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Background
Despite many advances in cancer treatment, early detection 
remains the most promising avenue in terms of patient sur-
vival.1–5 While there have been many attempts at devising early 
cancer screening techniques, many approaches remain ineffi-
cient in clinical settings and are not pragmatic because of lack 
of cost-effectiveness or requirement of invasive procedures.6–8 
Genomic screening techniques are a promising approach in 
this area. Continuing advances in high-throughput technology 
make these approaches both cost- and time-effective. Certain 
types of genomic data, such as gene expression derived from 
peripheral blood, are minimally invasive as well.

The main difficulty in developing such techniques has 
been the lack of stable markers in cancer gene expression pro-
files. Apart from a few exceptions,9,10 many gene signatures 
have failed to reproduce their results when tested on inde-
pendently obtained data,11 indicating that the signature is not 
adequately robust to be deployed in a clinical setting.

However, a recent work by Corrada Bravo et al.12 demon-
strates that by modeling consistent increased gene expression 
variability across cancer types, a statistical model can be developed 
that provides a stable and robust predictor of cancer that works 
well across multiple cancer types. The underlying observation 

behind this approach is that certain genes will consistently 
show higher across-sample variability in cancer as compared  
to normal samples in multiple cancer types. Hypervariabil-
ity in these genes can be leveraged to measure deviation from 
a stable profile of normal expression, resulting in a cancer 
anti-profile.

Here we further advance this approach by demon-
strating that it can also be used as a predictor of survival or 
relapse. We demonstrate that using genes that show consis-
tent, or universal, hyper-variability across cancer types, their 
degree of deviation in gene expression from normal tissue 
can be used as a measurement of potential malignancy (mea-
sured as risk of relapse or death). The results indicate that the 
anti-profile approach can be used as a more robust and stable 
indicator of tumor malignancy than traditional classification 
approaches.

Methods
We extend the observation of consistent hypervariability in 
cancer with respect to the normal samples to include tumor 
progression. Our hypothesis here is that the degree of hyper-
variability as measured with respect to the normal samples 
would increase with tumor progression.
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Corrada Bravo et al.12 defined how to derive a colon-cancer 
anti-profile for screening colon tumors by measuring deviation 
from normal colon samples. Briefly, to create an anti-profile, 
a set of normal samples and tumor samples is selected; probe-

sets are then ranked by the quantity 
σ

σ
j tumor

j normal

,

,

 (where σj,tumor and 

σj,normal are the standard deviations among the tumor samples 
and normal samples, respectively, for probeset j) in descending 
order, and a certain number of probesets (typically 100) with 
the highest value are selected. Normal regions of expression 
are calculated for each probeset, and an anti-profile score for a 
sample is calculated by counting the number of probesets for 
which the expression lies outside the normal region.

We used a number of publicly available microarray data-
sets and two methylation datasets. The expression micro
array datasets were either Affymetrix Human Genome U133 
Plus 2.0 (GPL570) or Affymetrix Human Genome U133A 
(GPL96). The raw data were collected and processed using 
frozen robust multiarray analysis (fRMA) normalization13 
and the barcode algorithm14 to obtain z-scores. A detailed 
description of the datasets used and the selection of samples 
can be found in the Supplementary File.

For anti-profile analysis, a variance-ratio statistic across 
multiple tissues is calculated.12 This statistic is computed as 

u
mean s

mean sg
c gc

t gt

= log2
, where sgc and sgt are the standard deviations 

of cancer type c and tissue t and g is the probeset. Probesets are 
ranked according to ug. We used the 100 probesets with the 
highest ug values for our experiments with anti-profile scores. 
This calculation was available for the GPL570 platform by 
Bravo et al, and we used a number of cancer and normal sam-
ples of many tissue types from GPL96 microarray platform 
experiments to obtain a similar universal set of probesets for 
our GPL96 experiments.

The normal regions of expression are calculated based 
on median and median absolute deviation (mad) statistics as 
mg ± 5 × madg for a probeset g. Here mg = mediant(mediangt) 
for tissue t and madg = mediant(madgt). For most of our experi-
ments, our computations were limited to a single tissue type 
(colon, breast, lung, thyroid, or adrenal cortex).

The normalized expression values and the selected probe-
sets can be supplied to the apCount method of the antiProfiles 
Bioconductor package,15 which counts the number of probe-
sets for which the expression of the given tumor sample lies 
outside the normal range of expression. This count is used 
as the anti-profile score. The AntiProfileStats object from the 
package and the buildAntiProfile method were used to com-
pute and use the universal anti-profile signature.

For comparing the anti-profile scoring method against 
classifiers that do not take into account the hypervariability 
of cancer, we compared our approach with PAM, a popu-
lar shrunken centroid classifier.16 PAM extends the regular 
centroid-based classification by computing a standardized 
centroid for each class. The shrunken centroid represents the 

class using the average gene expression of that class divided by 
the within-class standard deviation for that gene. The amount 
of shrinkage is determined via a threshold parameter that 
affects the classification by reducing the effects of features that 
are determined to be non-informative.

