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A B S T R A C T   

Hitherto, the intelligent detection of black tea fermentation quality is still a thought-provoking problem because 
of one-side sample information and poor model performance. This study proposed a novel method for the pre
diction of major chemical components including total catechins, soluble sugar and caffeine using hyperspectral 
imaging technology and electrical properties. The multielement fusion information were used to establish 
quantitative prediction models. The performance of model using multielement fusion information was better 
than that of model using single information. Subsequently, the stacking combination model using fusion data 
combined with feature selection algorithms for evaluating the fermentation quality of black tea. Our proposed 
strategy achieved better performance than classical linear and nonlinear algorithms, with the correlation coef
ficient of the prediction set (Rp) for total catechins, soluble sugar and caffeine being 0.9978, 0.9973 and 0.9560, 
respectively. The results demonstrated that our proposed strategy could effectively evaluate the fermentation 
quality of black tea.   

1. Introduction 

Black tea has become one of the most popular beverages in the world, 
thanks to its attractive flavor and health benefits (An et al., 2022; Qu 
et al., 2020). Compared with these unique advantages, the complicated 
production technologies of black tea are not familiar to consumers. 
Importantly, the fermentation directly affects the quality of finished 
black tea, such as the taste, color, aroma and physical characteristics, 
because it produces considerable chemical components that determine 
the quality of black tea. From a biochemical perspective, catechin 
exhibit a series of oxidation reduction reactions under the catalytic ac
tion of enzymes (peroxidase, polyphenol oxidase and other enzymes) to 
form water-soluble pigments and volatile aromatic substances, leading 
to a considerable change in the aroma and color of tea leaves. Mean
while, ester catechins show a strong bitterness, while non-ester cate
chins show a slightly sweet aftertaste with some weaker bitterness (Dong 
et al., 2021). Remarkably, the soluble sugar presents sweet and mellow 

taste and the caffeine is considered as an important contributor to the 
bitterness of finished tea (Chen et al., 2018). Obviously, these compo
nents directly determine the taste and quality of finished tea. These 
components need to be detected by professional technicians in the lab
oratory. Some obvious shortcomings, such as destructive, expensive and 
time-consuming, determine that the existing detection technology 
cannot adapt to actual production. A rapid, convenient and nonde
structive detection method of major fermentation components needs to 
be developed. 

In recent years, the quality of agricultural products could be effec
tively evaluated by modern nondestructive detection technology, espe
cially in black tea processing (An, Li et al., 2022; Fan et al., 2022; 
Zarezadeh & Aboonajmi, 2023; Yu et al., 2022). As for black tea 
fermentation, such technologies mainly contain near infrared spectros
copy (NIRS) (Dong, Li et al., 2018), computer vision system (CVS) 
(Dong, Li et al., 2018) and electrical properties (Zhu et al., 2019), which 
have been applied to evaluate the fermentation quality of black tea. The 
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above technology could only obtain one-sided information of tea sam
ples from one aspect, because of the characteristics of each instrument. 
For instance, the CVS could obtain the color and texture features, which 
are closely related to the vision information of the sample surface. The 
NIRS and electrical properties detect the major chemical components 
corresponding to the taste of finished tea. Remarkably, the NIRS could 
evaluate the taste information of fermentation samples based on the 
overtone of key groups at some characteristic bands. The electrical 
properties could predict the non-volatile components according to the 
changes in cell architecture and constituents. However, these technol
ogies also exhibited some limitations. For instance, both the infrared 
spectroscopy and computer vision technology show weak penetration 
ability, which could not detect deep sample information. In contrast, the 
electrical properties technology shows stronger penetration ability and 
it can obtain the feature information of the whole samples based on the 
changes in cell architecture, but its detection indicators are limited. 
These technologies have acquired relatively independent information 
and fail to collect the comprehensive features of tea samples from 
different aspects. Hence, the fusion technology of different effective 
information is necessary to be developed. 

The fusion of multielement information technologies provide a novel 
strategy to evaluate the quality of tea samples. According to previous 
studies, the quality grade and fermentation degree of black tea were 
accurately evaluated based on the fusion information of infrared spectra 
and visual image (Jin et al., 2020; Li et al., 2021). Jin et al. (Jin et al., 
2021) successfully predicted theaflavin (TFs) during black tea fermen
tation by merging Micro-NIRS and CVS information. Unfortunately, 
other theaflavins monomers including theaflavin-3-gallate (TF-3-G), 
theaflavin-3′-gallate (TF-3′-G), and theaflavin-3-3′-gallate (TFDG) have 
not been accurately predicted, but the prediction performance of these 
models has a certain improvement compared with the single data model. 
Although these studies carefully considered the external (color and 
texture) and internal features (the overtone of key groups) of tea sam
ples, the information obtained by NIRS technology has a strong limita
tion because of the small collection range of the instrument. The spectral 
information could not perfectly correspond to the visual image infor
mation because the obtained sample range using CVS is larger than the 
obtained sample range based on NIRS. Our previous study effectively 
overcame this problem and successfully evaluated the fermentation 
degree of black tea by combining the sample hyperspectral imaging and 
colorimetric sensing array to mimic human sensory information (An, 
Huang et al., 2022). However, hyperspectral imaging technology shows 
weak penetration ability, which could not detect deep sample infor
mation. In this study, the electrical properties information and hyper
spectral imaging information were fused to obtain comprehensive 
information of accumulated tea samples (color, texture, taste and deep 
sample information). The collected information using our proposed 
strategy is suitable for the needs of large-scale processing in actual 
production. Importantly, there are no studies that monitor the major 
chemical components corresponding to the taste using the fusion in
formation of hyperspectral and electrical properties during tea pro
cessing, especially in black tea fermentation. In addition, most data 
fusion models are established using the information from data level 
(low-level fusion) and feature level (middle-level fusion), and there are 
no researches that establish the stacking combination model using the 
fusion data in decision level. 

