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Abstract: Analytical biosimilarity assessment relies on two implicit conditions. First, the analytical
method must meet a set of requirements known as fit for intended use related to trueness and
precision. Second, the manufacture of the reference drug product must be under statistical quality
control; i.e., the between-batch variability is not larger than the expected within-batch variability. In
addition, the quality range (QR) method is based on one sample per batch to avoid biased standard
deviations in unbalanced studies. This, together with the small number of reference drug product
batches, leads to highly variable QR bounds. In this paper, we propose to set the QR bounds from
variance components estimated using a two-level nested linear model, accounting for between- and
within-batch variances of the reference drug product. In this way, the standard deviation used to set
QR is equal to the square root of the sum of between-batch variance plus the within-batch variance
estimated by the maximum likelihood method. The process of this method, which we call QRML,
is as follows. First, the condition of statistical quality control of the manufacture process is tested.
Second, confidence intervals for QR bounds lead to an analysis of the reliability of the biosimilarity
assessment. Third, after analyzing the molecular weight and dimer content of seven batches of a
commercial bevacizumab drug product, we concluded that the QRML method was more reliable
than QR.

Keywords: analytical similarity; biosimilar; quality range method; between- and within-batch
variability; bevacizumab

1. Introduction

During the last decade, developments in both technical and regulatory evaluation of
biosimilars have led to the approval of >30 biosimilar monoclonal antibodies in Europe.
The similar but not-identical concepts are now better defined, state-of-the-art analytical
methods are available, and wider knowledge of product heterogeneities has been gathered
from changes in postapproval manufacturing processes [1]. However, as manufacturers and
regulators continue to gain experience and the number of approved biosimilars increases,
ensuring consistency in the characteristics of these products over time emerges as a new
regulatory and analytical challenge [2].

Characterization of biosimilar drugs involves a variety of analytical methods that
permit comparing their physicochemical properties, biological activities, impurities, and
stability. A wide range of state-of-the-art orthogonal methodologies are used to compare
the physicochemical and biological properties of these types of products [3,4]. For example,
peptide mapping with liquid chromatography tandem mass spectrometry (LC-MS/MS)
is used for characterization of post-translational and chemical modifications. Gel elec-
trophoresis and different chromatographic techniques are required for quality control and
in batch-to-batch variability studies. The analysis of higher order structures is performed
using techniques like proton nuclear magnetic resonance (1H NMR), circular dichroism
(CD), fluorescence, Fourier transform infrared spectroscopy (FTIR), differential scanning
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calorimetry (DSC), and hydrogen–deuterium exchange MS (HDX-MS). In the case of
monoclonal antibodies, in which function can influence the product safety and efficacy,
an in-depth investigation of the mechanism of action (e.g., antibody-dependent cellular
cytotoxicity and apoptosis) and additional complement-binding assays (e.g., Fc gamma
receptor-binding activity) is required. Potency assay provides a quantitative measure-
ment of biological activity, usually in clinical situations. This type of test is animal-based,
cell-based, and uses biochemical assays.

Besides this, the consistency and robustness of the manufacturing process also needs
to be demonstrated by implementing quality control, assurance procedures, and process
validation. Although there are no specific types of assays for evaluating biopharmaceutical
drugs, including biosimilar ones, selection of analyses is influenced by the properties of the
reference product. However, the exact requirements can vary across regulatory agencies.

Xie et al. [5] published a list of analytical methods used for evaluating the similarity of
a biosimilar drug, ranking relevant attributes according to risk. However, it is important to
note that other methods may be appropriate for the biosimilar product under development,
and future advances must be taken into consideration [4,6,7]. For this, the multiattribute
method (MAM) is an emerging application of ultra-high-performance liquid chromatog-
raphy, coupled with mass spectrometry, useful for simultaneous monitoring of multiple
attributes of biopharmaceutical product quality [8].

Various biological reference preparations, each with a distinct role, are used during
development and manufacture of a biosimilar product. The proprietary manufacturer’s
reference standards for bioassays are used to support the characterization and traceabil-
ity of the product’s critical quality attributes throughout its life cycle, both horizontally
(between products and batches) and longitudinally (over extended periods). Lee at al. [9]
used internal reference standards obtained from a commercial-scale run in the similarity
assessment of an adalimumab biosimilar.

