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Abstract: Honeycomb (HC) composites were fabricated by impregnating an aramid paper HC core
with carbon nanotubes/carbon black/reduced graphene oxide (CNTs/CB/RGO) and polyurethane
resin (PU). The sandwich HC (SHC) absorber containing HC composites with superior microwave-
absorption properties were fabricated using the vacuum bagging method. Through the absorption
performance of the SHC absorber, it can be concluded that the triple-layer SHC absorber has the best
absorbing performance. The effective bandwidth (reflection loss < 10 dB) can be achieved in the entire
frequency range of 2.2–18 GHz, and the minimum RL value is −35 dB. Furthermore, the compressive
stress of the triple-layer SHC absorber reached 3.71 MPa, which is similar to the compressive stress
of aluminum HC panels for aviation. Benefiting from the excellent integration of absorption and
mechanical performance, the SHC has significant potential in the stealth-technology field.

Keywords: HC; CNTs/CB/RGO/PU; microwave-absorption properties; compression stress

1. Introduction

In the last few decades, carbon-based nanoabsorbers have been extensively studied
as fillers for structural absorbers [1–3]. Especially for the aerospace industry, where the
property of light weight is essential, carbon-based structural absorbers have received much
attention because of their thermal stability, light weight, and broadband electromagnetic
(EM) wave absorption [4–6].

Carbon black (CB), carbon nanotubes (CNTs), and reduced graphene oxide (RGO)
are all carbon-based microwave-absorbing materials. However, due to their structural
characteristics, they have unique EM wave response behavior. Combining and synergizing
their respective properties organically yields dramatic wave-absorption performance. Sun
et al. [7] prepared multiscale nitrogen-doped RGO@CNT composites, which facilitated the
conversion of EM energy to thermal energy by modulating the material ratio to establish
conductive channels. An effective absorption bandwidth of 7.1 GHz was achieved with a
maximum reflection loss (RL) of 49.4 dB at an ultralow material loading of 2 wt%. Tang
et al. [8] fabricated carbon black–reduced graphene oxide (CB/RGO) composites by a simple
synthesis method. The composites exhibited excellent microwave-absorption performance,
with a maximum absorption intensity of 47.5 dB at a low filler load of 7 wt%. The effective
absorption bandwidth reached 5.92 GHz, covering 37% in 2–18 GHz, when the thickness
was only 2.2 mm.

In carbon-based structural absorbers, carbon-based absorbents are generally filled
in the frame or attached to the frame surface to play the role of EM wave absorption,
such as HC [9], unwoven fabric [10], and foam [11] structural absorbers. The design of
the microstructure of the filler material and the absorber’s macrostructure can integrate
the inherent material loss and structural resonance effect and effectively enhance the
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dissipation of EM wave energy [12]. Moreover, to realize the lightweight broadband
microwave-absorption structural absorbers, it is necessary to use a structure with a low
weight ratio, such as the SHC structure [13–15]. Kou et al. [16] used an HC structure filled
with porous graphene as a radar absorbing material, and the experiment proved that it
had good radar absorption performance. At 8.8 GHz, the RLmin of this graphene-based
composite was −15 dB, thickness only 4.0 mm, and area density 0.26 kg/m2. Wang [17]
produced a new paper-based composite (PBC) HC material comprised of chopped carbon
fiber, aramid fiber, and aramid raw fiber. The RL of composites with a height of 30 mm was
lower than−10 dB in the frequency bands of 2–2.5 GHz and 4.4–18 GHz. Moreover, Birman
v [18] discussed the novel design of SHC. By introducing CNTs, almost all mechanical and
thermodynamic responses of SHC were enhanced. Therefore, carbon-based SHC absorbers
have promising application prospects and high research value.

In this paper, four ratios of acidified CNTs and CB/RGO were dispersed into
polyurethane resin (PU) to form a homogeneous slurry. The HC cores were impregnated in
the slurry to form four single-layer HC composites. According to the principle of gradient
concentration, the single-layer HC composites were bonded to prepare multi-layer HC
composites. Analyzing the absorbing properties of HC composites, the HC composites
with excellent absorbing properties were selected and prepared into SHC absorbers. The
testing results of reflection loss and compression stress show that the SHC absorbers have
broadband absorption and strong compression resistance performance.

