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Abstract

Efforts to engineer synthetic gene networks that spontaneously produce patterning in multicellular ensembles have
focused on Turing’s original model and the ‘‘activator-inhibitor’’ models of Meinhardt and Gierer. Systems based on this
model are notoriously difficult to engineer. We present the first demonstration that Turing pattern formation can arise in a
new family of oscillator-driven gene network topologies, specifically when a second feedback loop is introduced which
quenches oscillations and incorporates a diffusible molecule. We provide an analysis of the system that predicts the range of
kinetic parameters over which patterning should emerge and demonstrate the system’s viability using stochastic
simulations of a field of cells using realistic parameters. The primary goal of this paper is to provide a circuit architecture
which can be implemented with relative ease by practitioners and which could serve as a model system for pattern
generation in synthetic multicellular systems. Given the wide range of oscillatory circuits in natural systems, our system
supports the tantalizing possibility that Turing pattern formation in natural multicellular systems can arise from oscillator-
driven mechanisms.
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Introduction

Genetic networks which enable communication and coordina-

tion of behavior among cells in an ensemble have held the

attention of developmental biologists and theoreticians [1–6] for

over half a century. In particular, a vast body of literature – both

theoretical [6,7] and experimental [1–4] – exists which focuses on

the production of patterns in gene expression, a phenomenon

central to the development of multicellular organisms. A

particularly well-studied mechanism for pattern formation is

diffusion-driven instability, originally proposed by Turing [8],

where a homogeneous steady state is destabilized in the presence

of diffusion.

Recently, attempts have been made to build synthetic gene

networks which generate spatio-temporal patterns in gene

expression mediated by diffusible signals [9–13]. To obtain

pattern generation, these efforts have relied either on the external

spatio-temporal manipulation of the cell’s chemical environment

[9,10,13] or the precise positioning of cells containing different

gene networks which secrete or respond to diffusible signals

[11,12]. To date, there have been no experimental demonstrations

of a robust, tunable system which can break symmetry and

spontaneously generate predictable gene expression patterns

(spatio-temporal inhomogeneities) as in the Turing mechanism.

What is specifically lacking in the community is an experimentally

tractable model system for studying spontaneous pattern forma-

tion. Such a system would catalyze the engineering of complex

cellular ensembles, ranging from engineered microbial communi-

ties [11,13] to auto-differentiating multicellular systems.

In the synthetic biology community, efforts to achieve

spontaneous generation of spatial patterns in gene expression

have been centered around networks similar to the one originally

proposed by Turing [8], and expanded into activator-inhibitor theory

by Meinhardt and Gierer [5,6,14,15]: two diffusible species

interact with each other via chemical reactions that produce

positive and negative interactions as in Figure 1A. For an

appropriate range of kinetic parameters and diffusion constants,

these topologies produce spatial or spatio-temporal patterns

spontaneously from a homogeneous initial condition perturbed

by small variations in concentration due to stochastic effects.

However, this type of architecture has proven very difficult to

implement using genetic networks because: (a) Turing instability

requires that the steady state occur in the linear regime of the

activator-inhibitor interactions away from saturation, and severely

restricts the parameter range to meet the instability criteria; (b)

when using systems with two diffusible components, either the

diffusion constants [8] or the uptake rates [16] must be sufficiently

different to allow unstable spatial modes, and significant

differences are difficult to engineer; (c) the addition of intermediate

protein steps to two-molecule activator-inhibitor models further

restricts the parameter set for patterning; and (d) stochasticity plays

a significant role in the behavior of these systems, but most

analyses rely on continuum partial differential equation (PDE)

models, making it difficult to reconcile theoretical predictions with

observed experimental results.

Although the activator-inhibitor model is the canonical example

of a system demonstrating Turing instability, many other possible

network structures exist. Indeed, the essential structural require-
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ment for the emergence of the Turing phenomenon is that the

network contain an unstable subsystem, which is stabilized by a

feedback loop. The diffusion of molecules participating in this

feedback loop then unleashes the inherent instability and allows

growth of spatial modes. In the activator-inhibitor network in

Figure 1A, the activator plays the role of the unstable subsystem

and the inhibitor provides the stabilizing feedback. Although it is

well known that the Turing mechanism is not restricted to the

activator-inhibitor network (see, e.g., [17] for Turing instability

conditions for general reaction-diffusion models), to the best of our

knowledge, no other biologically plausible network has been

proposed. Systems that contain more than two species have been

studied, but their reactions conform to the essential structure of the

activator-inhibitor paradigm [6].

This paper breaks away from the activator-inhibitor model and

proposes a new network which we call a ‘‘quenched oscillator’’

system. This system uses one diffusible component and an

oscillator circuit serving as the unstable subsystem that is quenched

by a second feedback loop, as depicted in Figure 1B. To our

knowledge, this is the first demonstration that oscillator-driven

gene networks can exhibit Turing instability and spatial patterning

of gene expression across fields of cells. Moreover, the network can

be implemented with a variety of published oscillator circuits [18–

20] using known genes and promoters.

It is important to stress that the mechanism pursued here –

Turing instability – is fundamentally different from the traveling

wave trains and spiral waves in diffusively coupled oscillators

[7,21]. The proposed architecture bears resemblance to the

diffusively coupled repressilator model in [22], where a second

loop is integrated with the repressilator to incorporate a diffusible

molecule, and the diffusively coupled oscillator model in [23].