Recent studies have shown shifts in the critical quality attributes (CQAs) of batches of
biosimilar rituximab and trastuzumab products, including bioactivity [9], associated with
postapproval manufacturing changes. In such a situation, regulatory authorities can assess
the shifts using “in-house” reference standards, although the availability of international
standards (ISs) would allow them to identify the causes of variation and determine their
clinical significance [10]. For this, regulatory guidelines request that manufacturers monitor
and control the CQAs of biosimilar drugs to keep them within appropriate ranges, so that
their quality and clinical properties remain consistent over time [11]. Assessment of
analytical similarity requires the comparison of different batches to describe and analyze
the variability between them.

In September 2017, the FDA published guidance on statistical approaches for analytical
similarity assessment [12]. It recommended a stepwise approach by tier-based quality-
attribute evaluation. Equivalence testing is applied for attributes ranked as tier 1, those
with the highest potential clinical impact. Due to its problems in fixing the similarity
margin, various authors have criticized the equivalence test in tier 1 [13,14]. However, the
FDA withdrew this guidance in June 2018 due to industry comments [15]. In May 2019,
it published another guidance, Development of Therapeutic Protein Biosimilars: Comparative
Analytical Assessment and Other Quality-Related Considerations [16]. In this new guidance,
the FDA proposed the use of comparative analytical assessment by the quality range (QR)
approach, under the assumption that the biosimilar product and the reference product
have similar population means and standard deviations [13]. Nevertheless, various authors
have questioned this approach [17–20].

Both equivalence tests in tier 1 and QR approaches present the following character-
istics: each lot contributes one test value to the CQA being assessed, to avoid bias in
the estimation of residual variance [13]. Wang and Chow [21] proposed an alternative
approach to test multiple samples from each lot, in order to account for the worst pos-
sible scenarios for fair and reliable comparisons. For this, they took the within-lot and
between-lot variabilities into consideration for the analytic similarity assessment.
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In addition, the QR method ignores: (1) lot-to-lot variability, (2) the differences or
shift between means, and (3) relative variability between the reference product and the
biosimilar product. These limitations are the most criticized issues, and could have a
large impact on the use of the QR method for analytical similarity assessments. However,
the equivalence test presents the same limitations [22]. Many authors have studied and
discussed these aspects from various points of view, proposing a range of equivalence tests.

The two modified versions of the QR method proposed by Son et al. [17] not only
overcome the limitations of the QR method mentioned above, but can help in detecting
product changes during the manufacturing process. However, in these approaches, the
within-lot variability was not considered. Oliva and Llabrés [23] applied the QR method
for analytical similarity evaluation of various bevacizumab lots. In this study, the two
main sources of variability deriving from the estimates of the standard deviation of the
population of reference products lots (σR) were analyzed. The within-lot variation (i.e., the
analytical method uncertainty) was known and in control through the analytical method
validation. However, the between-lot variability of the reference product required greater
vigilance and monitoring by the manufacturer. The presence of a lot with unexpected
content may result in rejection by the biosimilarity test.

Recently, Oliva and Llabrés [24] analyzed the limitations of the QR approach in
analytical similarity assessments. There are two kinds of shift: in means and in variability.
However, the problem is (i) how to detect and quantify the shift, and (ii) how it affects
product safety and efficacy. Only when the product is in control; i.e., within certain in-
house specification limits, can it be released for use [25]. For this, the QR approach may be
an option.

This study presents an estimation of QR bounds based on the variance components
to account for both between-lot and within-lot variability; variance components were
computed by the maximum likelihood method using a linear random model. We call
this method QRML to differentiate it from the currently used procedure based on one
sample per batch. For this, the molecular weight (Mw) and dimer content (expressed as
percentage) were used as CQAs. We used real data from various bevacizumab commercial
lots manufactured at different times, which showed at least 1-year residual shelf life.