2. Materials and Methods
2.1. Materials

Carbon nanotubes (CNTs, multiwalled, diameter 1–2 nm, length 5–30 µm), carbon
black (CB) were purchased from Suzhou First Element Nanotechnology Co., Ltd., Jiangsu,
China. Aramid HC core (Nom-ex, 180 mm × 180 mm × 5 mm, side length 2.75 mm),
waterborne polyurethane resin (PU, NL-236, 30%), fiberglass board (180 mm × 180 mm
× 0.5 mm), carbon fiber board (180 mm × 180 mm × 0.5 mm), prepreg, film, waterborne
wetting dispersant (P-712), and waterborne antifoaming agent (SP-852) were provided by
Wuhan Magnetism-Electron Company, Hubei, China.

2.2. Preparation of CNT/CB/RGO/PU HC Composites

As shown in Figure 1a, the acidified CNTs and CB/RGO were fabricated through the
method reported in our previous work [8,19]. CNTs and CB/RGO were mixed with PU
using a high-speed mixer to form a uniform slurry. Each side of the HC core was placed
into the slurry for 2 min and then pulled out vertically. Then, the HC core was dried rapidly
at 120 ◦C to avoid the thickness gradient on the HC core caused by resin flow. Subsequently,
the temperature was adjusted to 100 ◦C to solidify the impregnated layer on the HC core.
A similar process can be repeated several times until the impregnation layer of the design
thickness is obtained. The thickness of the impregnation layer is mainly controlled by the
weight of the HC composite: the weight of the HC composite with an impregnation layer
thickness of 33 µm is generally controlled at about 13 g. The HC composites were labeled
as H1, H2, H3, and H4 according to the ratio of CNTs to CB/RGO in the slurry impregnated
with the HC core as 1:1, 2:1, 3:1, and 4:1, respectively. multi-layer HC composites were
numbered according to the order of bonding single-layer HC composites stacked from top
to bottom. See Table 1 for details.
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Figure 1. Illustration of (a) the HC composite fabrication progress and (b) the SHC absorber fabrica-
tion progress.

Table 1. Stack details and thicknesses of multi-layer CNT/CB/RGO/PU HC composite.

Sample Code Thickness Stack Number (from Top to Bottom)

#1-2 10 mm 1, 2
#1-3 10 mm 1, 3
#1-4 10 mm 1, 4
#2-3 10 mm 2, 3
#2-4 10 mm 2, 4
#3-4 10 mm 3, 4

#1-2-3 15 mm 1, 2, 3
#1-2-4 15 mm 1, 2, 4
#1-3-4 15 mm 1, 3, 4
#2-3-4 15 mm 2, 3, 4

#1-2-3-4 20 mm 1, 2, 3, 4

2.3. Preparation of CNT/CB/RGO/PU SHC Absorbers

As shown in Figure 1b, the SHC absorber is made of HC composite by the vacuum
bagging method. Place ventilated felt, carbon fiberboard, HC composite, fiberglass board,
separation film, ventilated felt, and vacuum bags on an aluminum plate in turn. Brush
epoxy resin on HC composite, and connect vacuum pump after bonding vacuum bag to
aluminum plate with high-temperature glue. Turn on the vacuum pump for pre-exhaust,
checking for leaks (if leaks are found, use sealing tape to seal), and the vacuum degree
is controlled at −0.09 MPa–−0.1 MPa. The SHC absorber was fabricated as shown in
Figure 1b. Photos of HC core materials, HC composites, single-layer SHC absorbers, and
multi-layer absorbers can be seen in Figure S1.

2.4. Analytical and Testing Instruments

The HC composite was characterized by scanning electron microscopy (SEM; Hitachi
S-4800). The compressive test of the SHC absorber was carried out with a universal testing
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machine (WDW-10A). In addition, CEYEAR 3672C was used to measure the RL of the HC
composites and SHC absorbers.