Black tea fermentation contains many complicated physical and 
chemical reactions, which change the taste and appearance of tea 
samples. Hence, we aimed at integrating the hyperspectral and electrical 
properties information and using stacking combination strategy to more 
effectively evaluate the fermentation quality of black tea. The specific 
steps of our study were as follows: (1) To collect hyperspectral and 
electrical properties data at different fermentation times. (2) To acquire 
the spectral and image information based on obtained hyperspectral 
image. (3) To establish the quantitative prediction model of major 
chemical components using single information. (4) To establish the 

quantitative prediction model of major chemical components using the 
fusion information and stacking combination strategy. 

2. Materials and methods 

2.1. Samples 

In this study, 50 kg fresh leaves of ‘Jiukeng’ variety with one bud one 
leaf were collected in Hangzhou on May 5, 2022 and these fresh tea 
leaves were processed according to the manufacturing crafts of black tea 
(GB/T 35810–2018). After the withering and rolling, the tea leaves were 
placed in a fermentation room with 30℃ and 90% for the temperature 
and humidity, respectively. In order to obtain more comprehensive 
fermentation information, the fermentation time was extended to 7 h. 
During fermentation experiment, 2 kg samples were collected from 
fermentation room every hour using five-point sampling method and 
they were divided into 20 parallel samples (approximately 100 g per 
sample) for the information acquisition of hyperspectral image first and 
then the electrical parameters. After obtaining digital information, these 
samples were placed in liquid nitrogen and then freeze-dried for deter
mination of chemical components regarding the taste of black tea. 
Finally, 160 samples were obtained in this experiment. The fermentation 
experiment was illustrated in S-Fig. 1. 

2.2. Hyperspectral image acquisition 

The hyperspectral imaging system (400–1000 nm) was the same as 
described in our previous study (An, Huang et al., 2022). For each pixel, 
the spectral curve contained 557 bands. To avoid baseline drift, the 
equipment turned on for 30 min before the fermentation experiment. 
After repeated adjustment, some significant parameters, such as expo
sure time and movement speed of 4.2 ms and 2.8 mm/s respectively, 
were determined. During fermentation experiment, the collected 20 
parallel samples every hour were used to obtain hyperspectral images 
respectively. Hence, 160 hyperspectral images of fermentation samples 
were collected. Subsequently, these obtained hyperspectral images were 
calibrated based on the formula, which was described in our supple
mentary materials. The hyperspectral image acquisition of fermentation 
samples was displayed in S-Fig. 2. Then, these collected samples were 
used to obtain electrical parameters. 

2.3. Electrical properties information acquisition 

Electrical properties test system including a TH2829C LCR bridge 
meter (Changzhou Tonghui Electronic Co. Ltd., Changzhou, Jiangsu, 
China), a self-built rectangular wooden box with length, width and 
height of 0.2 m, 0.1 m and 0.05 m respectively, a pair of red copper 
electrode (0.1 m, 0.05 m and 0.0008 m, Taizhou New Material Co., Ltd., 
Taizhou, Jiangsu, China) and a computer, was used to obtain electrical 
parameters of fermentation samples. The testing frequency range and 
the resolution were 20 Hz-1 MHz and 1 mHz, respectively. Before testing 
the electrical properties of tea samples, the system turned on for 30 min. 
In order to comprehensively acquire the characteristic frequency infor
mation of fermentation samples, 65 effective frequencies including 0.02, 
0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 
0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1, 5, 10, 15, 
20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 150, 
200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 
900, 950, 1000 kHz were measured. For each frequency, 7 electrical 
parameters, such as parallel equivalent inductance (Lp), parallel 
equivalent resistance (Rp), loss factor (D), quality factor (Q), complex 
impedance (Z), phase loss angle (θ) and reactance (X), were collected. 
Subsequently, each sequential fermentation sample (approximately 100 
g) was measured by electrical properties test system to obtain electrical 
parameters at different test frequencies. Thus, the electrical parameters 
of 160 fermentation samples at different frequencies (a 160*455(65*7) 
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matrix) were obtained and these data were subjected to Z-score for 
processing to improve the comparability of different variables. The 
electrical properties information acquisition of these sequential samples 
was shown in S-Fig. 2. 

2.4. Determination of major chemical components 

After collecting the digital information (hyperspectral images and 
electrical parameters) of sequential fermentation samples, these samples 
were freeze-dried for determination of chemical components, such as 
total catechins, soluble sugar and caffeine. Catechins were determined 

based on the determination of tea polyphenols and catechins content in 
tea (GB/T8313-2008). The soluble sugar was determined according to 
the determination of soluble sugar in vegetables and their products- 
Copper reduction iodometry (NY/T1278-2007). The caffeine was 
measured with reference to the determination of the Caffeine (GB/ 
T8312-2013). 