For shrunken centroid classifications, we used pamr, an R 
package that implements the PAM algorithm. The methods 
pamr.train, pamr.cv, and pamr.predict were used for training, 
cross-validation, and testing, respectively. For any given data-
set, a binary classification was attached to the data (either a 
high-risk vs. low-risk classification based on patient survival 
information or a carcinoma vs. adenoma classification based 
on tumor progression information), which was used for fit-
ting the PAM model, and after cross-validation on the train-
ing dataset, the threshold parameter was selected to minimize 
both training error and the number of probesets used for 
classification.

Results and Discussion
Gene expression anti-profiles capture tumor progres-

sion. In our experiments, we first extended the anti-profile 
approach by using colon-cancer anti-profiles for differen-
tiation between tumors according to their progression level. 
To test our hypothesis, we obtained two publicly available 
microarray datasets with normal, adenoma, and cancer colon 
samples.17,18

Based on the finding that consistent decreases in methy-
lation are observed along large genomic blocks,19 probesets 
were selected in Ref. 12 by selecting genes that lie inside such 
blocks to create a colon-cancer anti-profile. From those probe-
sets, we selected the 100 probesets that showed most hyper-
variability among cancer samples in comparison to the normal 
samples. We then plotted the distribution of variance of can-
cer/adenoma samples to variance of normal samples ratio (in 
log2 scale) for these probesets on the other dataset (Fig. 1A 
and B). Both adenoma and cancer samples show higher vari-
ability than normals (region to the right of x = 0), while can-
cer samples show higher hypervariability than adenomas. 
This suggests that hypervariability is a stable marker between 
experimental datasets and that specific selection of hypervari-
able genes across cancer types and the anti-profile method 
can be extended to model tumor progression. While a global 
Kolmogorov–Smirnov test for differences between the two 
distributions is not significant, further experiments with anti-
profile scoring demonstrate that these probesets can be use-
ful for differentiating between adenoma and cancer samples 
(see below).

Next, we performed an analysis using the universal 
anti-profile signature computed in Ref.12  We obtained an 
adrenocortical microarray dataset20 containing normal, ade-
noma, and cancer samples. For the most hypervariable 100 
probesets from the universal anti-profile, we plotted the dis-
tribution of variance of cancer/adenoma samples to variance 
of normal samples ratio (Fig.  1C). The same observations 
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as before could be seen: a majority of these probesets show 
greater variability among cancer and adenoma samples than 
among normal samples, and this degree of variability is higher 
among cancer samples in comparison with adenoma samples 
(A Kolmogorov–Smirnov test between the two distributions 
with the alternative hypothesis being that the distribution for 
adenoma samples is less than that of cancer samples yields 
P = 1). This extends the suggestion of our hypothesis regard-
ing hypervariability and tumor progression level to the uni-
versal anti-profile signature.

In the next stage of our experiments, we applied the 
anti-profile scoring method. As discussed in Ref. 12, the 
anti-profile scoring method counts the number of hypervari-
able probesets for which the expression of tumor samples lies 
beyond the normal region of expression. It has been shown 
to be an effective measurement in differentiating between 
tumor samples and normal samples, and our aim was to apply 
the same scoring method for differentiating between differ-
ent stages of tumor progression. With the two colon-cancer 
datasets used to derive colon-cancer anti-profiles, we used the 
hypervariable probesets and the normal regions of expression 
for probesets derived from one dataset to calculate anti-profile 
scores for the normal, adenoma and cancer samples in the 
other dataset. The distribution of these scores are plotted in 
Figure 2A and B: for both datasets, the average anti-profile 
score increases from the normal group to the adenoma group 
to the cancer group: for the first dataset,17 the mean scores for 
these groups are 18.88, 27.93, and 35.33, respectively, and for 

the second dataset,18 the respective mean scores are 32.2, 51.4, 
and 58.9. Comparing the adenoma scores against the cancer 
scores yields an area under the receiver operating characteristic 
(ROC) curve (AUC) of 0.711 and a P-value of 0.05 from the 
Wilcoxon rank-sum test for the first dataset; the same com-
parison for the second dataset yields an AUC value of 0.97 and 
a P-value ,10–3 from the Wilcoxon rank-sum test.

Similarly, we applied the anti-profile scoring method 
for the adrenocortical dataset with the universal anti-profile 
probesets (Fig.  2C). The cancer samples have higher anti- 
profile scores than the adenoma samples: the mean anti-profile 
scores are 2.5 and 16.84 for the adenoma and cancer groups, 
respectively. The comparison of the two score groups gives an 
AUC value of 0.997 and a Wilcoxon rank-sum test P-value of 
,10–4. In addition, we also performed the same experiment 
on 10 follicular thyroid adenomas and 13 follicular thyroid 
carcinomas obtained from GSE27155,21 where we used the 
100  most hypervariable probes from a universal anti-profile 
signature for the GPL96 platform (see the Application to 
Breast Cancer section). This provided an AUC of 0.808 and a 
Wilcoxon rank-sum test P-value of 0.01. However, only four 
normal samples were available in this dataset, thus limiting 
the confidence in the experimental result.