However, in both of these systems, the oscillator is not quenched,

but is simply allowed to communicate between cells to ensure

synchronization, which is contrary to the pattern formation task

studied here. Although we employ an oscillator as a subsystem, the

full system in isolation is not an oscillator, instead exhibiting a

stable steady state as in the Turing mechanism, and is

fundamentally different from out-of-phase oscillator systems.

The patterns presented in this paper are oscillatory in both time

and space (see Text S2). While they still fall under the category of

diffusion-driven instability as proposed by Turing, some research-

ers associate the term ‘‘Turing patterning’’ with stationary spatial

non-uniformities [24]. However, in the remainder of this paper,

the use of the term ‘‘Turing pattern’’ incorporates oscillatory

Turing patterns.

Systems which produce oscillating patterns have previously

been reported [22,23,25,26], but there are fundamental differ-

ences between these systems and our own. In Turing’s diffusion-

driven instability, the biological system exists in a population of

homogeneous cells. In isolation, each individual system is stable

and reaches a steady state over time. In the presence of diffusion,

the steady state is destabilized and spatial inhomogeneities arise.

The systems presented in [22], [23], and Figure 2C of [25] are not

stable individually, so the patterns they produce do not fall under

the general category of ‘‘Turing patterns.’’ The systems presented

in [26] and Figure 2A and 2B of [25] are stable, but do not contain

an oscillatory subsystem. Our system utilizes an oscillator

subsystem, which does not constitute positive feedback; this is a

crucial point that separates it from previous systems.

In addition to the new architecture presented in this paper, we

believe the methodology used to find and tune new pattern-

generating systems may prove of significant value to practitioners.

We recognize that Turing patterning is just one possible method to

achieve the generation of gene patterning across a population of

cells, but it is a phenomenon that is well-characterized mathe-

matically, allowing us to develop the combined PDE/stochastic

simulation approach presented here. Patterning has proven

difficult to produce experimentally, so these analysis tools should

aid in the search for more reliable experimental systems.

Below, we first provide an analysis of the system which predicts

the range of kinetic parameters over which patterning should

emerge. We show the architecture produces patterning for

parameters within the range of values present in the literature for

our molecules. Using both continuous, deterministic simulations

(henceforth called ‘‘PDE simulations’’) and discrete, stochastic

simulations (henceforth called ‘‘stochastic simulations’’) of fields of

cells, we demonstrate how stochastic molecular interactions affect

pattern formation in the limit of very low concentrations of

molecular species per cell. The primary goal of this paper is to

provide a circuit architecture which can be implemented with

relative ease by practitioners and which provides an alternative

Figure 1. Comparison of architectures for Turing patterning. (A)
The canonical ‘‘activator-inhibitor’’ system with activator in pink and
inhibitor in blue. (B) The alternative ‘‘quenched oscillator’’ system. The
quenching loop (in blue) with the diffusible molecule stabilizes the
unstable oscillator loop (in pink). Diffusion then weakens the quenching
loop’s influence on the oscillator loop for spatial modes with high wave
numbers and allows for the emergence of spatio-temporal oscillations.
doi:10.1371/journal.pcbi.1002331.g001

Author Summary

The production of patterns in gene expression in an
ensemble of cells is a phenomenon central to the
development of multi-cellular organisms. Here we provide
an exciting new result regarding diffusion-driven instabil-
ity, a mechanism for spontaneous pattern formation
originally proposed by Alan Turing. Efforts along this front
have focused almost exclusively on Turing’s original model
and the ‘‘activator-inhibitor’’ models of Meinhardt and
Gierer, but have yet to yield an experimental demonstra-
tion of a robust, tunable system that can break symmetry
and spontaneously generate gene expression patterns. In
this paper we propose a new family of oscillator-driven
gene network topologies capable of Turing pattern
formation. We believe this would be of significant impact
to both emerging efforts at engineering multicellularity in
the synthetic biology community as well as new guidance
for those groups looking for similar phenomena in natural
systems. Given the wide range of oscillatory circuits in
natural systems, our system supports the tantalizing
possibility that Turing pattern formation in natural
multicellular systems can arise from oscillator-driven
mechanisms. We provide an analysis of the system that
predicts the range of parameters over which patterning
should emerge and demonstrate the system’s viability
using stochastic simulations of a field of cells using realistic
parameters.

Quenched Oscillator System for Turing Patterning
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implementation strategy for reaction-diffusion pattern generation in

synthetic multicellular systems. Lastly, given the wide range of

oscillatory circuits in natural systems, our system supports the

tantalizing possibility that Turing-like pattern formation in natural

multicellular systems can arise from oscillator-driven mechanisms.

Results

The quenched oscillator system permits Turing
phenomena

The first feedback loop in our design is an oscillator. The second

feedback loop is designed to quench these oscillations, meaning that,

in the presence of the second loop, the first loop ceases to oscillate

and the full system instead approaches a steady-state solution. If the

oscillator design is based on a phase lag mechanism as in Figure 1B,

then it is essential that the second loop with the diffusible molecule

(in blue) have smaller phase lag than the first loop (in pink), so that it

is stable by itself and that it stabilizes the oscillator when

interconnected. Smaller phase lag can be achieved with fewer

reaction steps or with faster degradation rates in the second loop.