2. Results and Discussion
2.1. Analytical Methods

The Mw of the intact molecule is the first physical parameter to be analyzed since it
defines the identity, its derivatives and confirm the primary structure. From instrumental
point of view, the MS is the first option. However, size-exclusion chromatography (SEC)
is the common method used to characterize protein aggregates. It enables the separation
of the monomeric protein and derivatives on the basis of their hydrodynamic radius,
simple to use and compatible with high-throughput mode. This technique combined with
detection modes different such as refractive index (RI), light-scattering (LS) and viscometry
(VM) allows comprehensive characterization of proteins [26]. For this, the Mw and dimer,
expressed as percentage, were used as CQAs. The first, provide information about the
identity of the protein and the second, the content of impurities.

The SEC coupled with RI detector (SEC/RI) system was used for estimating monomer
and dimer content through relative peak area percentage values. The SEC/LS system was
used in the characterization process (i.e., identity of starting proteins, products and inter-
mediates of protein aggregation). It enables the Mw and size distribution to be determined.

In-Study Validation

The two proposed analytical methods were validated using the in-study validation
procedure. In all these procedures, it was necessary to consider the measurement uncer-
tainty associated with the results and to determine whether the level of variability satisfied
the specification limits [27].
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For this, the X-bar and moving range (MR) control charts were used to verify that the
method remained stable and in control over time. In this case, quality-control samples were
analyzed each working day to monitor the method parameters; the process was carried
out during a two-year period. The X-bar and MR control charts showed that the SEC/LS
method was in control (i.e., within acceptable bounds) and stable. Assuming that Mw data
were normally distributed, the mean Mw was estimated to be 148.9 kDa from the X chart,
whereas the process variation was estimated to be 1.06 kDa from the MR chart. The overall
uncertainty, calculated as the sum of the uncertainty of each component’s contribution
(precision and accuracy), was 0.98 kDa. The expanded uncertainty was 1.96 kDa, using
a coverage factor of 2. The calculated Mw was thus 148.9 ± 1.96 kDa [28]. In a previous
work, the overall uncertainty calculated using the Bayesian posterior distribution [29] was
lower than 2%. In addition, the reliability of this analytical method was also assessed
by analyzing eight standard proteins in the range of 14.4 to 443 kDa. The average error
between the observed and predicted Mw ranged from 1.32% to 6.90%, with an overall
mean average error of 2.8% for the proteins examined. The results showed an intra- and
interassay precision, expressed as relative standard deviation, lower than 3.0% [26].

The SEC/RI method was also in control and stable. The dimer mean percentage was
estimated to be 1.569% from the X chart (n = 51). At first, all individual measurements were
within the lower (LCL) and upper (UCL) control limits (1.089, 2.048) calculated according to
Montgomery [30]. The MR chart allowed the method’s standard deviation to be estimated
at 0.16% [23].

2.2. Statistical Model

The statistical model used was:

yij = µ + Bi + εij (1)

where yij is the observation j (j = 1, ..., ni) from batch i (i = 1, ..., m), µ is the general mean, Bi
is the batch random effect, and εij is the residual random term accounting for sampling
variability and analytical method uncertainty. Random terms Bi and εij are assumed
independent and with distribution N

(
0 , σ2

B
)

and N
(
0 , σ2), respectively. The intraclass

correlation coefficient was:

ρ =
σ2

B
σ2

B + σ2
(2)

In this study, we analyzed the QR interval computed from the maximum likelihood
estimates, usually defined as:

QRML = [µ̂− k σ̂R , µ̂ + k σ̂R ] (3)

where µ is the sample mean; the multiplier k is a constant, which in the QR method
is usually 2 or 3 based on risk analysis; and σ̂R is the estimated standard deviation for
the reference medicinal product, calculated from the variance components of the model
(Equation (1)):

σ̂R =
√

σ̂2
B + σ̂2 (4)

Variance components of the statistical model (Equation (1)) can be estimated using
least square method (i.e., ANOVA), but only if the experimental design is balanced (same
number of observations per batch). However, even in these circumstances, there is some
probability of a negative σ̂2

B when σ2
B � σ2. Therefore, we chose to estimate the variance

components of the statistical model by the maximum likelihood method. This was done
using the function lmer, included in the library lme4 [31] of the R software [32]. Confidence
intervals for the bounds of QRML are computed using the function bootMer() included in
the same package (see Supplementary Materials).
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2.3. Data Analysis