Anti-profiles based on DNA methylation also capture 
tumor progression. DNA methylation is one of the primary 
epigenetic mechanisms for gene regulation, and is believed to 
play a particularly important role in cancer.22 High levels of 
methylation in promoter regions are usually associated with 
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Figure 1. Among probes that exhibit higher variability among cancers than among normals, the degree of hypervariability observed is related to the level 
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low transcription.23,24 Abnormal methylation patterns have 
been observed in cancer, with loss of sharply methylation lev-
els (in comparison with normal methylation levels) in regions 
associated with tissue differentiation,19,25 and is associated with 
increased hypervariability in gene expression across multiple 
solid tumor types.25 Given these observations, we expected 
that the anti-profile method would be applicable to methyla-
tion measurements from samples through cancer progression.

We applied the anti-profile scoring method to DNA 
methylation data from thyroid and colon samples,19 where for 
each tissue type, normal, adenoma and cancer samples were 
available. Using 384 probesets available in their custom Illu-
mina methylation array data, for each cancer type, we used the 
normal samples to define the normal regions of methylation 
and calculated anti-profile scores by summing the number of 
features that fell outside the normal methylation region for 
each cancer sample.

Figure 3  shows the distribution of adenoma and carci-
noma samples against normal samples on a principal compo-
nent plot, showing the presence of the hypervariability pattern 
in methylation data: the normal samples cluster tightly, while 
the adenomas show some dispersion and the carcinomas show 
even greater dispersion. Since these behaviors are present for 
both colon and thyroid data, it again reinforces our notion that 
the anti-profile approach has wide application for classifica-
tion in cancer.

Supplementary Figure 1 shows the results obtained with 
the anti-profile scores. As with the gene expression data, 
the methylation data also show that adenomas tend to have 

lower anti-profile scores than the carcinomas: for the thyroid 
tumors, the median anti-profile score for the adenoma class 
is 10, while for the carcinoma class is 17, and for the colon 
tumors, the median score for the adenoma class is 75.5, while 
for the carcinoma class is 121.5.

We also obtained data from a multiple solid tumor meth-
ylation study based on the Illumina HumanMethylation450 
beadarray.25 This dataset contains DNA methylation levels 
for normal, adenoma, and cancer samples comprised of thy-
roid, breast, colon, pancreas and lung tissues (see Supplemen-
tary Table 2).25 Sample-specific methylation levels over CpG 
clusters were obtained as described in the Supplementary 
Methods section. To test the ability of anti-profile scoring to 
capture stable epigenetic marks across multiple tissue types, 
we followed a two-stage leave-one-tissue-out cross-valida-
tion procedure for each tissue type in the dataset (see Supple-
mentary File), where feature selection for each tissue-specific 
anti-profile is based on consistent hypervariable methylation 
within common hypomethylation blocks of the other tissues 
in the dataset and anti-profile construction is based only on 
the normal samples of the tissue. In this case, no tumor data 
for each tissue are used when constructing their anti-profile. 
We observed high separation in anti-profile score between 
adenoma and tumor in all tissues (Supplementary Fig.  2, 
Wilcoxon rank-sum test; colon, P = 0.018; thyroid, P = 0.068; 
pancreas, P = 0.011; and breast, P = 0.058) and AUC greater 
than 0.8 for all tissues except thyroid (colon, AUC = 0.816; 
thyroid, AUC = 0.682; pancreas, AUC = 0.840; and breast, 
AUC = 0.837).
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Increased expression variability is associated with 
clinical outcome in colon, lung, and breast cancer. Based 
on the observation that increased expression variability and 
anti-profile scores in probesets with hypervariable expression 
is associated with tumor progression, we hypothesized that 
it will also be associated with clinical outcomes for tumors: 
aggressive tumors exhibiting poor clinical outcome would be 
associated with increased hypervariability in these specific 
genes and vice versa.

Application to colon cancer. We first experimented with a 
colon-cancer anti-profile as discussed in the previous section. 
We obtained a microarray dataset of colon tumor samples 
supplied with survival information (indicating the relapse 
of a patient within a certain number of years).26 Using the 
other colon-cancer microarray datasets used in the previous 
section,17,18 we constructed a colon-cancer anti-profile using 
the normal and cancer samples, limiting the probesets to the 
colon-cancer hypervariable genes from Corrada Bravo, et al.12 
A set of 100 probesets with the highest variability among can-
cer samples with respect to normal samples was selected from 
this anti-profile. These probesets and the normal regions of 
expression calculated for them using the normal colon samples 
from the abovementioned datasets together constituted the 
colon-cancer anti-profile used.