3. Results and Discussion
3.1. Morphological Analyses

The EM wave-absorbing slurry impregnated by the HC composite was made of CNTs
and CB/RGO homogeneously dispersed in PU. CNTs were further modified by acidification
to improve their EM wave-absorption properties, and CB and RGO were made by one-pot
method. Their microscopic morphology is shown in Figure 2. From Figure 2a,c, it can be
seen that a large amount of flakes exist on the surface of the acidified modified CNTs. It can
be speculated that this is due to the partial breakage of the C-C bond caused by the strong
acid during the acidification treatment to form a large number of fine graphene flakes on
the CNTs’ surface. In addition, the CNTs are MWCNTs, as evidenced by the graphene
fragments on the surface and the tube diameter. CB/RGO prepared by one-pot method
was formed by grafting CB onto RGO during the reduction of graphene oxide (GO) to RGO.
From Figure 2b,d, it can be seen that CB is tightly attached to the surface of RGO in a grape
shape. More information on the performance of this acid-modified CNT and CB/RGO can
be found in the previous research results of our working group [8,19].

Figure 2. Microscopic morphology of CNT and CB/RGO (a) SEM image of CNT; (b) SEM image of
CB/RGO; (c) TEM image of CNT; (d) TEM image of CB/RGO.

It can be seen from Figure 3a–d that the surface of the impregnation layer gradually
roughened due to the increased proportion of CNTs in CNT/CB/RGO/PU composites.
On the surface, the micro-nanometer CB and the gentle RGO are not identifiable, but
the rod-like CNTs are clearly visible and become increasingly dense as the proportion of
CNTs in the composite increases. The most important thing is that CNTs are uniformly
dispersed in the PU matrix, even when the mass ratio of CNTs to CB/RGO is 4:1 due
to the acidification and ultrasonic separation of CNTs. This benefits CNT/CB/RGO/PU
composites by having the advantages of multiscale carbon-based materials and creating
microstructural conditions for the conduction loss and polarization loss of EM waves [20].
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As shown in Figure 3e–h, the impregnation layer is attached to the HC core with a thickness
range of 30 µm to 38 µm.

Figure 3. The micromorphology of the surface and cross-section of the impregnation layer of dif-
ferent slurries (a,e): CNTs:CB/RGO = 1:1; (b,f): CNTs:CB/RGO = 2:1; (c,g) CNTs:CB/RGO = 3:1;
(d,h) CNTs:CB/RGO = 4:1.

3.2. Dielectric Performance Analysis of CNT/CB/RGO/PU Composite

In this paper, HC composites consist of an HC core and an impregnation layer of
carbon-based absorbent. The HC core is made of EM loss-free aramid paper fibers with a
hexagonal structure, which provides mechanical load bearing in the HC composite, while
its unique structure facilitates multiple reflections of EM waves in the composite. As a
multiscale carbon-based absorbing material, the CNT/CB/RGO/PU composite has good
dielectric loss capability to provide EM absorption in HC composites. A vector network
analyzer was used to measure the complex permittivity of the impregnation layer material
in the 2–18 GHz frequency band. From Figure 4a,b, it can be seen that with the increased
ratio of CNTs in the CNT/CB/RGO/PU composite, the real part (ε′) and imaginary part
(ε′′ ) of the permittivity show a steady growth trend and decrease as the EM frequency rises.

Based on the measured permittivity, the dielectric loss tangent angles (tan σε) and wave-
impedance matching coefficients (Mη) of the four kinds of impregnation layer material
were calculated and plotted. tan σε indicates the dielectric loss capacity of the material: the
larger the value, the better the dielectric loss performance [21], which can be calculated by
Equation (1).

tan σε =
ε′′

ε′
(1)

Mη is the degree of impedance matching. The closer the value is to 1, the higher the
degree of impedance matching of the absorber [22], which can be calculated by Equation (2),
where Re[X] is taken as the real part of complex X, εr denotes the relative complex per-
mittivity, and µr denotes the relative complex permeability. Since only the dielectric loss
characteristics of carbon materials are considered in this paper, the default is µ′ = 1 and
µ′′ = 0.

