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ABSTRACT
The success of allogeneic stem cell transplant is hampered by the development of acute and chronic graft-versus-host disease
(GvHD) which has direct impact on treatment-related mortality and morbidity. As a result, T cell depletion through positive
selection of CD34+ cells has emerged as a promising strategy to reduce acute and chronic GvHD in these patients.
In this review, we summarize themain characteristics of allogeneic stem cell transplant with CD34+ cell selection including risks
of graft failure, GvHD, infection, organ toxicity, and long-term survival. Moreover, we highlight future strategies to improve the
results of this platform and to consolidate its use in clinical practice.
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1. INTRODUCTION

Allogeneic stem cell transplant (alloSCT) is a curative therapy for
a large number of malignant and nonmalignant hematological dis-
eases. However, graft-versus-host disease (GvHD) is one of the
main causes of treatment-related mortality (TRM) and morbidity,
and may impair posttransplant quality of life [1]. The risk of grade
II–IV acute GvHD is around 30%–50% in recipients of Human
Leukocyte Antigen (HLA) identical siblings, while it varies between
40% and 70% in unrelated donor transplants [2]. Recently, multiple
strategies have been used to optimize the management of GvHD,
both in the prophylactic and treatment settings. Among them, the
role of ex vivo T cell depletion (TCD) with positive selection of
CD34+ cells in the graft has been investigated, based on the impor-
tance of alloreactive T cells for the development of GvHD [3–5]. In
this review, we summarize the characteristics of this transplant plat-
form (Table 1) including recent data that will contribute to optimize
this modality of alloSCT.

2. METHOLOGY

In the last decades, different TCD methodologies have been pro-
posed, including ex vivo depletion techniques. The effectiveness of
the latter in preventing GvHD varies with the technical procedure
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Table 1 CD34+ cell selection as compared to unmodified alloSCT.

Graft rejection No higher incidence if myeloablative conditioning
and ATG

GvHD Decreased incidence of acute and chronic GvHD
Toxicity Decreased renal toxicity

Better tolerance in older age and in patients with
comorbidities

Immune
reconstitution

Delay in immune recovery of CD4+ cells
Inversion of CD4+/CD8+ ratio

Infections Increased incidence of opportunistic infections,
especially viral

Relapse Similar results in AML, MDS, ALL
Disease free survival Similar results in AML, MDS, ALL
Overall survival Similar results in AML, MDS, ALL
Quality of life Fewer hospital admissions

No inmunosupression post-SCT
Abbreviations: GvHD: Graft-versus-host disease; AML: acute myeloid leukemia;
MDS: myelodysplastic syndrome; ALL: acute lymphoblastic leukemia; SCT: Stem cell
transplantation.

used, the subtypes of depleted cells, the source of stem cells, and the
use and type of posttransplant immunosuppression. Every selection
technique generates a specific graft in terms of quality and quantity
of depleted cells [6–8].

The ex vivo TCD of the graft can be carried out either by positive
or negative selection [9]. The most frequently used techniques to
achieve the TCD of the product are based on the positive selection
of CD34+ cells through electromagnetic methods such as ISOLEX
300i (Baxter, Deerfield, IL) (nowadays disused) and, especially, the
CliniMACSCD34 Reagent System (Miltenyi Biotec, Bergisch Glad-
bach, Germany), which allow an up to 5-log reduction of T cells in
the final product [8,10,11].Pdf_Folio:154
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More recently, other TCD strategies have been developed including
𝛼𝛽+ TCR/CD19 depletion. This methodology may produce a bet-
ter immune response against viral infections, with low risk of acute
GvHD [12] by enhancing 𝛾𝛿 T cell reconstitution and lowering𝛼𝛽+
TCR counts after transplantation. Noteworthy, most of the data on
𝛼𝛽+ TCR/CD19 depletion come from pediatric studies using hap-
loidentical donors [13,14] and need further investigation in the set-
ting of matched-related or unrelated donor transplants in adults.

3. CLINICAL IMPLICATIONS OF CD34
POSITIVE SELECTION

3.1. Engraftment

Initially, CD34+ cell selection showed amoderately increased risk of
graft failure compared with other transplant modalities [15]. How-
ever, successive modifications in the initial platform, including the
use of peripheral blood progenitors (as opposed to the initial use
of bone marrow), technical innovations in the selection procedure
and the use of total body irradiation (TBI), and anti-thymocyte
globulin (ATG) in the conditioning, significantly decreased this risk
[7,16–18]. Also, more immunosuppressive drugs such as fludara-
bine and thiotepa have been recently incorporated into the condi-
tioning chemotherapy, allowing to perform alloSCT with CD34+
selectionwithout the use of ATGor TBI, and achieving similar rates
of engraftment failure to those of unmodified transplants [19–21].