Figure 1 depicts individual observations for each batch, together with QRML estimates
for k = 2 (inner lines) and k = 3 (outer lines). As would be expected, k must be equal to 3 to
assure that all observations will be inside QR limits with a high probability. Table 1 shows
the summarized statistics: number of observations per batch, with mean and standard
deviation for both quality attributes included in this study. The overall bevazicumab
mean molecular weight was 148.79 kDa; the within-batch standard deviation ranged from
0.294 to 2.07 (coefficient of variation from 0.26% to 1.38%). The overall bevacizumab mean
dimer content was 1.539%; the within-batch standard deviation ranged from 0.034 to 0.198
(coefficient of variation from 2.30% to 12.7%).
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Table 1. Summarized statistics of experimental data (sample size, mean, and standard deviation) for
molecular weight (Mw) and dimer content as percent of total bevacizumab concentration (dimer).

Batch 1 2 3 4 5 6 7

Sample Size 10 23 4 4 4 6 4

Mw (kDa) Mean 148.98 148.64 149.03 147.43 148.55 149.70 149.20
SD 1.151 1.014 0.299 0.512 0.947 2.070 0.294

Dimer (%) Mean 1.532 1.544 1.545 1.562 1.587 1.527 1.478
SD 0.178 0.132 0.050 0.198 0.130 0.125 0.034

Table 2 shows the variance components estimated by the maximum likelihood method
with their 95% confidence intervals. As we concluded from these results, we were required
to accept the null hypothesis H0 : σ2

B = 0 for both molecular weight and percent dimer
content because the confidence intervals included the zero value. Therefore, when at least
taking the precision of the analytical methods into account, there were no differences
between batches, and the observed variability was due to within-batch factors. These were
mainly analytical method uncertainty and sampling variability.
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Table 2. Maximum likelihood method estimates and their corresponding 95% confidence intervals.

CQA Parameter Estimation Lower Bound Upper Bound

Mw (kDa)
σ̂B 0.403 0.000 1.010
σ̂ 1.128 0.936 1.416
µ̂ 148.81 148.32 149.29

Dimer (%)
σ̂B 0.000 0.000 0.048
σ̂ 0.1330 0.1106 0.1609
µ̂ 1.539 1.504 1.5750

Table 3 shows the QR intervals and 95% confidence intervals for both lower and upper
limits. For molecular weight, the estimated QR intervals were (145.21, 152.40), and the
95% confidence intervals were (144.33, 146.13) for the lower bound and (151.50, 153.27) for
the upper bound. For dimer content (%), the estimated QR intervals were (1.140, 1.938),
and the 95% confidence intervals were (1.055, 1.225) for the lower bound and (1.854, 2.026)
for the upper bound. To show that the QRML method provided more reliable results than
those given by the one in use to date (calculation of QR taking one sample per batch),
we computed the expected distribution of the latter using a stratified bootstrap sampling
(one sample per batch; 2000 simulations) from the experimental data. Figure 2 shows the
histograms for the lower and upper values of the QR for the quality attributes of molecular
weight (top left and middle) and dimer content (bottom left and middle). The vertical lines
correspond to the values estimated for QRML (see Table 3). We have also included the plots
of the upper vs. lower bounds of the computed QR ranges (top and bottom right). These
graphs clearly show that the QR bounds were negatively correlated.

Table 3. Estimates and bootstrap 95% confidence intervals for QR estimated from variance components.

CQA QR Bounds Lower Estimate Upper

Mw (kDa)
Lower 144.33 145.21 146.13
Upper 151.50 152.40 153.27

Dimer (%)
Lower 1.055 1.140 1.225
Upper 1.854 1.938 2.026

Classical application of statistical process control implies that when the manufactur-
ing process is under statistical control, only “natural variability” operates, and therefore
batch-to-batch variability is explained solely by within-batch variability. Under these
circumstances, an easy way to estimate the standard deviation for the reference product
(σR) would be from combined variance of several samples from several batches. However,
manufacture of biopharmaceuticals is a complex process, and due to the lack of published
manufacturing records, we could not assure that batch-to-batch variability was negligible.
The importance of within-batch variability can be better generalized and analyzed if we
express QRML (Equations (2) and (5)) as a function of the intraclass correlation coefficient
(Equation (2)):

QRML =

[
µ− k

σB√
ρ

, µ + k
σB√

ρ

]
(5)

Table 4 shows QR values for several combinations of σB and ρ using Equation (5),
µ = 100 and k = 3, where the relevance of the intraclass correlation coefficient is seen.