2.5. Data processing 

2.5.1. Hyperspectral image processing 
Hyperspectral image of fermentation samples contains a large 

Fig. 1. The flow diagram of fermentation experiment and fusion model framework using stacking combination strategy. (a) indicates the required equipment for 
fermentation experiment. (b) shows representative electrical parameters raw X (left figure) and preprocessed X (right figure). (c) represents the spectra and image 
data extracted from sample hyperspectral images. (d) shows the data fusion and effective features selection strategy. (e) represents the fusion model framework based 
on stacking combination strategy. (f) means the predictive results of stacking combination model for fusion-BOSS. 
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Fig. 2. (a) Stacking histogram of major chemical components. The regular patterns of electrical parameters after Z-scores processing with the increasing of 
fermentation time and test frequency: (b) Lp, (c) Rp, (d) D, (e) Q, (f) Z, (g) θ, (h) X. Hierarchical clustering heatmap based on (i) spectral, (j) image and (k) electrical 
properties information of the first 15 PCs. Note: the color scale indicates the normalized information, red represents high values and blue represents low values. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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number of spectral and image information. However, they could only 
describe the feature of tea samples from one aspect. The spectral data 
could describe the internal component information of fermentation 
samples. The image data could describe color and texture spatial in
formation of tea samples. Hence, the spectral and image information 
should be extracted from raw hyperspectral image respectively. For the 
extraction of sample spectra, the average spectra of all pixels in the tea 
sample region were extracted and these data were processed by Z-score 
method. For the image information, three single-band grayscale images 
including 449.33 nm (B), 553.07 nm (G) and 658.37 nm (R) were 
selected to synthesize a color image because this color image was 
considerable similar to the fermentation samples (An, Huang et al., 
2022). Before feature extraction, all the tea sample region of each syn
thesized fermentation images was considered as one region of interest 
(ROI), which was marked using the MATLAB GUI module (copyright 
no.: 2013SR122183). Subsequently, 12 color features including red 
component mean value(R), green component mean value(G), blue 
component mean value(B), hue mean value(H), saturation mean value 
(S), visible light mean value(V), brightness component mean value(L*), 
a component mean value(a*), b component mean value(b*), ultragreen 
transform (2G-R-B), ratio of red component mean value to green 
component mean value (R/G), color angle (hab*) and 6 texture features, 
such as average gray value (m), standard deviation (δ), smoothness (r), 
third moment (μ), consistency (U) and entropy (e), were extracted based 
on selected ROI region and this module. The detailed extraction process 
of these features and the software have been described in previous 
studies (Dong, Liang et al., 2018; Zhu et al., 2017). Finally, these 
extracted features were processed by normalization method. These 
extracted features were used to establish single information prediction 
models and fused information prediction models (shown in S-Fig. 2). 

2.5.2. Data fusion and effective information selection 
In this study, three different information sources including spectra, 

image and electrical properties, described the characteristics of 
fermentation samples from different aspects and they expressed rela
tively independent sample information. Hence, data fusion strategy 
should be developed to obtain more comprehensively sample informa
tion from different aspects. The fusion information contained the in
ternal component, color and spatial texture information of accumulated 
samples, indicating that data fusion strategy could obtain relatively 
comprehensive sequential fermentation samples information. In this 
research, the preprocessed data from three different information source 
were concatenated into a new matrix (also called low-level fusion), 
thereby representing the comprehensive sample information. Never
theless, the new matrix contained a large number redundant informa
tion, which could be explained by other typical characteristics. In 
addition, the irrelevant information would not only reduce the accuracy 
of the model, but also affect the running speed of the program. Hence, 
some effective information selection method should be developed. To 
improve the accuracy and running speed of the data fusion model, the 
informative features of the raw data were extracted from each single 
data source to form a new matrix. The Pearson correlation analysis was 
used to select the effective color and texture variables for the image 
information, whereas the competitive adaptive reweighted sampling 
(CARS) (Li & Chen, 2017), bootstrapping soft shrinkage (BOSS) (Deng 
et al., 2016) and model adaptive space shrinkage (MASS) (Wen et al., 
2016) were applied to select effective spectral bands and electrical pa
rameters. The data fusion and effective features selection were displayed 
in Fig. 1 (d). 

2.5.3. Establishment and evaluation of regression models 
In this study, the classical linear partial least squares regression 

(PLSR) algorithm was applied to establish the major chemical compo
nents prediction models based on single data and fusion data, respec
tively. The classical nonlinear support vector regression (SVR) algorithm 
was used to establish 5-fold cross validation model for major chemical 

components using fusion information. Subsequently, the stacking com
bination strategy based on fusion data was proposed. 

Stacking ensemble is a typical strategy of heterogeneous combina
tion in ensemble learning, which combined the individual generalizers 
in decision level to improve the generalization and robustness of the 
model. In this study, a two-layer stacking combination model framework 
was developed to evaluate the fermentation quality of black tea. The 
proposed stacking combination strategy was displayed in Fig. 1 (e). For 
the first layer, the classical PLSR and nonlinear SVR model were applied 
to obtain the 5 cross-validation results of fusion information. For the 
second layer, the obtained cross-validation results were input into the 
random forest (RF) model to evaluate the fermentation quality of the 
black tea. 