Mη =
2× Re

[√
µr
εr

]
∣∣∣√ µr

εr

∣∣∣2 + 1
(2)

As shown in Figure 4c,d, the H1-1 sample with the lowest CNT content has the
worst dielectric loss capability and the strongest impedance matching, which is exactly the
opposite for the H4-1 sample. In general, the CNT content is positively correlated with tan σε

and negatively correlated with Mη of the impregnated layer [23,24]. This phenomenon may
be caused by that the increased CNTs forming more conductive networks and improving
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the conduction loss capacity of the impregnation layer material. It could also be that the
increased CNTs enrich the heterogeneous interfaces within the impregnated layer, thus
enhancing the interfacial polarization [25–27].

Figure 4. EM parameters of four kinds of impregnation layer material. (a) Real part of permittivity,
(b) imaginary part of permittivity, (c) dielectric loss tangent angles, and (d) impedance matching
coefficients (Mη).

To further understand the polarization behavior of the impregnated layer material
during EM absorption, the plot of ε′ versus ε′′ for all four samples is drawn in Figure 5a–d.
Based on Debye relaxation, the relationship between ε′ and ε′′ can be described as Equa-
tion (3), where εs and ε∞ represent the static dielectric constant and dielectric constant
at infinite frequency, respectively. Therefore, the semicircle in the plot of ε′ versus ε′′ can
signify the existence of the polarization process. As shown in Figure 5a–d, semicircles
appear in all four images, proving the existence of polarization during the loss of EM waves
in all four samples [28]. However, it can also be seen that the number of semicircles does
not change as the proportion of CNTs increases, which means that the rise in CNTs does
not significantly improve the polarization loss capacity of the impregnated layer material.(

ε′ − εs + ε∞

2

)2
+ (ε′′ )2 =

(
εs − ε∞

2

)2
(3)

In summary, the increase in tan σε and decrease in Mη of the impregnated layer
material are mainly due to the increased CNTs in the material, and enrich the conductive
network, enhance conduction loss, and improve dielectric loss capability. However, at the
same time, there is also an improvement in the conductivity of the material that makes the
skinning effect of the material more obvious, resulting in lower impedance matching [29].
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Figure 5. Plots of ε′ versus ε′′ for (a) I1, (b) I2, (c) I3, and (d) I4.

3.3. Absorption Properties of CNT/CB/RGO/PU HC Core Composite
3.3.1. Analysis of Absorption Performance of Single-Layer HC Composite

The four single-layer HC composites were numbered H1, H2, H3, and H4 according to
the proportion of CNTs in the HC composite impregnating slurry. The EM reflection-loss
testing and analysis results of the four HC composite materials are as follows.

According to microwave-absorption theory, the performance of absorbing materials
is mainly determined by the degree of impedance matching and EM wave-attenuation
ability [30]. The ideal absorbing material must have a good synergy between these two
factors. As shown in Figure 6, the intensity of the RL curve of the single-layer HC composite
increases and then decreases as the proportion of CNTs within the impregnation layer
increases. The best EM absorption performance is H3: RLmin is −25.2 dB with an effective
absorption bandwidth of 7.34 GHz (8.3–15.6 GHz). This phenomenon suggests that the
formation of conductive paths favors the increase of EM absorption in the composites as the
mass ratio of CNTs increases [31–34]. However, it also decreases the impedance matching
degree, making it difficult for EM waves to enter the material’s interior, thus preventing
the effective absorption of EM waves [35–37].
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Figure 6. RL of single-layer HC composite. (a) RL curves for different ratios, (b) frequency range and
bandwidth of EM wave absorption for each sample.