The relevance of the uncertainty of the analytical method can be anticipated from a
proper validation procedure. Uncertainty regarding the molecular weight determination
already published [26,28] was of the same order of magnitude as the value estimated for σ
(see Table 2). However, we have found some discrepancies in the determination of dimer
content. The value obtained in this study (0.133; see Table 2) was larger than expected from
the validation of the analytical method. This was probably because aggregation can take
place after filling vials, leading to a larger sample-to-sample variability.
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Table 4. QR values as a function of σR and ρ for µ = 100 and k = 3.

σB ρ
QR

Lower Upper

1.25

0.1 88.1 118.6

0.3 93.2 106.8

0.5 94.7 105.3

2.50

0.1 76.3 123.7

0.3 86.3 113.7

0.5 89.4 110.6

5.00

0.1 52.6 147.4

0.3 72.6 127.4

0.5 78.8 121.2

3. Materials and Methods
3.1. Reference Medicinal Product

The Avastin® (bevacizumab) was produced by Genentech Inc. (Roche labs, UK) and
supplied as a 25 mg mL−1 solution in phosphate buffer (pH = 6.2), containing 159 mM
trehalose dehydrate and 0.04% w/v polysorbate 20. Deionized water was purified in a
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MilliQ Plus system from Millipore (Molsheim, France); all other chemicals and reagents
were HPLC grade. All solvents were filtered with 0.45 µm (pore size) filters (Millipore)
and degassed.

3.2. Chromatography System
3.2.1. SEC/RI System

The chromatographic system used was a Waters apparatus (Milford, MA, USA) con-
sisting of a pump (600E Multisolvent Delivery System), an auto sampler (700 Wisp model)
and a differential refractive index (RI) detector (Waters 2414 model). Elution was per-
formed at room temperature in a Protein KW-804 column (8 mm × 300 mm, Waters),
and the mobile phase was phosphate-buffered saline (300 mM NaCl, 25 mM disodium
hydrogen phosphate, pH 7.0) at a flow rate of 1.0 mL min−1, and injection volume 25 µL.
The data was collected and analyzed using the Millennium 32® chromatography program
(Waters). This software was used for chromatogram integration and estimating monomer
and dimer content through relative peak area percentage values.

3.2.2. SEC/LS System

The light-scattering (LS) multiangle miniDawn detector (Wyatt Technology) was
placed downstream of the column and upstream of the RI detector. To reduce baseline
noise, a pulse dampener (Alltech Associates, Deerfield, IL, USA) was connected down-
stream of the pump, and two 25 mm high-pressure filters (Millipore) with 0.22 and 0.1 µm
pores, respectively, were used for online filtration of the mobile phase. The column and
other chromatographic conditions were identical to those used for the SEC system men-
tioned above. A 100 µL sample of each solution was injected into the system, and data
collection and Mw calculations were performed using ASTRA software, version 6.1.0
(Wyatt Technology), using the Debye fitting method. The dn/dc value was determined
by analyzing the concentration dependence of the bevacizumab refractive index, using a
differential refractometer (Waters 2414) with the mobile phase as solvent. The estimated
dn/dc was 0.184 ± 0.003 mL g−1 (n = 10) [33].

4. Conclusions

In short, the method proposed in this paper showed several advantages over the
traditional one. First, variance components from the statistical model allowed the type of
variability of the reference product to be analyzed, namely the between-batch variability
and within-batch variability; the latter accounting mainly for the analytical uncertainty and
sampling randomness. Second, interpretation of the uncertainty of the analytical model
led us to the biosimilarity design. Third, it facilitated the calculation of more precise QR
values. Fourth, it was suitable for setting a priori values for QR.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ph14060527/s1: the scripts from the R software and the data file from Excel.
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