In order to evaluate the model performance, some noteworthy pa
rameters, such as the correlation coefficient of the calibration set (Rc), 
the correlation coefficient of the cross-validation set (Rcv), the correla
tion coefficient of the prediction set (Rp), the root mean square error of 
calibration set (RMSEC), cross-validation set (RMSECV) and the pre
diction set (RMSEP), the radio of cross-validation to deviation (RVD) 
and the radio of prediction to deviation (RPD), were applied to evaluate 
the performance of these established models. Generally, the higher value 
of Rc, Rcv, Rp, RVD and RPD, the better performance of our proposed 
model. Remarkably, in our study, all samples were carried out 5 cross- 
validation, thereby the Rcv and RVD value could be compared with 
the Rp and RPD value, respectively. 

2.6. Software 

The statistical graphs were drawn using Origin 2021b (OriginLab 
Corp. Massachusetts, USA). All the data analyses were carried out by 
Matlab R2017b software (The Math Work, Inc., Natick, MA, USA). 

3. Results and discussion 

3.1. Trend of major chemical components over fermentation time 

In this research, the total catechin, soluble sugar and caffeine were 
considered as the major chemical components during black tea 
fermentation because they were closely related to the sensory quality of 
black tea and the trend of these major components over fermentation 
time was demonstrated in Fig. 2 (a). Overall, the content of total cate
chin decreased over time. During black tea fermentation, the catechin 
showed strong enzymatic oxidation reactions to form some water- 
soluble tea pigments, such as theaflavins (TF), thearubigins (TR) and 
theabrownin (TB), and some volatile aromatic compounds, resulting in 
changes in color and aroma of fermentation samples (Li et al., 2021). 
Hence, catechins play an extremely important role in the special color 
and aroma formation of black tea. The soluble sugar displayed a trend of 
decreasing first, subsequently increasing and then decreasing over 
fermentation time. The soluble sugar mainly contains monosaccharides 
and polysaccharides. The monosaccharides were applied for the respi
ration of fermentation leaves, whereas the polysaccharides were hy
drolyzed into monosaccharide. When the content of polysaccharides 
hydrolysis exceeded the consumption of monosaccharide respiration, 
the soluble sugar showed an increasing trend, leading to a significant 
increase in the sweetness of tea infusion. Generally, this phenomenon 
occurs in the stage of moderate fermentation. Hence, in this study, the 
soluble sugar showed an increasing trend at 3 h and 4 h for black tea 
fermentation. Subsequently, the monosaccharides were consumed by 
excessive respiration, representing a downward trend when the exces
sive fermentation reached. In contrast to catechin and soluble sugar, the 
caffeine did not change obviously corresponded to its stable chemical 
properties (Yang et al., 2021). 
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3.2. Feature analysis of single digital information 

In order to evaluate the fermentation quality, three digital infor
mation including spectra, image and electrical properties were applied 
to evaluate the major chemical components. They described the tea 
samples from different aspects, and they need to be further analyzed 
respectively. 

3.2.1. Response spectra analysis 
The Fig. 1 (c-1 and 2) displayed the change of sample spectra in the 

range of 400–1000 nm with the fermentation time and degree. Obvi
ously, the average spectra of fermentation samples displayed the same 
trend in the range of 400–1000 nm. Nevertheless, the reflectance of the 
sample spectra showed obvious difference, especially in the range of 
780–1000 nm, and they might be attributable to the stretching and vi
bration of the third and fourth overtone of group C–H (Li, Jin, Sun et al., 
2019). Although the difference of the spectral reflectance is not obvious 
in the visible range, some small absorption peaks still show dynamic 
changes with the fermentation time, which might be related to the 
change of sample color. Hence, more effective spectral information 
should be further selected and analyzed. 

3.2.2. Color and texture features analysis 
All the obtained image data were applied to extract 18 color and 

texture features, which displayed some changes from the perspective of 
human vision, especially for the color features (shown in Fig. 1 (c-3)). 
Obviously, the overall color of tea samples changed from dark green to 
yellowish-brown first and then to dark brown as fermentation pro
gressed, the phenomenon was related to the damage of the palisade 
tissue and the formation of tea pigment. To further explore color and 
texture features, the Pearson correlation analysis was performed be
tween each feature, which was shown in Fig. 1 (c-4). Most variables 
exhibited a high correlation with other variables. Hence, these color and 
texture features contained some redundant information, which should 
be further eliminated. 