As an illustrative example, consider the following ‘‘toy’’ model,

possessing both an oscillator loop (x1,x2,x3) and a quenching loop

(x3,x4):
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where the concentrations xi, i~1, . . . ,4, and all other variables

and parameters are non-dimensional. In particular, the time

variable t is scaled to bring the degradation constants (assumed to

be identical for each species for simplicity) to one, and the one-

dimensional length variable j is scaled so that the spatial domain is

V~½0,p�. We assume only the fourth species is diffusible

(represented with wavy arrows in Figure 1B) with diffusion

coefficient d4 and is subject to zero-flux boundary conditions,

meaning there is no diffusion at the ends of the line of cells at j~0
and j~p.

For analysis, we take the linearized form of the reaction-

diffusion system above:

Lx

Lt
~JxzD+2x,

where J is the Jacobian matrix of the vector field of reaction rates

evaluated at the steady state of the reaction system, D is the

diagonal matrix of diffusion coefficients, and +2 is the vector

Laplacian. For our toy model, the Jacobian matrix about the

steady state (�xx1,�xx2,�xx3,�xx4) is:

where:

b1~
pv1�xxp{1

2

(1z�xxp
2)2

, b2~
pv2�xxp{1

3

(1z�xxp
3)2

, b3~
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1)2

,

c4~
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4
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3

(1za�xxp
3)2

,

Figure 2. PDE simulation results for the toy model. The system (1) run with parameters p~3, v1~v2~18, v3~v4~9, v5~0:45, and a~0:1.
Position, time, and concentrations are scaled to be dimensionless. See Figures S1, S2 for full simulation results. (A) Toy model network with labeled
species. Coloring scheme for loops follows that of Figure 1B. (B) With d4~6, Turing instability conditions are met for a slight perturbation of the
homogeneous initial condition with the second wave (k~2), and growth of the inhomogeneity follows (top row). Solution x4 looks qualitatively
different than x3 and the other species due to the ‘‘bleeding’’ effect of diffusion. With d4~6, Turing instability conditions are not met for k~1 and
the initial inhomogeneity decays slowly in time (middle row). With d4~0, the initial inhomogeneity k~2 decays in time (bottom row).
doi:10.1371/journal.pcbi.1002331.g002

ð2Þ
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and D~diagf0,0,0,d4g. The dynamical behavior of this reaction-

diffusion system is determined from the matrices JzlkD, where

lk are the eigenvalues of the Laplacian operator +2 on the given

spatial domain, and the subscripts k~1,2,3, . . . denote the wave

numbers. On our one-dimensional domain ½0,p�, lk~{k2 and

the eigenfunctions are the cosine waves cos (kj) [27]. If the matrix

JzlkD is stable (that is, if all of its eigenvalues have negative real

parts), then the corresponding spatial wave decays to zero

asymptotically in time. If JzlkD is unstable (at least one of its

eigenvalues has positive real part), then the corresponding spatial

wave grows.

Let Josc be the upper-left 3|3 submatrix of J, corresponding to

the oscillator loop. For diffusion-driven instability to arise in this

network, the following three conditions must be met:

Condition 1. The oscillator loop by itself would produce

oscillations (Josc is unstable).

For the oscillator subsystem to be unstable, we need:

B~b1b2b3w8 ð3Þ

so that the characteristic polynomial of Josc, given by (lz1)3zB,

has a pair of complex conjugate roots with positive real part.

Condition 2. The quenching loop ceases oscillations in the full

system (J is stable).

For stability of the full reaction network, we need:

C~c4c5w
B{8

2
ð4Þ

so that det (lI{J)~(lz1)½(lz1)3zBzC(lz1)� has all roots

with negative real parts.

Condition 3. Diffusion will weaken the quenching loop’s

influence on the oscillator loop for high wave numbers, allowing

spatio-temporal oscillations to emerge (JzlkD is unstable for

some k§1).

For diffusion-driven instability of the k th spatial mode cos (kj),
the polynomial:

det(lI{(JzlkD))~(lz1)½(lz1)3zBzC(lz1)�zk2d4½(lz1)3zB� ð5Þ

must have at least one eigenvalue with positive real part. Indeed,

when the product k2d4 is sufficiently large, three roots of (5)

approach those of (lz1)3zB, which contain roots with positive

real part due to (3). This means that the inhomogeneous modes

cos (kj) grow over time if k2d4 exceeds the threshold for instability

of the polynomial (5), which we will call dthresh. This implies that,

for diffusion-driven patterning, we need a large diffusion

coefficient or a large wave number. More generally for

V~½0,L�, we need (kp=L)2d4wdthresh, meaning patterning can

also be achieved for a small spatial domain. See Text S1 for

details.

The parameters p~3, v1~v2~18, v3~v4~9, v5~0:45, and

a~0:1 in the system (1) satisfy conditions (3) and (4) with

B~9:4815,C~2:2222. The polynomial (5) becomes unstable

when k2d4wdthresh~11:352. PDE Simulations with d4~6 indeed

exhibit growth of the spatial inhomogeneity when the steady state

is perturbed by adding the second wave (k~2) with amplitude

steady state +33% peak-to-peak to x1 (Figure 2B, top). The PDE

system does not include noise, so a perturbation must manually be

added to the system for cells to leave the steady state. This Turing

behavior is contrasted to the decay of the initial inhomogeneity for

wave numbers below the instability threshold (k~1, d4~6 in

Figure 2B, middle) and in the absence of diffusion (k~2, d4~0 in

Figure 2B, bottom).