We stratified the samples into high risk and low risk as fol-
lows: patients who relapsed within 1 year after diagnosis were 
classified as high risk and those who did not relapse within 
1 year were classified as low risk. For the selected probesets, 
we calculated the distribution of variance of high-/low-risk 
samples to variance of normal samples ratio (Supplementary 
Fig. 3). The hypervariability of the colon-cancer anti-profile 
probesets is reflected in these results, given that the majority 
of the probesets have a log2 variance ratio .0. We can also see 
that the high-risk samples exhibit slightly higher variability 
than the low-risk samples when compared against the nor-
mals, affirming that the hypervariability observation extends 
to tumor prognosis as well.

Further, we calculated anti-profile scores for the colon 
tumor samples. Since the high-risk and low-risk grouping 
is not a well-defined classification, only tentatively captures 
tumor progression, we used Kaplan–Meier survival curves 
to measure the effectiveness of the anti-profile scores. We 
ordered the tumor samples according to the anti-profile score 
and stratified them to three equal- sized groups and observed 
the rate of survival in each group using Kaplan–Meier curves. 
This demonstrated that the anti-profile scores clearly corre-
late with the prognosis of the tumors, with higher anti-pro-
file scores showing higher chances of relapse and vice versa 
(Fig. 4A; log-rank test score 9.452, P-value 0.008). We also 
noticed that the high-risk samples have a higher score on aver-
age than the low-risk samples (Supplementary Fig. 3): mean 
anti-profile scores for low-risk and high-risk groups are 41.85 
and 48.87, respectively (Wilcoxon rank-sum test P-value is 
0.0078 between the two groups).

Application to lung cancer. Next, we applied the anti-profile 
method to analyze lung cancer survival. Here we tested the 
universal anti-profile from Corrada Bravo, et al.12 with two 
microarray lung cancer datasets containing patient survival 
information based on patient relapse, the primary dataset con-
taining both normal and tumor samples27 and the secondary 
dataset containing only tumor samples.28

As with the colon dataset, we stratified the samples 
into high risk and low risk based on patient relapse within 
five years. For the universal anti-profile probesets, we plotted 
the distribution of variance of high- and low-risk samples to 
variance of normal samples ratio (Supplementary Fig. 4). The 
majority of the universal anti-profile probesets show higher 
variability among the tumor samples than the normal samples, 
indicating that the universal anti-profile manages to capture 
the hypervariability property of these datasets.

We used normal lung samples to calculate anti-profile 
scores for the tumor samples for both datasets. Ordering the 
tumor samples by anti-profile score, for each dataset, we strati-
fied them to three equal-sized groups and plotted Kaplan–Meier  
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survival curves (Fig. 4B). For the first dataset, the tumor sam-
ples with the highest anti-profile scores show greatest relapse 
among the three groups, while the tumor samples with the 
lowest scores show the least relapse (log-rank statistic for the 
first dataset 15.44, P-value ,10–3). For the second dataset, we 

obtained a log-rank statistic 0.611 and a P-value 0.73 from the 
same procedure. The distribution of the scores for the high-
risk and low-risk samples (Supplementary Fig.  5) indicates 
that for both datasets, the low-risk samples have lower anti-
profile scores and vice versa (for the first dataset, the mean 
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scores for low-risk and high-risk groups are, respectively, 
14.32 and 19.81 with a Wilcoxon rank-sum test P-value of 
,10–3; for the second dataset, the mean scores for low-risk 
and high-risk groups are, respectively, 31.64 and 33.32 with a 
Wilcoxon rank-sum test P-value of 0.58).

The results obtained for the second lung dataset did not 
show as much separation in the Kaplan–Meier survival curves 
when sorted into three groups. Comparing the generalized nor-
malized unscaled standard error (GNUSE) values, a standard 
metric of microarray quality,29 to compare the quality of the 
microarray data for the two lung cancer datasets (Supplemen-
tary Fig. 6), we noticed that this second dataset has a higher 
GNUSE value distribution in comparison to the first dataset, 
which might explain the poor performance. However, stratify-
ing the samples as top 50% of scores and lower 50% of scores 
did show some separation of the two groups in terms of sur-
vival (log-rank statistic 1.418, P-value 0.22). The survival curves 
show the expected survival difference between the groups for 
the first 8 years, suggesting that the prognosis predicted by the 
anti-profile scores may become less relevant over time. In addi-
tion with increasing age, there is increased possibility that the 
health of a patient may deteriorate more aggressively.

The first dataset also contained information about death 
of patients. A similar analysis as before with patient death 
instead of relapse showed a log-rank statistic of 8.342 with 
P-value 0.015 when the samples were ranked by anti-profile 
scores and stratified to two groups (Supplementary Fig. 7).

These results demonstrate that the universal anti-profile 
probesets can be used to model the hypervariability in lung 
microarray data and further validate the use of using deviation 
from normal samples as a measurement of tumor prognosis.