3.2.3. Electrical parameters analysis 
As can be seen in Fig. 2 (b)-(h), the changing trend of 7 electrical 

parameters after preprocessed over fermentation time and test fre
quency were displayed. In Fig. 2 (b), the Lp represented relatively spe
cial characteristics over time and frequency. The Lp gradually decreased 
over fermentation time and gradually increased when the test frequency 
was lower than 0.4 kHz. The Lp remained stable when the test frequency 
higher than 0.4 kHz. According to Fig. 2 (c) and (f), the Rp and Z 
decreased with the increase frequency but remained relatively stable 
over fermentation time. As can be seen in Fig. 2 (d), (e) and (g), the 
regular patterns of the D, Q and θ of tea samples were similar with the 
increase of fermentation time. However, there were still some subtle 
differences in the regular patterns of these parameters with the increase 
of test frequency. When the test frequency was higher than 15 kHz, the Q 
did not change at the same fermentation time. However, the D displayed 
a tardy downward trend first and then tended to be constant with the 
increase of test frequency. In contract to the parameter D, the regular 
patterns of the parameter θ showed a tardy increasing trend. According 
to Fig. 2 (h), when the test frequency was lower than 15 kHz, the X 
gradually increased over fermentation time and increased first and then 
decreased with the increase of test frequency at the initial fermentation 
stage. Subsequently, the X displayed a downward trend with the in
crease of test frequency. When the test frequency was higher than 15 
kHz, the X did not display obvious change over time but gradually 
increased with the increase of test frequency. During black tea fermen
tation, the change in cell architecture and constituents would affect the 
ability of molecules to capture charge. Therefore, the above electrical 
parameters displayed a significant changing trend. 

3.2.4. Hierarchical clustering analysis (HCA) of single digital information 
To further explore the response ability of data information over 

fermentation time, these data information were subject to principal 
component analysis (PCA) and then the first 15 PCs were applied for 
HCA based on the Euclidean distance. Because the contribution rates of 
the first 15 PCs for spectra, image and electrical parameters were 
99.99%, 99.96% and 100% respectively, they represent almost all the 
sample information. According to Fig. 2 (a), these components showed a 
certain trend with fermentation time. Therefore, the samples were 
divided into eight categories based on the fermentation process. As can 
be seen in Fig. 2 (i)-(k), the HCA for spectra, image and electrical pa
rameters were displayed respectively. They presented poor clustering 
results, i.e., some adjacent categories were incorrectly divided. Impor
tantly, according to Fig. 2 (k), the first 15 PCs of electrical parameters 
could accurately identify the black tea samples of initial fermentation, 
indicating that electrical properties technology had good discrimination 
ability for initial fermentation samples. However, the HCA is unsuper
vised analysis method, which could not predict the composition content 
of unknown samples. To achieve quantitative prediction of some major 
components in black tea fermentation, some classical regression algo
rithms should be applied. 

3.3. Effective feature selection for each single digital information 

The raw data contain a large number of redundant information and 
the processing of multidimensional fusion data is time-consuming. 
Hence, the prediction model established by multidimensional informa
tion is difficult to meet the requirements of black tea actual production. 
In order to meet the requirements of black tea actual production, the 
effective features of raw data should be extracted from each single 
digital information. In this study, the CARS, BOSS and MASS strategy 
were applied to select effective features for spectral and electrical pa
rameters, and the Pearson correlation analysis was used to eliminate 
irrelevant color and texture features. 

3.3.1. Feature selection for spectra 
In CARS, the number of Monte Carlo Sampling runs, the extraction of 

maximal principle and the group number for cross validation were 100, 
18 and 5, respectively. Subsequently, three groups of band sets including 
101 bands for total catechins, 107 for soluble sugar and 76 for caffeine 
were obtained. In BOSS, the number of bootstrap sampling and the 
maximal number of latent variables were 1000 and 18, respectively. 
Some effective band sets including 73 bands for total catechins, 97 bands 
for soluble sugar and 92 bands for caffeine were selected. In MASS, the 
group number for cross validation and the number of binray matrix 
sampling were 5 and 2000, respectively. Some effective features, i.e., 
220 bands for total catechins, 59 bands for soluble sugar and 99 bands 
for caffeine were obtained. These selected bands for total catechins, 
soluble sugar and caffeine were represented in Fig. 3 (a)-(c). Based on 
these feature selection strategies, total catechins obtained the largest 
number of effective bands, which might be related to the considerable 
changes in the concentration of catechin. In addition, most effective 
bands were located in the range of 780–1000 nm, which belonged to 
near infrared region and was attributable to the stretching and vibration 
of the third and fourth overtone of group C–H (Li et al., 2019). 

3.3.2. Feature selection for color and texture information 
In this study, 18 color and texture features were collected to express 

the external information of tea samples. There were three different 
research objectives, which displayed different regular patterns. There
fore, the Pearson correlation analysis was applied to select effective 
color and texture features for three different research objectives. Ac
cording to Fig. 3 (d)-(f), some effective features were selected. Although 
these features did not display high correlation coefficients, they were 
statistically significantly related to these major compositions. For total 
catechins, 13 effective features including the G, B, H, S, L*, a*, b*, 2G-R- 
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B, R/G, hab*, δ, r and μ were retained and the correlation coefficients of 
these features were − 0.26, 0.22, 0.79, − 0.52, − 0.22, 0.59, − 0.69, 
− 0.69, 0.25, − 0.20, − 0.19, − 0.18 and 0.46, respectively. For soluble 
sugar, 16 color and texture features, i.e., R, G, H, S, V, L*, a*, b*, 2G-R-B, 
R/G, hab*, m, δ, r, μ and e, were selected and the correlation coefficients 
were − 0.32, − 0.45, 0.74, − 0.50, − 0.31, − 0.49, 0.57, − 0.58, − 0.66, 
− 0.16, − 0.65, − 0.31, − 0.43, − 0.35, 0.21 and − 0.45, respectively. In 
contrast to total catechins and soluble sugar, only 10 variables, such as 
G, H, S, V, L*, a*, b*, 2G-R-B, hab* and m, exhibited a significant cor
relation with the change of caffeine. The correlation coefficients were 
0.30, − 0.54, 0.25, 0.16, 0.23, − 0.60, 0.35, 0.60, 0.58 and 0.16, 
respectively. Obviously, more color features were selected than texture 
features because of the transformation of catechins and the formation of 
tea pigment. 