A quenched oscillator system can be designed using
existing oscillators

We now propose a novel network that can be synthesized from

existing components. Consider the system of two interconnected

loops shown in Figure 3. The first (top) loop is the repressilator

[18], which is a ring oscillator, comprised of three pairs of

transcriptional repressors (TetR, l cI, LacI) and promoters

(PLtet0{1,l PR,PLlacO{1), which match up with the three-

component oscillator of the toy model (x1-x2-x3). The second

(bottom) feedback loop consists of V. fischeri quorum sensing genes

luxI and luxR. The luxI gene is regulated by the PLtetO{1 promoter,

and is transcribed in the absence of TetR. LuxI is the synthetase

that catalyzes the formation of the membrane-diffusible signaling

molecule acyl-homoserine lactone (AHL). AHL binds to the

constitutively produced protein, LuxR. The LuxR-AHL complex

forms a homodimer that binds to the PLuxI promoter and activates

transcription. TetR production closes the second loop by

repressing the second PLtetO{1 promoter. This quenching loop

is much longer than that of the toy model (x3-x4), but still contains

a single diffusible molecule, AHL, and we ensure that it has

smaller phase delay than the oscillator loop by using faster

degradation rates. Even though the bottom loop has a single

inhibitory interaction, this loop does not oscillate because the

phase delay is small. The two loops interact through TetR and the

first loop ceases to oscillate in the presence of the second loop.

Constraints on kinetic and diffusive parameters can be
obtained from a PDE model

We represent the dynamics of the network in Figure 3 with the

following set of partial differential equations:

L
Lt

mC~VPLtetO{1
NCC

1

1z(
pT

KT

)nT
z‘PLtetO{1

0
B@

1
CA{cmOmC ð6Þ

Figure 3. A possible synthetic implementation of the network
in Figure 1B. Two feedback loops are interconnected by shared
production and sensing of the transcriptional repressor tetR. The
oscillator loop is represented by the green genes and pink molecules
and the quenching loop is represented by the purple genes and blue
molecules. The second loop contains the membrane-diffusible signaling
molecule acyle-homoserine lactone (AHL).
doi:10.1371/journal.pcbi.1002331.g003
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where mi are mRNA concentrations, pi are protein concentra-

tions, Vi are velocity constants, Ni are copy numbers, Ki are

dissociation constants, ni are Hill coefficients, ‘i are leakage rates

normalized to Vi, ci are degradation rates, and ei are protein

translational rates. The parameters are subscripted according to

their corresponding species (C = [l cI], T = [tetR], L = [lacI],

I = [luxI], A = [AHL], R = [luxR], RA = [luxR-AHL complex]) except

for velocity and leakage constants, which are subscripted by

promoter, and copy numbers, which are subscripted by the gene

being transcribed. The concentration of the mRNA for tetR is split

into those produced by the oscillator loop (O) and the quenching

loop (Q). The variable pR is the total amount of LuxR protein in

the system, which is assumed constant, thus the amount of free

LuxR is represented by pR{pRA. The parameter C is the

concentration level generated by a single molecule in an E. coli cell

and dAHL is the diffusion coefficient of AHL. We take

cC~cT~cL~cp. The system is subject to zero-flux boundary

conditions on the one-dimensional spatial domain V~½0,L�.
Following the same procedure as outlined for the toy model, we

solve for constraints on kinetic and diffusive parameters by

deriving expressions used to satisfy the three conditions for Turing

instability (see Text S1). These expressions are complex combi-

nations of the many parameters in our system, but still reveal ways

of manipulating parameter choices to meet the Turing instability

conditions. In this analysis, the protein translation rates were taken

to be the most readily tunable, which made the big challenge

finding protein translation rates for this system to meet the Turing

conditions for patterning.

Experimentally reasonable parameter sets produce
spatio-temporal patterning

To show the viability of this system for experimental

implementation, we modeled the system behavior using parameter

values from the literature that fit the constraints found in the

analysis (‘‘Value for PDE Simulation (Parameter Set 1)’’ column of

Table S1). Expected steady-state values and instability measure-

ments can be found in Tables S2 and S3. We ran PDE simulations

in MATLAB with and without AHL diffusion using an initial

perturbation in pC of amplitude steady state +33% peak-to-peak

and wavelength 100 mm, which was predicted to be unstable

(Figure 4). The imprinted wave grows with diffusion and it decays

without diffusion, exhibiting similar behavior to that of the toy

model (Figure 2).

While the simulation results produce spatio-temporal patterning

as desired, the expected experimental behavior will be impacted

by stochastic properties that stem from concentrations in our

system approaching a few molecules per cell. Taking the

concentration of a single molecule in an E. coli cell to be 1:5 nM
[28], a number of steady-state values fall near or below this

threshold (Figure 5), particularly pL and pI . This implies that: a)

stochastic simulations are necessary for examining experimental

plausibility, and b) Parameter Set 1 would need to be modified to

produce pattern due to the behavior of certain species in our

system being dominated by noise. In this limit, stochastic models

better capture the behavior of in-vivo systems because of their

inability to respond to aphysical concentration changes of less than

one molecule per cell.

