by pro-
moting Treg cell differentiation and expansion.12,29,30 The induction 
of a Treg immune response results in tolerance of the paternal allo-
antigen at the time of embryo implantation.12,31,32 Prostaglandins in 
semen may also upregulate the production of the anti-inflammatory 
cytokine IL-10.137 Consistent with this, we and others have demon-
strated elevated cervicovaginal IL-10 concentrations in response to 
recent semen exposure.13,165 Additionally, prostaglandins prevent 
an immune response at the FGT by inhibiting macrophage cyto-
kine production and T-cell proliferation.29,30,169,174,175 Although this 
induction of immune tolerance may be protective for the paternal 
alloantigen, this dampened immune response may prevent pathogen 
clearance at the female genital mucosa.

In addition, studies have demonstrated that prior and prolonged 
exposure to the same donor's semen improved fertility and reduced 
preeclampsia rates in women, highlighting the importance of im-
mune tolerance to semen in these contexts.176-180 Furthermore, a 

F I G U R E  2 Alterations at the female genital mucosa in response to semen. (A) An optimal vaginal environment contains few cytokines 
and immune cells. The vaginal microbiome is dominated by Lactobacillus spp. and the mucosal barrier does not contain microabrasions. (B) 
The pro-inflammatory components in semen induce cytokine production and target cell recruitment to the FGT. Semen and condomless 
sex may induce microabrasions in the epithelial barrier and alterations in the vaginal microbiome. (C) The anti-inflammatory components of 
semen, including TGF-β and IL-10, are associated with fewer cervicovaginal cytokines and expansion of the Treg immune cell (CD4+CD25+) 
population. Additionally, since homeostasis of the vaginal microbiome is quickly restored after exposure to semen, a tolerogenic immune 
response to semen may be associated with minor changes in the vaginal microbiome
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recent study conducted in rhesus macaques demonstrated that re-
peated vaginal exposure to semen resulted in lower CCR5 expression 
on CD4+ T cells and reduced infection by Simian Immunodeficiency 
Virus.181 These findings suggest that semen exposure to new or 
multiple concurrent partners may induce a greater and prolonged 
inflammatory response, which is associated with adverse preg-
nancy outcomes and possibly an increased risk of HIV transmis-
sion.176-178,180,181 Immune tolerance may be lost on exposure to 
semen from a new partner, resulting in a more pronounced immune 
response and suggests a biological link for the relationship between 
partner concurrency and HIV risk in South African women.182

6.3  |  Impact of semen exposure on the 
vaginal microbiota

Bacterial vaginosis is a state characterised by a shift in the vaginal mi-
crobiome from Lactobacillus dominance to a more diverse spectrum 
of facultative anaerobes.62,183 Condomless sex has been associated 
with BV occurrence,28,184-186 and increases in Escherichia coli at the 
FGT.185,187-189 Semen contains a diverse array of bacteria that are 
introduced into the vagina during condomless sex.24-26 Additionally, 
the MGT itself (including the penile skin, meatus, glans/corona and 
the subpreputial cavity) also contains a diverse array of bacterial 
taxa that may be transferred to the FGT in the absence of ejacula-
tion and semen exposure.24-28,187,190,191 A high level of concordance 
has been observed between the MGT microbiome composition and 
BV incidence in female partners.27,28,190 In addition, semen has an al-
kaline pH range between 7.2 and 7.8, capable of buffering the acidic 
pH of vaginal fluid.23,192,193 This neutralisation of the vaginal pH may 
promote a shift in the vaginal microbiome to a BV-associated state 
that is conducive to HIV-1 infection.4,5,7,52,69,193,194 Several factors in 
semen may also inhibit the activity of extracellular H2O2 produced by 
Lactobacilli species and thus promote the growth of BV-associated 
microbes.195 We have demonstrated that recent semen exposure is 
associated with increased detection of BVAB-2, Prevotella bivia, and 
G.  vaginalis and reduced detection of Lactobacillus jensenii in vagi-
nal specimens (Jewanraj et al, 2021; accepted).165 Increases in other 
gut-associated microbes have also been observed in the FGT after 
protected sexual intercourse, suggesting that these alterations in 
the vaginal microbiota may also be associated with mechanical con-
tamination rather than just semen itself.185,187 These studies suggest 
that semen exposure and sexual intercourse may promote a shift in 
the microbial environments of the FGT that may facilitate HIV infec-
tion in women.4,5,7,165

6.4  |  Impact of sexual intercourse and semen 
exposure on the vaginal epithelial barrier

An intact vaginal epithelial barrier is the primary host defence 
against HIV entry and infection. Reduced epithelial barrier integ-
rity may facilitate HIV access to target cells at the FGT. Colposcopic 

examination of the vaginal mucosa revealed that friction during con-
sensual sexual intercourse might cause microabrasions in the epi-
thelial barrier.196-198 Additionally, pro-inflammatory cytokines within 
semen may also increase the permeability of the vaginal epithelium. 
Interferon-gamma in semen may increase epithelial permeability 
by inducing macropinocytosis of tight junction proteins.199 Semen-
derived IL-1β may also increase vaginal epithelium tight junction per-
meability through the activation of the NF-κβ pathway.200 Elevated 
levels of MMPs have also been linked to reduced mucosal barrier 
integrity, increased cervicovaginal cytokine production, immune 
cell recruitment at the vaginal mucosa and increased HIV transmi-
gration.3,6 We have recently demonstrated that semen exposure is 
associated with increased concentrations of MMP-2 and their inhibi-
tors in vaginal specimens.165 An increased HIV incidence has been 
observed among women with compromised epithelial barrier integ-
rity through the enhanced ability of HIV-1 to penetrate the vaginal 
epithelium.11,96-98,201