3.3.3. Feature selection for electrical parameters 
For these feature selection algorithms, the key parameters are con

stant. The selected effective electrical parameters for total catechins, 
soluble sugar and caffeine were displayed in Fig. 3 (g)-(i), respectively. 
For total catechins, the selected electrical parameters using CARS, BOSS 
and MASS were 48, 11 and 334, respectively. Importantly, the Lp at high 

frequency were selected by three feature selection algorithms simulta
neously, indicating that the Lp was an essential feature to describe the 
change of total catechins. For the soluble sugar, the CARS, BOSS and 
MASS strategies selected 37, 25 and 70 electrical parameters, respec
tively. However, these three algorithms did not choose common elec
trical parameters, indicating that each electrical parameter has a unique 
role in expressing the change of soluble sugar. For the caffeine, some 
effective electrical parameters including 63 using CARS, 10 using BOSS 
and 43 using MASS were obtained. Importantly, the X, Rp at high fre
quency and Lp at low frequency were selected by three feature selection 
algorithms simultaneously, showing that these parameters play an 
important role in expressing the change of caffeine. 

3.4. Quantitative prediction model with single digital information 

The PLSR model was applied to predict these major components, i.e., 
total catechins, soluble sugar and caffeine, based on single digital in
formation with full features during black tea fermentation. Before 
modeling, all the fermentation samples were divided into calibration set 
(107 samples) and prediction set (53 samples) based on the Kennard- 
Stone method with the radio of 2:1. In Table 1, the established PLSR 

Fig. 3. The spectral effective features selection for (a) total catechins, (b) soluble sugar and (c) caffeine. The effective color and texture features selection for (d) total 
catechins, (e) soluble sugar and (f) caffeine. The effective electrical parameters selection for (g) total catechins, (h) soluble sugar and (i) caffeine. 
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model for total catechins and soluble sugar using single information 
represented similar prediction performance, which might be related to 
the large change gradient of the total catechins and soluble sugar. 
Compared with these models, the established models for caffeine rep
resented poor prediction performance. For the total catechins and sol
uble sugar, the established model using spectral data displayed the best 
performance and the prediction model for caffeine using electrical pa
rameters showed the best performance, indicating that different detec
tion technologies had different representational ability for these major 
chemical components. In addition, the performance of established pre
diction models had high potential for improvement. Hence, different 
detection technologies should be combined to obtain more compre
hensive information for fermentation samples to improve the perfor
mance of the prediction model for major chemical components. 

3.5. Quantitative prediction model with fusion information 

To obtain more comprehensive sample information and establish 
more accurate prediction model, the data fusion strategy was developed. 
In this study, all obtained information using different detection tech
nology were concatenated into a new matrix, which was subjected to 
normalization for processing. Subsequently, the quantitative prediction 
models for major chemical components using fusion information were 
established. In addition, in order to meet the requirements of black tea 
processing in actual production, some effective features were selected 
from each single digital information to form a new matrix for the 
establishment of major chemical components based on our proposed 
stacking combination strategy. 

3.5.1. Establishment of 5-fold cross validation model with full features 
In order to more accurately evaluate the performance of the pre

diction model, the classical linear PLSR model and nonlinear SVR model 
were carried out 5-fold cross validation and the results were displayed in 
S-Table 1. Because the results of cross validation for each fold were 
easily affected by uneven sample division, the results of cross validation 
for all samples were compared and analyzed. For the total catechins and 
caffeine, the PLSR and SVR model exhibit similar results. However, for 
the soluble sugar, the SVR model showed better prediction performance, 
which might be caused by complicated changes of soluble sugar, such as 
the respiration of monosaccharides and the degradation of poly
saccharides. Although the established prediction model using fusion 
information showed better performance than the established model 
using single digital information, their performance still had the potential 
for further improvement, especially for the caffeine. Hence, the novel 
modeling strategy that can improve the robustness and accuracy of the 
prediction model need to be performed. 

3.5.2. Establishment of stacking combination model with full features 
To improve the robustness and accuracy of the prediction model, the 

stacking combination strategy was developed in this research. The 
stacking combination strategy establish the prediction model based on 

the decision results of each single model. The framework and perfor
mance of our proposed stacking combination strategy were displayed in 
Fig. 1 (e), (f) and Table 2, respectively. Remarkably, for the second layer, 
the results from RF model were calculated 50 times and averaged, and 
then they were recorded in Table 2. The RPD values for the total cate
chins, soluble sugar and caffeine were 10.0215, 8.4981 and 2.9258, 
respectively. Compared with the performance of 5-fold cross validation 
strategy using PLSR and SVR models, our proposed two-layers stacking 
combination strategy significantly improved the robustness and accu
racy of the prediction model. Although our proposed stacking combi
nation strategy achieved a satisfactory result, the calculation of the 
prediction model is extremely time-consuming. Hence, the information 
from different data source should be carried out feature selection 
strategy to eliminate redundant information and reduce the calculation 
time of model, and then these selected features were concatenated into a 
new matrix for the establishment of prediction model. 