Given complete freedom in choosing parameter values, our

analysis would allow us to methodically identify regions in the

parameter space that should produce patterning. It is encouraging

that even when restricting ourselves to literature values for all of

the parameters, we were able to demonstrate spatio-temporal

patterning in PDE simulation. Here we show that with other

parameter values that are still biologically realistic (‘‘Value for

Stochastic Simulation (Parameter Set 2)’’ column of Table S1), we

can improve the system performance to also produce patterning in

a discrete, stochastic environment. All of these values are

physically possible based on information in the literature (see

references in Table S1). To accommodate the change in the ratio

kr=kf , LuxI has been replaced in our system with the AHL

synthetase RhiI from P. aeruginosa. A more thorough explanation of

the origin of these two parameter sets can be found in Text S3 and

Text S5. As more biological parts are characterized or created,

parts are likely to be found that match our chosen parameter

values. The steady-state concentrations for Parameter Set 2 can

also be seen in Figure 5 and do not fall below 6 nM (4 molecules/

cell). We also verified the desired system behavior of this

parameter set in PDE simulation (Figure 6). This new parameter

set results in growth of additional wave numbers other than the

imprinted one, highlighting the nonlinear nature of our system.

Quenched Oscillator System for Turing Patterning
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These effects arise when oscillations start to reach near-maximal

amplitudes and would likely be seen for Parameter Set 1 if the

simulations were run for a much longer time.

Stochastic simulations confirm the emergence of
patterning

We developed a set of reactions for stochastic simulation that,

using the law of mass action and the quasi-steady-state

approximation, would exactly match our set of PDEs. The full

set of reactions used in our stochastic simulations can be found in

Text S4.

To compare the behavior of PDE and stochastic simulations, we

first ran single cell simulations to verify that the general expected

behavior was maintained. While not indicative of the system’s

ability to generate pattern, these simulations allow us to draw

comparisons between our PDE and stochastic models. To observe

both an oscillating cell and a quenched cell, we used a single cell in

the center of a long, empty volume. Without AHL diffusion, the

cell remains isolated and we expect oscillations to decay to the

steady state. With diffusion, AHL diffuses into the empty volume

and weakens the quenching loop, meaning oscillations are

expected to grow. Both PDE and stochastic simulations confirmed

these expectations (Figure 7). The simulations exhibited similar

behavior but oscillations in the stochastic environment are slower

and more irregular, due to stochasticity and our modeling

assumption that the dimerization and binding reactions are at

equilibrium in the PDE model. Oscillations in the stochastic

simulations are significantly slower – about 5 times slower in the

decaying case, and 10 times slower in the growing case – which

lead us to choose faster degradation rates for Parameter Set 2. In a

cell without diffusion, stochasticity keeps the system oscillating at a

small amplitude with occasional ‘‘firing events,’’ where a few cycles

of increased oscillation amplitude occur before the system settles

again. Both PDE and stochastic simulations exhibit the same

phase relationship between the proteins in the oscillator loop and a

slower period of oscillation when growing as opposed to decaying

(Figure 7 and S7, S8, S9, S10).

As expected, stochastic simulations with Parameter Set 1 in a

line of cells were unable to produce patterning due to the low

steady-state concentration values (results not shown), but did yield

some insights. In particular, any initial imprint we imposed would

very rapidly (v0:5 hr) decay into noise, likely due to low copy

numbers. With only four or five promoter binding sites per cell

and the fact that almost all of them are bound in steady state, a

large change in a single species of the system is unlikely to be able

to propagate quickly enough throughout the system due to the

bottlenecks at the promoter binding sites. Thus we avoided

imprinting and used the ability of the stochasticity in our system to

naturally excite high wave numbers.

Indeed, stochastic simulations with Parameter Set 2 in a line of

cells exhibit growing oscillations and eventually produce spatio-

temporal patterning (Figure 8). Large amplitude oscillations

emerge around 20 hours and an obvious pattern emerges as time

goes on. Visually, patterning is most evident in AHL due to the

effects of diffusion. Without diffusion, no spatial patterns emerge

with single cell oscillations occurring randomly (results not shown).

Figure 5. Comparison of steady-state concentrations for
Parameter Sets 1 and 2. A number of steady-state concentrations
for Parameter Set 1 lie near or below the threshold of 1 molecule/E. coli
cell (red line). Parameter Set 2 has been chosen such that all steady-
state concentrations lie above this threshold.
doi:10.1371/journal.pcbi.1002331.g005

Figure 4. Representative sample of PDE simulation results using Parameter Set 1. Concentrations (colorbar) given in M. The behavior of l
cI mRNA (left) is qualitatively similar to that of pC , mTO, pT , mL, pL, mI , and pI and the behavior of AHL (right) is qualitatively similar to that of pRA and
mTQ. See Figures S3, S4, S5 for full simulation results. (A) Quenched oscillator network with labeled species. Here squares represent mRNA and circles
represent proteins and other molecules. Color scheme for loops follows that of Figure 1B. (B) With dAHL~1:667|10{12 m2=s, the imprinted wave
k~2 grows (top row). With dAHL~0, the imprinted wave decays (bottom row).
doi:10.1371/journal.pcbi.1002331.g004
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To quantify the patterns produced by our system, we use the

discrete cosine transform (DCT) to check the relative presence of the

different emerging wave numbers. All wave numbers higher than a

threshold (k§5 for Parameter Set 2) should grow in the presence

of noise according to our analysis, but a number of factors,

including stochasticity and the discrete nature of only having 100

cells in our simulations, prevent them from growing uniformly.