3.3.2. Analysis of Loss Mechanism of Single-Layer HC Composite

The schematic diagram of the absorption mechanism of the single-layer HC structure
is shown in Figure 7. From Figure 7a, it can be seen that impedance matching played
an essential role in the HC composite. The porous structure of the HC composite allows
more EM waves to enter the interior of the composite, increasing the incidence rate. The
hexagonal structure of porous HC core makes the EM wave scatter multiple times inside
the HC composite, which effectively increases the probability of the interaction between
the EM wave and the lossy particles. In addition, as shown in Figure 7b, the ternary
carbon materials inside the impregnation layer are superimposed on each other to form a
large number of conductive networks and heterogeneous interfaces, resulting in excellent
conduction loss and interface polarization. At the same time, a large number of groups
and defects exist on the surface of acidified CNTs and CB/RGO, which can easily become
the center of dipole polarization [8,38]. The multiscale carbon-based absorbent used in
this paper further increases the absorption channels, which is beneficial to the absorption
performance of the HC composite. Therefore, for the HC structure material, the wave-
absorbing performance results from the promotion of many factors. The critical point is
how to coordinate the structural parameters of the HC core and the EM properties of the
impregnation layer material.

Figure 7. The absorption mechanism of the HC composite: (a) macroscopic field; (b) microscopic field.

3.3.3. Analysis of Absorbing Performance of Multi-Layer HC Composite

The prepared single-layer HC composite has good absorbing properties, but its effec-
tive absorbing bandwidth is still not ideal. In order to further improve the wave-absorbing
properties of HC composites, structural design is explained out in this section. Currently,
the structural design of multifunctional materials mainly includes two methods: graded
impedance design and graded medium design. Gradient impedance absorber, also known
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as Jaumann absorber [39], consists of several resistive films placed on different layers
and a lossless substrate filled between every two resistive films [40–42]. Graded medium
absorbers, also known as gradient absorbers, are made of layers of lossy materials with
gradient designs to improve wave-impedance matching. The incident wave attenuates as it
propagates through these lossy layers [43,44]. It was obvious for HC composites that this
approach of graded medium design was most suitable.

According to the impedance matching degree and dielectric loss tangent of the four
proportions of impregnation layer materials, the design of the multi-layer HC composite
material in this paper is shown in Table 1.

As shown in Figure 8a, the RL curves of the double-layer HC composite shift their
harmonic peaks to the left when the permittivity of the impregnation material of the bottom
layer increases. This phenomenon is consistent with the description of dielectric loss
materials in the quarter-wave cancellation theory [45]. The double-layer HC composites
with the best absorbing performance were samples H2-4: the effective absorption bandwidth
is about 14.1 GHz (3.6–17.7 GHz) and the maximum absorption intensity −34 dB. Figure 8b
shows the RL of the triple-layer HC composite. The RL value of sample H1-3-4 in the
2.3–18 GHz range is less than −10 dB, which is better than the absorbing performance
of other triple-layer HC composites. Figure 8c shows a quadruple-layer gradient HC
composite’s absorption bandwidth is 14.2 GHz, and the maximum absorbing intensity
is −37.2 dB. Compared with the triple-layer HC composite, the absorbing bandwidth
and intensity are not significantly enhanced. Instead, the absorbing bandwidth becomes
narrower, showing that the excessive dielectric properties harm absorbing performance. In
general, among the prepared multi-layer HC composites, the triple-layer HC composites
H1-3-4 with an absorption bandwidth of 15.8 GHz and an absorption peak of −37.2 dB are
the samples with the best absorption performance.

Figure 8. Reflection loss of multi-layer HC composites. (a) Double-layer, (b) triple-layer,
(c) quadruple-layer.

3.3.4. Analysis of Loss Mechanism of Multi-Layer HC Composite

On the basis of EM wave loss of single-layer HC composite material, the designed
multi-layer HC composite material has high impedance matching and strong EM wave loss
ability. This advantage mainly comes from the graded medium design of the multi-layer
HC composites. As shown in Figure 9, the incident wave first makes contact with the low
CNT ratio HC single layer with good impedance matching before entering the multi-layer
HC composite, which allows more EM waves to enter the interior. The impregnation layer
material is responsible for attenuating EM waves in the multi-layer HC composite. At
the same time, multiple scattering occurs between the layers to increase the EM wave
propagation path. As the number of layers increases, there are more opportunities for
EM waves to interact with the composite material, which means that the EM waves can
be repeatedly attenuated and converted into heat dissipation. Two prerequisites for an
ideal absorber are strong EM wave loss capability and high impedance matching, both
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of which are met here. Therefore, the multi-layer HC composite attained good absorbing
properties [46–48].