3.5.3. Establishment of stacking combination model with effective features 
To simplify the prediction model, the effective feature selection 

strategies including CARS, BOSS, MASS and correlation analysis were 
performed. The selected variables for each data source and the perfor
mance of established stacking combination models were displayed in 
Fig. 3 and Table 2, respectively. According to Table 2, the performance 
of most stacking combination models using effective features was better 
than that of the stacking combination models based on only fusion in
formation, except for the total catechin model using MASS algorithm, 
indicating that the MASS algorithm removed some effective variables 
corresponding to total catechins, which affected the performance of the 
prediction model. The most accurate results were obtained for the pre
diction of total catechins based on the stacking combination model and 
CARS effective variables selection algorithm, with Rp, RMSEP and RPD 
being 0.9978, 0.1770 and 14.8129, respectively. For the soluble sugar, 
the same strategy as total catechins obtained the most accurate results, 
with Rp, RMSEP and RPD being 0.9973, 0.0631 and 13.4377, respec
tively. In contract to established model for total catechins and soluble 
sugar, the most accurate results for caffeine were obtained using the 
stacking combination model and MASS effective variables selection al
gorithm. The Rp, RMSEP and RPD were 0.9550, 0.0496 and 3.1824, 
respectively. These established models using stacking combination 
strategy with effective variables could accurately predict the major 
chemical components during black tea fermentation. This phenomenon 
might be caused by the following reasons. First of all, the collected in
formation from different data source could effectively represent the 
change of fermentation samples. Secondly, the applied feature selection 
methods retained most effective variables, which was closely related to 
these major chemical components. Finally, our established stacking 
combination model had good robustness and accuracy. 

3.6. Discussion 

Although the accuracy is an important factor to evaluate the per
formance of the prediction model, the calculation time of the model is 
still crucial for the real-time detection of black tea quality. Generally 
speaking, the more the number of variables, the longer the calculation 
time of the prediction model. Hence, the performance of the prediction 
model should be comprehensively evaluated. The performance com
parison of some significant established models was visualized in Fig. 4 
(a)-(c), which represented the model performance for total catechins, 
soluble sugar and caffeine, respectively. Each dot corresponds to one 
model, the Rp and the RPD value on the prediction set provide the co
ordinates of the dot center. The radius represents the RMSEP value of the 
prediction set and the number in Fig. 4 denotes the number of variables, 
which participate in the establishment of the prediction model. If the dot 
is far from the origin, the radius and the number are smaller, the cor
responding model display better performance. For the total catechins, as 
can be seen in Fig. 4 (a), the stacking fusion-CARS and the stacking 

Table 1 
The PLSR models for major chemical composition of fermentation leaves based 
on individual data.  

Chemical 
composition 

Data LVs  Calibration set Prediction set  

Rc RMSEC Rp RMSEP 

Total catechins Spectra 5   0.9045  0.5823  0.9164  0.5644 
Image 8   0.8895  0.6851  0.8770  0.6971 
Electric 5   0.8803  0.7695  0.8878  0.7757 

Soluble sugar Spectra 5   0.9068  0.3643  0.9131  0.3503 
Image 10   0.8606  0.4400  0.8679  0.4498 
Electric 4   0.8782  0.4133  0.8896  0.3929 

Caffeine Spectra 5   0.7299  0.1015  0.7717  0.1136 
Image 11   0.7425  0.0995  0.7060  0.1177 
Electric 5   0.7191  0.1032  0.8365  0.0949  
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fusion-BOSS exhibited similar prediction accuracy. If some established 
models display similar prediction accuracy, we will choose the model 
with fewer variables because fewer variables can reduce the calculation 
time of the stacking fusion model and help achieve real-time detection of 
major components for black tea in actual production. In Fig. 4 (c), the 
same reasons are true for the selection of best stacking fusion model for 
caffeine. In Fig. 4 (b), the stacking fusion-CARS model demonstrates 
significant advantages compared with other established models. After 
comprehensive consideration of the factors affecting the model, such as 

the accuracy and calculation time of the prediction model, the following 
conclusions were obtained. For the total catechins and caffeine, the 
stacking fusion-BOSS strategy were considered to be the best model. For 
the soluble sugar, the best performance was displayed by stacking 
fusion-CARS strategy. From the distribution of these dots representing 
the model performance in Fig. 4, it can be seen that the stacking com
bination model using fusion data displayed better predictive perfor
mance than the established model using single data. This phenomenon 
indicated that our proposed multielement information including 

Table 2 
The stacking model for major chemical composition of fermentation leaves based on data fusion and information selection strategy.  