Application to breast cancer. We next applied the method-
ology to breast cancer microarray data on Affymetrix Human 
Genome U133A platform (GPL96). Since the universal anti-
profile signature had been derived from Affymetrix Human 
Genome U133 Plus 2.0 (GPL570) microarray data, we used a 
number of publicly available GPL96 platform cancer and nor-
mal samples (1207 cancer samples and 773 normal samples) 
of multiple tissue types to recalculate an anti-profile signature 
for the GPL96 platform (see the Methods section). We used 
the most significant 100 probesets from this signature for our 
breast cancer anti-profile experiments.

After obtaining two publicly available breast cancer 
microarray datasets,30,31 we selected lymph node negative and 
estrogen receptor (ER) positive samples and verified that these 
probesets were able to capture the hypervariability of cancer 
samples (Supplementary Fig.  8). Since relapse information 
was not available for majority of the samples, we used death 
within 5 years as our criteria for obtaining a high-risk–low-
risk classification.

We collected breast normal samples from publicly avail-
able datasets and calculated anti-profile scores for the two 
datasets. We drew Kaplan–Meier survival curves by ranking 
the samples by score and grouping them into three equal-sized 

classes (Fig. 4C). Similar to our observation with colon and 
lung cancer data, the anti-profile scores showed a correlation 
with survival of patients (log-rank statistic for the first dataset 
3.971, P-value 0.137; log-rank statistic for the second dataset 
10.467, P-value 0.005). The distribution of the scores for the 
high-risk and low-risk samples (Supplementary Fig. 9) dem-
onstrates that high-risk samples have higher scores on average, 
and vice versa (for the first dataset, the mean scores for low-
risk and high-risk groups are, respectively, 10.13 and 17.12 
with a Wilcoxon rank-sum test P-value of 0.0061; for the sec-
ond dataset, the mean scores for low-risk and high-risk groups 
are, respectively, 11.41 and 16.91 with a Wilcoxon rank-sum 
test P-value ,10–3).

The second breast dataset  also contained information 
about patient relapse. Performing a similar analysis using 
relapse instead of death provided a log-rank statistic of 10.755 
(P-value 0.004) when the samples were grouped by anti-profile 
score (Supplementary Fig. 10).

In addition, Supplementary Figure  11  shows simi-
lar results obtained for the third breast cancer dataset with 
patient death information. With only nine deaths being 
recorded, our method of stratifying samples into high-risk and 
low-risk classes was not appropriate for this dataset. However, 
we observed a trend of samples with high anti-profile scores 
exhibiting a higher rate of relapse and vice versa, as with the 
other datasets.

In summary, these results obtained for lung and breast 
cancer data further show the utility of the anti-profile approach 
as a robust and effective method for modeling tumor progno-
sis and validate our hypothesis that deviation from the normal 
group can be considered a measure of the risk level associated 
with a tumor.

Anti-profile approach is more stable than standard 
classification methods. We compared the anti-profile method 
with PAM using lung cancer data. For this, using the high-
risk and low-risk stratification of samples previously described, 
we constructed a binary classification problem between low 
and high risk, and trained the PAM classifier on one dataset 
and tested the classifier on the other dataset. We used cross-
validation on the training dataset to determine the threshold 
parameter that minimizes the misclassification error on the 
training data. The same experiment was performed between 
the two breast cancer datasets, and also, the two colon-cancer 
datasets used in our analysis were based on tumor progression 
(here the adenoma/carcinoma status was used as the binary 
stratification). The posterior probabilities obtained for the test-
ing dataset were used to calculate AUC values and Wilcoxon 
rank-sum test P-values.

To compare against this, we applied the anti-profile 
method to the same training and testing dataset pairs. For 
each tissue type, we used normal samples and the tumor sam-
ples of one dataset to select probesets and calculate anti-profile 
scores for the other dataset. A comparison of these results can 
be seen in Table 1.
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From the comparison of AUCs and the Wilcoxon rank-
sum test P-values, we see that while the shrunken centroid 
classifier performed at a similar level with the one of the breast 
cancer datasets, it performed much poorly with the other data-
sets. Particularly with the lung cancer data, the PAM clas-
sifications failed to distinguish the high-risk and low-risk 
samples of the testing data. These results show that taking into 
account the stochastic hypervariability of cancers with regard 
to normals can produce more stable classifiers when building 
predictors across datasets.

Anti-profile approach may be used for prognostic 
prediction. To further examine the prognostic ability of the 
anti-profile score, we used the anti-profile scores as a cova-
riate for modeling patient survival for some of the datasets. 
We obtained clinical covariates for the microarray datasets 
when publicly available and fitted each covariate separately 
to a Cox proportional hazards model to ascertain their prog-
nostic significance. The Cox proportional hazards model is a 
widely used statistical model for assessing censored survival 
information.32 It provides a way for modeling the effect of a 
particular factor (such as age, severity of disease, etc) on the 
time taken by a patient to relapse (from the time of entering 
the clinical trial) or the time at which a patient dies. Here we 
treated the anti-profile score in the same manner as the other 
clinical factors.