The exact wave numbers vary from simulation to simulation, but

the averaged DCT over time frames late in simulations (beyond

the ‘‘start-up’’ phase) always shows a number of spikes that are

prominent across most species in the system (see Figures S11, S12).

The exceptions to this are AHL and subsequent species in the

quenching loop, where diffusion acts as a low-pass filter and

attenuates high wave numbers. This filtering effect is what

accounts for the visual ‘‘bleeding’’ effect of diffusion.

Discussion

Parameter space and chosen parameter sets
The process of producing a set of parameters which produce

pattern in the stochastic regime provided several insights which

can inform implementation decisions as new promoters, proteins,

and parameter manipulation techniques become available. These

findings may also be of use when searching for putative natural

systems which exhibit this behavior.

Two of the most restrictive parameters that we had to change

significantly from our initial solution set were promoter leakage

rates and dissociation constants. High amounts of leakage makes it

simultaneously more difficult to make the oscillator subsystem

unstable and more difficult for the quenching loop to stabilize the

overall system. The dissociation constants directly affected the

steady-state concentrations of the protein species in our system; the

system fails to produce patterning when these values are too small.

These observations were made from studying the form of the

expressions for X and F (see Text S1) and many other such

observations and insights can be drawn from the analysis.

A few considerations only became relevant when performing

stochastic simulations, the biggest of which was the bottleneck of

promoter binding sites. In the PDE model, new mRNA would be

produced at a rate that was a function of the amount of the

appropriate activator or inhibitor in the system. By enumerating

the number of promoter binding sites, we decrease the sensitivity

of the system to very large concentrations of the activators and

inhibitors and increase the importance of each binding and

unbinding event. Analytically, we can maintain the same system

behavior by holding the product VxNx in each mRNA differential

equation constant. Arbitrarily increasing the copy numbers this

way has its own drawbacks. We assume the concentration of LuxR

is constitutively produced and is constant. At our current value of

18 nM (12 molecules/cell), we can only bind at most six promoters

with LuxR-AHL dimers, so having a large NTQ will not change

the amount of mTQ being produced, which deviates from what our

PDE model predicts.

Experimental plausibility
Assuming proper parameter values can be chosen for our

system, our analysis generates a testable hypothesis for a possible

experimental implementation. When setting up the experiment,

the following additional concerns should be taken into account.

Beyond finding parameters that meet the Turing instability

conditions, system speed is very important because it determines

the visibility of changes in the system over the course of a normal

experiment duration. System speed is most directly affected by the

degradation rates of every species in the system. These change the

period of oscillations as well as the growth and decay rates of wave

modes. Very slow growth and decay would delay the emergence of

visible patterns and make experimental debugging difficult

because any activity would be hard to observe. Very long

experiments are problematic in terms of collecting data and

dealing with cell division and lifespan.

A reporter gene was unnecessary in simulation, but one would

need to be used in experiments. As seen in Figure 8, there are two

distinct types of qualitative behaviors: the proteins l cI, LacI, TetR,

and LuxI exhibit brief bursts localized to single cells while AHL and

subsequent quenching loop species exhibit more spread out

behavior due to diffusion. It is possible to attach a fluorescent

protein to the appropriate loop to follow either type of behavior.

While AHL may produce a more visually-pleasing patterning, the

oscillator loop species undergo larger swings in number of

molecules, which would be easier to discern in units of fluorescence.

Figure 6. Results and analysis of PDE simulation for Parameter
Set 2. (A) PDE simulation results for l cI mRNA using Parameter Set 2 in
Table S1 to draw comparisons between parameter sets (Figure 4B).
Concentrations (colorbar) given in M. The imprinted wave k~6 was
chosen because it falls above the minimum unstable wave number of
k~5 for this parameter set ((kp=L)2dAHLw2:66|10{2). Parameter Set
2 oscillates much faster than Parameter Set 1, and because of this we
observe more interesting behavior within the 30-hr simulation window
once the oscillations reach their maximum amplitude. In particular, the
imprint initially grows, but then the energy moves into higher
harmonics as time goes on. See Figure S6 for full simulation results.
(B) Discrete cosine transform (DCT) of l cI mRNA over the window of 0–
10 hr. The imprinted wave (shown in red) dominates and grows. (C)
Over the window 20–30 hr, higher harmonics have begun to dominate.
doi:10.1371/journal.pcbi.1002331.g006
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Implications of the novel architecture
The engineering of cooperative ensembles of cells, whether in

the context of designer microbial communities or other synthetic

multicellular systems will require tractable model systems which

exhibit spontaneous symmetry breaking and pattern formation,

both fundamental prerequisites for any kind of replicating or

‘‘programmed’’ heterogeneity of form or function. Attempts to

produce spontaneous pattern formation using Turing’s canonical

system have proven difficult (see Introduction). This paper breaks

away from the activator-inhibitor model and alleviates some of the

difficulties encountered by using oscillating subsystems. To our

knowledge, this is the first attempt of this kind and significant effort

was devoted to providing researchers with an experimentally

tractable road map towards implementation.

