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Gluconobacter oxydans strain DSM 2003 can efficiently produce some industrially important building blocks, such as (R)-lactic
acid and (R)-2-hydroxybutyric acid. Here, we present a 2.94-Mb assembly of its genome sequence, which might provide further
insights into the molecular mechanism of its biocatalysis in order to further improve its biotechnological applications.
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Gluconobacter oxydans, an obligate aerobic, Gram-negative,
and rod-shaped acidophilic organism that belongs to the

family Acetobacteriaceae, is known for its incomplete oxidation of
a wide range of carbohydrates and alcohols (1). The correspond-
ing products (aldehyde, ketone, and organic acid) are excreted
almost completely into the medium. G. oxydans strains can be
used industrially to produce L-sorbose from D-sorbitol;
D-gluconic acid, 5-ketogluconic acid, and 2-ketogluconic acid
from D-glucose; dihydroxyacetone from glycerol; and 6-amino-L-
sorbose from 1-amino-D-sorbitol for the synthesis of Miglitol (1–
3). The complete genome sequence of G. oxydans 621 H (DSM
2343) is publicly available (3). The genome data provide useful
information for metabolic reconstruction of the pathways leading
to some industrially important products derived from alcohols
and sugars.

G. oxydans can also be employed for the enantioselective oxi-
dation of different racemic primary alcohols for the production of
enantiomerically pure carboxylic acids (2). In previous studies,
G. oxydans DSM 2003 efficiently catalyzed racemic 1,2-
propanediol and racemic 1,2-butanediol into (R)-lactic acid and
(R)-2-hydroxybutyric acid, respectively (4, 5). (R)-Lactic acid and
(R)-2-hydroxybutyric acid are important building blocks for the
production of 2-oxo-carboxylates, biodegradable material, gly-
cols, halo esters, and epoxides (6–9). These compounds are im-
portant intermediates of pharmaceuticals (9–11). To better un-
derstand the biocatalytic process of G. oxydans DSM 2003 and to
further improve its biotechnological applications, we sequenced
the genome of the strain.

The draft genome sequence of G. oxydans DSM 2003 was ob-
tained using the Illumina GA system; sequencing was performed
by the Chinese National Human Genome Center at Shanghai,
China, with a paired-end library. The reads were assembled by
using the Velvet software (12). The genome was annotated using
the Rapid Annotations using Subsystems Technology (RAST) au-
tomated annotation server (13). The G�C content was calculated
using the genome sequence. The functional description was deter-

mined by using Clusters of Orthologous Genes (14). The rRNA
and tRNA genes were identified by RNAmmer 1.2 (15) and
tRNAscan-SE (16), respectively.

The draft genome sequence of DSM 2003 has a G�C content of
60.9%. The number of contigs (�100 bp) was 147, and the num-
ber of bases was 2,938,182. There are 2,792 putative coding se-
quences (CDS) (935 bp average length), 50 tRNA genes, and 2
rRNA operons in the genome sequence. The coding percentage is
67.8%, and 1,892 CDS have predicted functions.

There are 363 subsystems represented in the draft genome se-
quence. The genes encoding proteins responsible for enantiose-
lective oxidation of racemic 1,2-propanediol for the production of
(R)-lactic acid were successfully annotated. Several annotated
NAD-independent lactate dehydrogenase genes, which might
play important roles in 2-hydroxy-carboxylate oxidation (17–19),
were also annotated. The obtained genome sequence provides
useful hints for strain improvement; for example, the annotated
NAD-independent lactate dehydrogenase genes provide targets
for gene knockout to further improve the yield of final (R)-lactic
acid and (R)-2-hydroxybutyric acid production by G. oxydans
DSM 2003.

Nucleotide sequence accession numbers. This whole-
genome shotgun project has been deposited at DDBJ/EMBL/
GenBank under the accession no. AYTY00000000. The version
described in this paper is the first version, with accession no.
AYTY01000000.
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