For the first lung cancer dataset,27 we tested age, sex, 
smoking status, and pathological stage. After fitting each 
covariate individually to a Cox proportional hazards model 
(assuming constant covariates) with patient relapse informa-
tion, only pathological stage provided a P-value ,0.05 from a 
Wald test. In addition, we also fitted the anti-profile score as 
a covariate, which also yielded P-value ,0.05. Using patient 
death information instead of relapse, once again both patho-
logical stage and anti-profile score showed significant associa-
tion with survival (Wald test P , 0.05).

For the second breast cancer dataset,31 we tested patho-
logical stage and subtype (Basal, ERBB2, Luminal A, Lumi-
nal B, Normal Like) for prognostic relevance with relapse and 
found that only pathological stage was significant when fitted 

to a Cox model (Wald test P , 0.05). The anti-profile scores 
provided P-value ,0.05 as well. Using patient death informa-
tion instead of survival produced similar results with patho-
logical stage and anti-profile score, both showing prognostic 
significance when fitted independently (Wald test P , 0.05).

For the colon-cancer dataset with survival information 
(patient relapse),26 we tested age, pathological stage, chemo-
therapy (treatment or lack of it), and location (distal vs. proxi-
mal). Pathological stage and chemotherapy status proved to be 
significant (Wald test P , 0.05, with pathological stage yield-
ing P , 10–5) when fitted independently to a Cox model. The 
anti-profile scores proved to be significant as well (P , 0.05).

For these datasets, we also tested the predictive ability of 
a Cox model fitted with the covariates selected above by pre-
dicting whether a given patient would live up to a given time t 
(we used t = 5 years). For this, we predicted the survival curve 
for that patient using a model fitted with a training set and 
compared the predicted survival curve to the rate of survival 
for the training group patients who did not survive at time t 
against training group patients who did survive up to time t.

The dataset is split randomly into training (70%) and 
testing (30%) sets, and three Cox models are fitted to the 
training data: (a) a model with only selected clinical covari-
ates, (b) a model with only anti-profile scores, and (c) a model 
with both clinical covariates and the anti-profile scores. For 
each model, the mean survival at time t is calculated for train-
ing set patients surviving and not-surviving at that time point. 
For each patient in the testing set, the predicted survival prob-
ability at time t is compared to the surviving group mean and 
not-surviving group mean, and the closest group is chosen to 
predict whether the patient will survive or not. These predic-
tions are compared to actual survival to calculate an accuracy 
rate (patients censored by the time t are not used for the calcu-
lation). This process is repeated for a 100 training and testing 
subsets created from the main dataset, and the distribution of 
accuracy values was plotted.

For the second breast cancer dataset,31 a Cox model fitted 
with the pathological stage proved to be less accurate than a 
model fitted with the anti-profile score (Fig. 5A) for predicting 

Table 1. Comparison of prediction results obtained using the anti-profile scoring method and PAM. For each tissue type of lung, breast, 
and colon, two datasets with tumor samples were obtained and both the anti-profile method and the PAM model were fitted on one dataset 
and tested on the other dataset. For a binary stratification of samples by risk level, AUC values and the p-values from the Wilcoxon rank-
sum test were calculated from the decision values resulting from each method. Datasets used were Lung1(GSE31210), Lung2(GSE37745), 
Breast1(GSE2990), Breast2(GSE1456), Colon1(GSE4183), and Colon2(GSE15960).

Tested Training Anti-Profile scores PAM

Dataset Dataset AUC Wilcoxon p-value AUC Wilcoxon p-value

Lung1
Lung2

Lung2
Lung1

0.739
0.44

0.00002
0.571

0.663
0.5

0.003
1

Breast1
Breast2

Breast2
Breast1

0.712
0.707

0.08
0.0021

0.641
0.657

0.25
0.01

Colon1
Colon2

Colon2
Colon1

0.711
0.97

0.05
0.00042

0.253
0.87

0.02
0.003
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patient death at 5 years. The mean accuracy level for the model 
fitted with the pathological stage was 0.619, for a model fitted 
with the anti-profile score was 0.726, and for a model fitted 
with both covariates was 0.655. A Wilcoxon test between the 
results from the first and third models yielded P-value ,0.005, 
showing that the anti-profile score can significantly increase 
predictive power of a model. A similar test based on patient 
relapse (Fig.  5B) showed that all three model choices per-
formed at a similar accuracy level, with the anti-profile score-
based model providing a slightly higher accuracy rate.

We used a similar experiment on the lung and colon-
cancer datasets mentioned above, but found that adding anti-
profile scores to survival models, including significant clinical 
covariates, did not improve their performance significantly 
(Supplementary Fig. 12).