This work also implicitly suggests that natural systems may have

arisen where oscillating subsystems, initially evolved for other

purposes, provide the backbone not just for coordinated oscillation

(as in the diffusively coupled systems demonstrated by others

[7,22,23]) but for robust Turing-type pattern formation phenom-

ena. It is not difficult to find examples in the recent literature of

naturally-occurring coupled negative feedback oscillators, both in

prokaryotes [29] and eukaryotes [30,31]. A function as funda-

mental as cell cycle oscillation appears to be maintained in yeast

and other eukaryotes by coupled oscillators (a negative feedback

oscillator coupled to a relaxation oscillator) [31]. Going further,

these motifs are also present in protein-protein systems [32]; while

outside the scope of the present work, the general results presented

(i.e. coupled multi-step negative feedback oscillators with one

diffusible component can exhibit Turing instability) would likely

apply to kinase loops [32]. Lastly, in our model the relative phase

lag between the oscillator loop and the quenching loop affect both

the emergence and wave numbers of pattern; these, in turn,

depend on the relative number of ‘‘steps’’ around the loops. It is

tempting to suggest that the alteration of the number of steps, or

the total delay around the loop, could provide a mechanism by

which adaptation and evolution could generate systems (and

variants) capable of pattern formation.

Materials and Methods

PDE simulations
Continuous, deterministic models are useful because of the wide

variety of analysis tools we can apply to them to generate

predictions of system behavior and workable parameter spaces,

which we cannot do for stochastic models. These models are

accurate when the number of molecules for all species in the

system are very large, but generally need to be supplemented with

stochastic simulations for systems with small numbers of molecules.

PDE simulations were run in MATLAB Version 7.10.0.499

(R2010a) with the function ode15s, which is a multi-step, variable

order solver based on numerical differentiation formulas. For line

of cell simulations, diffusion was handled using a finite difference

approximation with 101 evenly-spaced grid points and zero-flux

boundary conditions. For single cell simulations, the long empty

volume was represented using a finite difference approximation

with Dirichlet boundary conditions of zero AHL concentration.

Figure 7. Comparison of PDE and stochastic simulations in a single cell using Parameter Set 2. Stochastic simulations exhibit more
irregular and slower oscillations, due to stochasticity and our modeling assumption that the dimerization and binding reactions are at equilibrium in
the PDE model, but the species follow the same phase relationships (pC spike, pT spike, then pL spike). See Figures S7, S8, S9, S10 for full simulation
results. (A) PDE simulation with no diffusion is stable with asymptotically decaying oscillations. (B) PDE simulation with AHL diffusing away quickly
reaches an extremely regular limit cycle. (C) Stochastic simulation with no diffusion exhibits small amplitude oscillations. Occasionally a ‘‘firing event’’
will occur, as seen around hour 10, where the system will grow briefly before settling again. (D) Stochastic simulation with AHL diffusing away shows
oscillations with irregular amplitudes, but much larger than those of the non-diffusing case. In both the PDE and stochastic simulations, the period of
oscillations is longer with diffusion than without.
doi:10.1371/journal.pcbi.1002331.g007
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Stochastic simulations
Stochastic simulations of the network were performed using the

Stochastic Simulator Compiler (SSC) v0.6 [33]. The output from

SSC was reformatted with custom Perl scripts and then plotted in

MATLAB. SSC handles concentrations in units of molecules, so

all parameter values were scaled appropriately, but the output

values were converted to units of molarity in the figures given in

this paper for ease of comparison. Reported values for protein

Figure 8. Representative sample of stochastic simulation results for a line of cells with homogeneous initial condition. Included are
color plots (left) and DCTs averaged over hours 50 to 80 (right). The stochasticity causes oscillations to arise naturally and can be seen as early as hour
20. See Figures S11, S12 for full simulation results. (A) Results for pC (top) and mL (bottom) are indicative of the behavior for mRNA and proteins for l
cI, TetR, LacI, and LuxI. While the DCT plots vary from species to species, certain wave numbers are found to be more pronounced across all species,
particularly k~18,22,30,72,83, and 89. (B) Results for AHL produce similar behavior in all downstream species in the quenching loop. Both the color
plot and DCT are markedly different due to the effects of diffusion, which causes a ‘‘spreading’’ of the rapid peaks seen in mRNA and protein color
plots and acts like a low-pass filter in the frequency domain. (C) Overlay plot of AHL and pI demonstrating the correspondence between the peaks in
the species as well as the effect of diffusion. AHL was monochromed in red and pI in green, leading to the appearance of yellow in areas of large
overlap.
doi:10.1371/journal.pcbi.1002331.g008
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concentrations are the totals of all forms of the protein: monomer,

dimer, and bound to promoter. We represented cells with cubes of

edge length 1 mm. For single cell simulations, the cell was located

at the center of a volume of 100|1|1 mm. All multi-cell

simulations consisted of a line containing 100 directly adjacent

cells.

Discrete cosine transforms
A discrete cosine transform (DCT) expresses a finite sequence of

data as a sum of cosine functions of different frequencies [34]. The

eigenfunctions of the Laplacian operator on a one-dimensional

spatial domain with zero-flux boundary conditions are cosine

functions [27], which are represented more accurately by the

DCT than by the discrete Fourier transform, which is appropriate

for periodic boundary conditions. The DCT is useful for our

analysis because it allows us to examine the presence of certain

spatial wave numbers in a line of cells simulation relative to the

other wave numbers and how these relations change over time.