Chemical composition Methods Parameter Calibration set  Prediction set   

Rc RMSEC  Rp RMSEP RPD 

Total catechins fusion tree = 110, mtry = 2  0.9985  0.1443   0.9956  0.2557  10.0215 
Fusion-CARS tree = 200, mtry = 13  0.9989  0.1231   0.9978  0.1770  14.8129 
Fusion-BOSS tree = 110, mtry = 18  0.9983  0.1544   0.9978  0.1798  14.5465 
Fusion-MASS tree = 30, mtry = 1  0.9981  0.1623   0.9939  0.2876  9.2827 

Soluble sugar fusion tree = 100, mtry = 14  0.9980  0.0549   0.9932  0.1004  8.4981 
Fusion-CARS tree = 60, mtry = 14  0.9989  0.0409   0.9973  0.0631  13.4377 
Fusion-BOSS tree = 190, mtry = 20  0.9980  0.0547   0.9947  0.0892  9.8552 
Fusion-MASS tree = 300, mtry = 19  0.9977  0.0585   0.9936  0.0977  8.9711 

Caffeine fusion tree = 20, mtry = 9  0.9807  0.0297   0.9488  0.0525  2.9258 
Fusion-CARS tree = 370, mtry = 14  0.9864  0.0247   0.9511  0.0517  2.9947 
Fusion-BOSS tree = 420, mtry = 2  0.9903  0.0209   0.9560  0.0501  3.1424 
Fusion-MASS tree = 120, mtry = 12  0.9876  0.0237   0.9550  0.0496  3.1824  

Fig. 4. The comparison of the stacking combination model and other models: (a) total catechins, (b) soluble sugar and (c) caffeine.  
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spectra, image and electrical parameters were complementary. In 
addition, the selection of effective features and the fusion of decision 
results also helped the model make better decisions on given targets. 

Different technologies applied to the evaluation of sample quality 
during black tea processing were compared. According to S-Table 2, 
some single technologies including VIS-NIR spectra (Yang et al., 2021), 
CVS (Dong, Li et al., 2018) and electrical properties (Dong et al., 2021) 
have been applied to quantitatively evaluate the fermentation quality of 
black tea. However, these single technologies exist certain limitations. 
These single technologies could only describe the characteristics of tea 
samples from one aspect. The VIS-NIR spectra and CVS technology could 
detect components changes based on the response of some characteristic 
groups and the change of color and texture features. Nevertheless, the 
electrical properties represented the sample information according to 
the ability of molecules to capture charges because the change in cell 
architecture and constituents would improve the reactance and reduce 
the capacity of tolerance. Remarkably, black tea fermentation involved 
some complicated oxidation and reduction reaction, resulting in a 
considerable change of the internal and external features for fermenta
tion samples. Hence, more comprehensive sample information should be 
collected from different aspects to evaluate the black tea fermentation 
quality. Wang et al., successfully evaluated the tea quality using the 
fusion information of NIRS and CVS technology during black processing 
(Wang, Li, Liu et al., 2021). Based on the same fusion information, Jin 
et al., predicted the pigments content during black tea fermentation, 
with RPD for TF, TFDG, TF-3-G and TF-3′-G being 2.01, 0.99, 1.36, and 
1.18, respectively (Jin et al., 2021). However, some components, such as 
TFDG, TF-3-G and TF-3′-G, would not be accurately predicted, this may 
be because incomplete information was obtained by NIRS and CVS 
technology, whose penetration ability were limited. Generally, a small 
number of samples would be unrepresentative and moderate samples 
would display a certain thickness. In order to obtain overall information 
of the collected samples, more detection technology should be applied 
and fused to evaluate the fermentation quality of black tea. Remarkably, 
the electrical properties technology regarded the selected sample as a 
complex of dielectrics, electrolytes and conductors, indicating that it 
could obtain the electrical parameters of whole selected samples. 
Therefore, in this study, the spectra, image and electrical parameters 
were applied to describe the sample feature to obtain the comprehensive 
sample information. To the best of our knowledge, this is the first study 
to use the fusion data of three different detection information, such as 
spectra, image and electrical properties, for predicting major compo
nents corresponding to the taste of finished tea during black tea 
fermentation. In addition, this is also the first study to apply the stacking 
combination strategy for evaluating the fermentation quality of black 
tea in decision level. 

Although our research achieves a satisfactory result, some defects 
still exist and need to be improved, including the limitations of seasons 
and sample varieties and the application of multielement information 
collection system. Hence, our further studies include that (1) more 
fermentation experiments should be carried out using different tea va
rieties in different seasons, (2) the low cost multielement information, 
including hyperspectral image and electrical properties, collection in
strument should be developed for the intelligent evaluation of black tea 
quality. 

4. Conclusion 

In this study, using multielement information fusion method and 
stacking combination strategy for quantitative evaluating the fermen
tation quality of black tea was demonstrated to be feasible. The quan
titative prediction was made for three major chemical components 
including total catechins, soluble sugar and caffeine. Compared with the 
established models using single information, the multielement infor
mation fusion models displayed better prediction performance for total 
catechins, soluble sugar and caffeine. In addition, the established 

stacking combination models using effective features achieved more 
satisfactory prediction results at the decision level, with RPD for total 
catechins, soluble sugar and caffeine being 14.5465, 13.4377 and 
3.1424, respectively. Our study provides a novel method for quantita
tive detection of major components corresponding to the taste of 
finished tea in black tea fermentation. 
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