Conclusions
Our aim has been to develop a robust and stable approach for 
classification of tumor samples. We have demonstrated that 
the anti-profile scoring method, which was initially applied 
for classification between tumor and normal samples, can be 
extended to classification between tumor samples as well. This 
method has the particular advantage that tumor samples are 
only used to select probesets, but given this, the anti-profile 
score is based strictly on normal tissue samples. The ability of 
the anti-profile score to successfully provide a ranking of tumor 
samples, which correspond to their risk of relapse (or death) 
and the robustness of the method across experimental datasets, 
demonstrates that the universal anti-profile signature provides 
a robust basis to develop feature selection methods for tumor 
prognosis and diagnosis-related microarray experiments. In 

addition, it confirms our hypothesis behind the extension of 
the anti-profile approach to tumor prognosis: the measure-
ment of deviation from a set of normal samples, which are 
likely to be more cohesive, is a more stable and robust indicator 
of the risk level of a tumor sample as opposed to direct com-
parisons between the highly variable tumor samples.

High-throughput technologies for gene expression mea-
surements, especially microarrays, have progressed to the 
point that the use of gene expression data to develop gene 
expression-based cancer signatures is quite common in can-
cer research.33 However, despite a number of gene expression 
profile-based signatures being published and even commer-
cially utilized, in many instances, the developed signature has 
performed inadequately under subsequent validations. Valida-
tions of such signatures should ideally be carried out on popu-
lations completely independent of the population selected for 
the derivation of the signature. Only a few gene signatures 
produced, such as the Amsterdam 76-gene signature,34 have 
proven to be reliable for clinical use.

Heterogeneity among multiple types of tumors has been 
a well-known observation.11 While the proliferating ability 
of tumor cells is a widely used principle behind many prog-
nostic gene signatures, this is usually measured via a mean-
shift-based differential expression measurement. However, 
Feinberg and Irizarry35 demonstrate that increased variance 
in the genotype may increase fitness via increased variability 
of the phenotype, regardless of any significant change in the 
mean phenotype. This shifts the focus of measuring tumor 
heterogeneity from a mean shift to a variance shift.

As part of a comprehensive study of the colon-cancer 
methylome, the degree of hypervariability in DNA methyla-
tion between the adenoma and the cancer samples was observed 
to increase significantly.19 When projected to a lower dimen-
sional space using PCA, the normal samples clustered tightly 
together with the cancer samples dispersed and the adenoma 
samples demonstrated an intermediate degree of variability 
and an intermediate distance to the normal cluster. Based on 
these findings, Bravo et al.12 introduced anti-profiles as a sta-
ble method for screening multiple types of cancer. The prin-
ciple underlying this model of cancer screening is that certain 
genes will consistently show higher across-samples variability 
among cancer samples as compared with normal samples. In 
this study, these genes are identified and the hyper-variability 
is used to predict outcome, where the model is referred to as 
an anti-profile as it measures variation from normal behavior. 
The same study also demonstrated that the genes correspond-
ing to expression hypervariability in cancer are also generally 
tissue-specific genes, an observation that is utilized to develop 
a universal anti-profile. Recent studies have looked at gene 
expression variability in the context of geneset and pathway 
discovery36 and unsupervised construction of profiles in pros-
tate cancer based on outlier analysis.37

The anti-profile methods developed here are applications 
and extensions to the predictive setting of ideas in existing 
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Figure 5. Anti-profiles applied to Cox proportional hazard models for 
survival prediction: Cox proportional hazard models with significant 
clinical covariates and anti-profiles were used to predict patient survival 
at 5 years for the second breast caner dataset (Pawitan et al) with 
(A) patient death and (B) patient relapse. The plots show accuracy of 
prediction calculated for 100 training and testing subsets randomly 
selected.
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statistical methods developed to identify and model outliers 
in gene expression because of cancer,38,39 and other exten-
sions are in active development.40 These ideas are increasingly 
used in the analysis of epigenetic data.41,42 The general idea of 
using deviation from a stable class to classify between groups 
of anomalies is underdeveloped in the machine learning field, 
but should prove to be a fertile ground for the development of 
general methodology.43

The results presented here confirm that an anomaly 
classification-based approach to gene expression and methyla-
tion-based experiments of tumor prognosis and diagnosis can 
be highly valuable. In summary, our work shows by application 
to lung cancer, breast cancer, colon-cancer and adrenocortical 
tumor gene expression datasets, and also to thyroid and colon 
methylation data, that the anti-profile approach does in fact 
produce models that are accurate, robust, and stable.
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Supplementary Materials
Supplementary Table 1. A summary of the gene expres-

sion microarray datasets used.
Supplementary Table 2. A summary of the DNA meth-

ylation datasets used.
Supplementary Figure 1. Anti-profiles applied to 

methylation data: (A) Distribution of anti-profile scores for  
adenoma and carcinoma for thyroid tumor samples from 
methylation data (AUC  =  0.784, Wilcoxon rank-sum  
P value    10-5); (B) Distribution of anti-profile scores for  
adenoma and carcinoma for colon tumor samples from methyl
ation data (AUC = 0.717, Wilcoxon rank-sum P value = 0.093).