7  |  THE ROLE OF SE XUAL INTERCOURSE 
AND SEMEN E XPOSURE ON TOPIC AL PrEP 
EFFIC ACY

In addition to its role in female genital inflammation and immune 
activation, semen exposure and sexual intercourse may also under-
mine topical pre-exposure prophylaxis (PrEP) efficacy202-204 and has 
additional implications for HIV susceptibility in women. The physi-
ological changes that occur during coitus may alter PrEP efficacy by 
changing the surface area of the vagina and redistributing cervico-
vaginal fluid and topically applied microbicides.205,206 In clinical tri-
als, vaginal microbicide gels PRO 2000 and cellulose sulphate failed 
to confer protection against HIV-1 transmission in women.207,208 
In vitro assays demonstrated a significant reduction in the antiviral 
activity of PRO 2000 gel following sexual intercourse.204 Tenofovir 
gel concentrations were also significantly reduced in cervicovaginal 
lavage and vaginal and cervical tissues after coitus.203 These findings 
were likely due to the redistribution of the microbicide gels in the 
vagina during sexual intercourse.

Semen and SP itself contains several bioactive molecules and 
may also alter the antiviral activity of microbicides.202,204,209,210 SP 
was shown to interfere with the HIV-1 and herpes simplex virus 
(HSV)-2 inhibitory activity of PRO 2000 and cellulose sulphate 
microbicides.202,209,210 Seminal proteins, fibronectin and lactofer-
rin competitively inhibited the binding of the microbicides to their 
target on the HSV envelope.210 The reduced antiviral activity of 
these microbicides may also be due to electrostatic interactions be-
tween cationic SP polyamines and the polyanions of the microbi-
cides.204,209-211 Zirafi et al202 demonstrated that seminal amyloids 
enhance HIV infection and also contribute to the reduced antiviral 
activity of microbicides. Additionally, we previously demonstrated 
that recent semen exposure was associated with increased detec-
tion of G. vaginalis and biomarkers of inflammation in vaginal spec-
imens (Jewanraj et al, 2021; accepted), both of which contribute to 
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diminished topical PrEP efficacy in women.212,213 These studies sug-
gest that sexual intercourse and semen itself may also reduce the 
efficacy of topical PrEP in women and highlights the need to assess 
and control for these factors.

8  |  BIOMARKERS OF SEMEN E XPOSURE

Research primarily relies on self-reports of condom use and sexual 
behaviour, which may lead to inaccurate data interpretation due to 
reporting bias.214-218 Although biomarkers of semen exposure were 
developed for use in forensics, they also have several useful appli-
cations in HIV prevention research. Semen biomarkers can be used 
to control for semen-induced alterations at the FGT, assess con-
dom use in clinical trials and determine the efficacy of barrier con-
traceptives and microbicides.165,219-229 Biomarkers that have been 
previously used to detect semen in vaginal specimens include PSA, 
YcDNA, semenogelins, acid phosphatase and sperm detection by 
microscopy.165,226-234 PSA and YcDNA detection are the most well-
studied and commonly used biomarkers of semen exposure.235 PSA 
is present in high concentrations in semen, and detection in vaginal 
fluid usually indicates semen exposure within 48  h.226,236-239 We 
and others have demonstrated that PSA detection in vaginal speci-
mens, a proxy for recent semen exposure, is associated with a pro-
inflammatory immune response at the FGT (Jewanraj et al, 2021; 
accepted).227,229 Conversely, YcDNA is a more stable biomarker 
and is detectable in vaginal specimens up to 15  days after coi-
tus.219,231,235,240 Since YcDNA is detectable in the presence of sper-
matozoa, it is an ideal measure of the probability of pregnancy.219 
These semen biomarkers may be suitable for different studies 
depending on the residence time of the biomarker and the study 
outcome, such as the probability of pregnancy, infection or genital 
inflammation. Routine objective screening for semen biomarkers 
may avoid the discrepancies associated with self-reported data and 
may lead to more reproducible study outcomes. Additionally, given 
the immunomodulatory properties of semen, these biomarkers can 
be used to control for semen's impact on the immune and microbial 
microenvironments of the FGT.

9  |  CONCLUSION

Identifying factors associated with female genital inflammation 
and limiting their impact on HIV risk is particularly important in 
high HIV burden areas. Semen is a highly immunomodulatory fluid 
and is the primary vector for HIV transmission to women dur-
ing condomless sex. However, most studies of mucosal immunity 
are conducted in the absence of semen or without consideration 
of its immune impact on the female genital mucosa. Semen ex-
posure is associated with a short-term inflammatory response at 
the FGT which is quickly resolved to facilitate immune tolerance 
to the paternal antigens. Albeit short-lived, a semen-induced pro-
inflammatory immune response may promote genital inflammation 

and HIV risk in women. Additionally, semen and condomless sex 
may also modulate topical PrEP efficacy and have additional impli-
cations for HIV risk in women. Future clinical and immunological 
studies of HIV and other STIs should consider semen's contribution 
to the immune and microbial environments of the FGT. We sug-
gest that STI/HIV research may benefit from routine screening for 
semen biomarkers in vaginal specimens to account for its impact on 
female genital inflammation.
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