Because the amplitudes of a DCT are changing in time and can be

both positive and negative, we take the average of the absolute

values of spatial DCTs over an interval of time. This was handled

in MATLAB using the function dct. Because concentrations are

non-negative, there is always a significant offset component k~0,

which we omit from our figures for better scaling of the remaining

wave numbers.

Supporting Information

Figure S1 PDE simulation results for toy model in line
of cells with diffusion. Here d4~6 and L~p. Position, time,

and concentrations are scaled to be dimensionless. Perturbation in

x1 of amplitude steady state +33% peak-to-peak. (A) When k~2
(wavelength p), k2d4~24 falls above the instability threshold of

11:352 and the inhomogeneity grows. (B) When k~1 (wavelength

2p), k2d4~6 falls below the instability threshold of 11:352 and the

inhomogeneity decays.

(TIFF)

Figure S2 PDE simulation results for toy model in line
of cells without diffusion. Here d4~0, L~p, and k~2
(wavelength p). Position, time, and concentrations are scaled to be

dimensionless. Perturbation in x1 of amplitude steady state +33%
peak-to-peak. The cells don’t communicate and each one is stable,

so the inhomogeneity decays.

(TIFF)

Figure S3 PDE simulation results for Parameter Set 1 in
line of cells with diffusion and unstable wavelength. Here

dAHL~1:667|10{12 m2=s, L~100 mm, and k~2 (wavelength

100 mm). Concentrations (colorbar) given in M. Perturbation in

pC of amplitude steady state +33% peak-to-peak. The inhomo-

geneity grows.

(TIFF)

Figure S4 PDE simulation results for Parameter Set 1 in
line of cells with diffusion and stable wavelength. Here

dAHL~1:667|10{12 m2=s, L~1000 mm, and k~2 (wavelength

1000 mm). Concentrations (colorbar) given in M. Perturbation in

pC of amplitude steady state +33% peak-to-peak. The inhomo-

geneity decays. To achieve a stable wavelength (w832:3 mm), we

had to increase the spatial domain.

(TIFF)

Figure S5 PDE simulation results for Parameter Set 1 in
line of cells without diffusion. Here dAHL~0 m2=s,

L~100 mm, and k~2 (wavelength 100 mm). Concentrations

(colorbar) given in M. Perturbation in pC of amplitude steady

state +33% peak-to-peak. The inhomogeneity decays.

(TIFF)

Figure S6 PDE simulation results for Parameter Set 2 in
line of cells with diffusion. Here dAHL~1:667|10{12 m2=s,

L~100 mm, and k~6 (wavelength 33:3 mm). Concentrations

(colorbar) given in M. Perturbation in pC of amplitude steady state

+33% peak-to-peak. The inhomogeneity grows.

(TIFF)

Figure S7 PDE simulation results for Parameter Set 2 in
single cell with diffusion. Here dAHL~1:667|10{12 m2=s.

Perturbation in pC of twice the steady state value. Perturbation

causes growing oscillations until stable limit cycle is reached.

(TIFF)

Figure S8 PDE simulation results for Parameter Set 2 in
single cell without diffusion. Here dAHL~0 m2=s. Perturba-

tion in pC of twice the steady state value. Perturbation causes

decaying oscillations, which asymptotically approach the steady

state.

(TIFF)

Figure S9 Stochastic simulation results for Parameter
Set 2 in single cell with diffusion. Here

dAHL~1:667|10{12 m2=s. Perturbation in pC of twice the

steady state value rounded to nearest molecule. Stochasticity

causes growing oscillations that eventually exhibit relatively stable

period and amplitude.

(TIFF)

Figure S10 Stochastic simulation results for Parameter
Set 2 in single cell without diffusion. Here dAHL~0 m2=s.

Perturbation in pC of twice the steady state value rounded to

nearest molecule. Stochasticity causes sustained oscillations of

short period and small amplitude. Occasional ‘‘firing events’’

eventually settle.

(TIFF)

Figure S11 Stochastic simulation results for Parameter
Set 2 in line of cells with diffusion. Here

dAHL~1:667|10{12 m2=s. Concentrations (colorbar) given in

molecules per cell. All species set to steady state values rounded to

nearest molecule. Stochasticity causes growing oscillations that

eventually exhibit patterning. First five of the ten species are shown

here. See Figure S12 for the rest.

(TIFF)

Figure S12 Stochastic simulation results for Parameter
Set 2 in line of cells with diffusion. Here

dAHL~1:667|10{12 m2=s. Concentrations (colorbar) given in

molecules per cell. All species set to steady state values rounded to

nearest molecule. Stochasticity causes growing oscillations that

eventually exhibit patterning. Last five of the ten species are shown

here. See Figure S11 for the rest.

(TIFF)

Table S1 Acceptable ranges and chosen parameter
values for PDE and stochastic simulations.

(PDF)

Table S2 Steady-state concentrations given by the
analysis for the parameter sets in Table S1.

(PDF)

Table S3 Measurements of instability for spatial waves
given by the analysis for the parameter sets in Table S1.

(PDF)
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Text S1 Analysis of quenched oscillator system for
satisfying the three conditions for Turing instability.

(PDF)

Text S2 Bifurcation Analysis.
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Text S3 Choosing parameter values for Parameter Set
1.

(PDF)

Text S4 Reaction set for stochastic simulations.

(PDF)
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