Supplementary Figure 2. Anti-profiles applied to 
Illumina Human Methylation 450 data: Distribution of anti-
profile scores for adenoma and carcinoma for (A) Thyroid  
(B) Colon (C) Pancreas and (D) Breast tissue samples.

Supplementary Figure 3. Colon cancer survival analy-
sis based on patient relapse: (A) Distribution of variance ratio 
statistic for high risk and low risk samples from colon data-
set (Marisa et al.; GSE39582) from an anti-profile computed 
using another colon data. (B) Distribution of anti-profile 
scores among low risk and high risk samples; AUC = 0.684, 
Wlcoxon rank-sum test P-value = 0.0078.

Supplementary Figure 4. Lung cancer survival analysis 
based on relapse: (A) Distribution of variance ratio statistic 
for high risk and low risk samples from first lung dataset  
(Okayama et  al.; GSE31210) for 100 universal anti-profile 
probests with the highest hyper-variability. (B) Distribu-
tion of variance ratio statistic for high risk and low risk sam-
ples from second lung dataset (Botling et  al.; GSE37745) 

for 100 universal anti-profile probests with the highest 
hyper-variability.

Supplementary Figure 5. Lung cancer prognosis is 
related to the anti-profile score: (A) Anti-profile scores for 
first dataset (Okayama et al.) high and low risk samples from 
universal anti-profile probesets; AUC = 0.716, Wlcoxon rank-
sum test P-value  10-3. (B) Anti-profile scores for second 
dataset (Botling et  al.) high and low risk samples; AUC = 
0.558, Wlcoxon rank-sum test P-value = 0.58.

Supplementary Figure 6. GNUSE value comparison: 
Distribution of generalized normalized unscaled standard 
error values for the two lung cancer datasets, GSE31210 
(Okayama et al.), and GSE37745 (Botling et al.).

Supplementary Figure 7.  Additional lung cancer sur-
vival results: (A) Kaplan–Meier survival curves based on 
patient death for first lung dataset (Okayama et al.); samples 
ranked by anti-profile scores are grouped to three equal sized 
groups; Logrank test score 8.342, P-value 0.015. (B) Distri-
bution of same anti-profile scores for high and low risk clas-
sification based on patient death within 5 years; AUC = 0.685, 
Wlcoxon rank-sum test P-value 0.01.

Supplementary Figure 8. Breast cancer analysis based 
on patient death: (A) Distribution of variance ratio statistic 
for high risk and low risk samples from first breast dataset 
(Sotiriou et al.; GSE2990) for 100 universal anti-profile 
probests with the highest hyper-variability. (B) Distribu-
tion of variance ratio statistic for high risk and low risk sam-
ples from second breast dataset (Pawitan et al.; GSE1456) 
for 100 universal anti-profile probests with the highest 
hyper-variability.

Supplementary Figure 9. Breast cancer prognosis is 
related to the anti-profile score: (A) Anti-profile scores for 
first dataset (Sotiriou et al.) high and low risk samples from 
universal anti-profile probesets; AUC = 0.832, Wlcoxon rank-
sum test P-value 0.0061. (B) Anti-profile scores for second 
dataset (Pawitan et  al.) high and low risk samples; AUC = 
0.743, Wlcoxon rank-sum test P-value  10-3.

Supplementary Figure 10. Additional breast cancer 
survival results: (A) Kaplan–Meier survival curves based 
on relapse for second breast cancer dataset (Pawitan et  al.); 
samples ranked by anti-profile scores are grouped to three 
equal sized groups; Logrank test score 10.755, P-value 0.004.  
(B) Distribution of same anti-profile scores for high and low 
risk classification based on relapse within 5 years; AUC = 
0.703, Wlcoxon rank-sum test P-value  10-3.

Supplementary Figure 11. Additional breast cancer 
survival results: (A) Kaplan–Meier survival curves based on 
patient death for an additional breast cancer dataset (Miller 
et  al.; GSE3494); samples ranked by anti-profile scores are 
grouped to three equal sized groups; Logrank test score  
0.696, P-value 0.706. (B) Anti-profile scores obtained for 
the third breast cancer dataset for a risk classification based 
on patient death or survival within 8 years (48 low risk and 
6 high risk samples); AUC = 0.694, Wlcoxon rank-sum test 
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P-value 0.1257. Our method of stratifying samples into risk 
groups was not well applicable for this dataset.

Supplementary Figure 12. Anti-profiles applied to 
Cox models for survival prediction: Cox proportional hazard 
models with significant clinical covariates and anti-profiles 
were used to predict patient survival at 5 years for (A) first 
lung cancer dataset (Okayama et  al.) with patient relapse,  
(B) first lung cancer dataset with patient death, and (C) colon 
cancer dataset (Marisa et al.) with patient relapse. The plots 
show accuracy of prediction calculated for 100 training and 
testing subsets randomly selected. Model M0 only contains 
significant clinical covariates, model M1 contains only the 
anti-profile score, and model M2 contains both selected clini-
cal covariates and the anti-profile score.
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