Figure 9. The wave-absorption mechanism of the multi-layer HC composites.

3.4. Analysis of Absorption Performance of Sandwich Honeycomb Absorber

We prepared single-layer and multi-layer HC composites with the best absorbing
properties into SHC absorbers. By the vacuum bagging method, fiberglass board and
carbon fiberboard are respectively bonded on the upper and bottom layer surfaces of the
HC composite to form the SHC absorber. A physical sample image of the multi-layer SHC
can be seen in Figure S1.

As shown in Figure 10, the absorbing properties of the single-layer and multi-layer
SHC absorbers are improved compared with their corresponding HC composites. In
Figure 10a, the RL intensity of the single-layer SHC absorber is increased from −25.2 dB to
−33 dB, and the effective absorption bandwidth is broadened from 7.3 GHz to 7.5 GHz.
Similarly, it can be seen from Figure 10b,c that the absorption intensity of the double-
layer and triple-layer SHC absorbers is enhanced compared with their corresponding HC
composites. The maximum intensity of the triple-layer SHC absorber RL is −35 dB, and
RL < −10 dB in the frequency range of 2.2 to 18 GHz. It can be speculated that the reason
for this enhancement is that the fiberglass board and the carbon fiberboard are totally
transmissive and perfectly reflective for EM waves, respectively.

Figure 10. Comparison of RL between HC composites and SHC absorber. (a) Single-layer, (b) double-
layer, (c) triple-layer.

3.5. Mechanical Properties of SHC Absorber

The introduction of fiberglass board and carbon fiberboard will inevitably improve
the mechanical properties of HC composites. Therefore, improvement of the mechanical
properties of the SHC absorber by the CNT/CB/RGO/PU impregnation layer is mainly
studied with the compression test of pristine SHC (without impregnation layer) and
impregnated SHC. The flexibility performance of HC and the compression testing process
can be seen in Figure S2.
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Figure 11 shows the mechanical properties of the SHC absorber. Figure 11a–c are the
load-deformation curves of the SHC absorber, and Figure 11d–f show the compression
stress of SHC absorber. It can be seen from the SHC absorber that the fracture deformation
and compression stress are enhanced. The three SHC absorbers’ compressive stress is
increased by 35.1%, 53.1% and 71.1%, respectively. The above results show that the SHC
absorber coated with the CNT/CB/RGO/PU composite can withstand greater compression
force and compressive stress than the pristine SHC absorber. Therefore, it can be concluded
that the SHC absorber effectively integrates mechanical loading and EM absorption, and is
a promising multifunctional material.

Figure 11. Mechanical properties of sandwich HC absorber. (a–c) The load-deformation curves.
(d–f) the compression stress.

4. Conclusions

The HC composites impregnated with CNT/CB/RGO/PU slurry were successfully
prepared, and the thickness of the impregnation layer was 33.5 µm on average. The
analysis of the dielectric properties of the impregnation layer material found that as the
proportion of CNTs in it increased, the dielectric loss properties of the material improved
and the impedance matching decreased, which was due to the enhanced conduction loss.
The multi-layer HC composites designed by the gradient medium principle have good
wave-absorbing properties. The single-layer, double-layer, and triple-layer HC composites
with the best wave-absorbing properties were prepared for SHC absorbers by the vacuum
bagging method. By analyzing the absorbing performance of the SHC absorber, it is
found that the best maximum RL intensity of the triple-layer absorbing performance
is −35 dB, and RL < −10 dB in the frequency range of 2.2–18 GHz. Furthermore, the
average compressive stress of the SHC absorber reached 3.71 MPa, which is similar to the
compressive stress of aluminum HC panels for aviation. The radar-absorbing HC composite
is a promising candidate for military stealth applications from a practical perspective.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12152622/s1, Figure S1: (a) Original HC core material;
(b) HC composite; (c) SHC absorber; (d) multi-layer SHC absorber; Figure S2: (a) Normal state of HC
composite; (b) Bending state of HC composite; (c) Compression test of HC composite.

https://www.mdpi.com/article/10.3390/nano12152622/s1
https://www.mdpi.com/article/10.3390/nano12152622/s1
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