3.2. Graft-Versus-Host Disease

Themain goal of carrying outCD34+ cell selection is to decrease the
risk ofGvHDand, thus, themortality andmorbidity associatedwith
this frequent complication. Numerous studies have shown the ben-
efit of TCD transplants in terms of GvHD reduction. At the begin-
ning of this decade, a multicenter phase II study conducted by the
Blood and Marrow Transplant Clinical Trials Network (BMT CTN
0303, NCT01119066) [5] including 44 patients with acute myeloid
leukemia (AML) in first or second complete remission and receiv-
ing a CD34+ selected alloSCT showed an incidence of grade II–
IV acute GvHD and chronic GvHD at 2 years of 22.7% and 6.8%,
respectively. These incidences are significantly lower than those
reported by using unmodified grafts for alloSCT in similar patient
populations. Subsequent retrospective studies including patients
withAML [19,22–24], acute lymphoblastic leukemia (ALL) [25,26],
and myelodysplastic syndrome (MDS) [22,27] also demonstrated
a lower incidence of acute and chronic GvHD compared to non-
manipulated transplants, in the context of myeloablative condition-
ing. In the reduced-intensity conditioning setting, a retrospective
study compared the use of CD34+ cell selection alloSCTwith a non-
manipulated reduced-intensity platform in patients with AML and
MDS older than 50 years has been recently published. This report
also observed a lower incidence of grade 2–4 acute GvHD (18%
vs 46%) and chronic GvHD (6% vs 55%) in the TCD arm [28].
Recently, a study of more than 500 patients with acute leukemia
comparing theATG-basedGvHDprophylaxis withCD34+ selected
alloSCT showed lower incidence of acute and chronic GvHD in the
latter group [29].

Studies focused on GvHD in the context of CD34+ cell selected
transplants have not only confirmed these low incidences, but also

added additional observations: 1) AcuteGvHD in this type of trans-
plants is mostly cutaneous and upper gastro-intestinal. 2) Acute
GvHD can be managed in the majority of patients with topical or
limited oral absorption corticosteroids. Therefore, only a minority
of patientswithGvHDrequired systemic immunosuppressive treat-
ment. 3) Reduction of GvHD is especially relevant in its chronic
form (incidences <10% in successive studies [22]). This decrease
in chronic GvHD could have an impact on posttransplant qual-
ity of life and on other variables such as length of hospitalization
and use of nutritional support [4,30]. Unfortunately, at the present
time, there are no comprehensive studies of quality of life focused
on CD34+ selection alloSCT.

A prospective multicenter randomized phase III study (BMT CTN
1301, NCT02345850) is currently ongoing in AML and MDS
patients who are randomized to receive one of three different strate-
gies to preventGvHD:CD34+ cell selection (using peripheral blood
as stem cell source), posttransplant cyclophosphamide (using bone
marrow) and a conventional GvHD prophylaxis with tacrolimus
and methotrexate (also using bone marrow). The main objective of
this study is chronic GvHD relapse-free survival, a composite end-
point that includes survival and, although indirectly, quality of life
[31]. The accrual into this study finished in 2018 and results are
expected shortly.

3.3. Immune Reconstitution and Infection

Immune reconstitution after transplantation depends on mul-
tiple factors, including the conditioning regimen, type of graft
and  thymic activity of the recipient [17,32]. Patients undergoing
alloSCT with CD34+ selection have delayed recovery of CD4+ T-
cells (absolute and naïve), longer time for the CD4+/CD8+ ratio
inversion, as well as delayed mitogenic T-cell response. In addition,
these patients have less functionality of the T-cell receptor (TCR)
(thymic function marker) than those receiving unmodified grafts,
although these differences disappear after 6–9 months of alloSCT
[33,34]. Similarly, a slower recovery of the TCRs has been observed
within the first year after alloSCT comparedwith unmodified grafts
[35], whereas early recovery of T lymphocyte functionality has been
associated with better survival in CD34+ selection alloSCT [36].

To overcome the caveat of delayed immune reconstitution, sev-
eral approaches have been proposed. Among them, a phase 1 study
(CYT107) carried out in patients with CD34+ selection alloSCT
explored the role of interleukin-7 (IL-7) in the reconstitution and
survival of T cells. The use of human recombinant IL-7 showed to
be safe and, apparently effective in improving immune reconstitu-
tion after transplant, by increasing the number and functionality
of CD8+ and CD4+ T cells, without increasing the risk of GvHD
[37]. Another proposed strategy to enhance immune reconstitu-
tion is the use of hormonal ablation with Gonadotropin-releasing
hormone (GnRH) agonists to favor thymopoiesis (NCT01746849)
[38,39].

The aforementioned delay in the immune reconstitution is asso-
ciated with an increased risk of opportunistic infections within
the first 12 months after the procedure [40], especially viral
infections, including cytomegalovirus (CMV) [41,42], Epstein–
Barr virus (EBV), adenovirus (ADV), or Herpes virus 6 (HHV-6)
[43–45]. In a study of 156 patients who received alloSCT with
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CD34+ selection in one center, 85% developed at least one viremia
in the first 100 days posttransplant [43].

CMV is the most frequent viral infection reported after CD34+
selected alloSCT, and has an early presentation. In a study including
more than 200 patients [41], cumulative incidences of 85% and 62%
were reported in CMV seropositive patients with seropositive or
seronegative donors, respectively. Additionally, 5% of the patients
developed organ CMVdisease. In the risk factor analysis, the risk of
CMV disease was associated with persistent positive viremia (more
than 28 days). It is important to highlight that in this transplant plat-
form, seronegative patients receiving a transplant from seropositive
donors have a risk of transmission of CMV infection close to 0%,
similarly to patients with a negative donor and recipient serology
[41]. To prevent CMV disease and infection, prophylactic or antic-
ipated antiviral treatments with drugs such as letermovir [46] or
brincidofovir [47,48] have been studied in this platform.

Regarding EBV, the reported incidences of infection and EBV-
related posttransplant lymphoproliferative disorder (PTLD) are
15% and 5%, respectively, with a median time of presentation at
week 14 after transplant [43]. A study with 405 patients comparing
ex-vivo TCD with T-cell repleted alloSCT showed a higher risk of
PTLD in the TCD group (5% vs 1% [p = 0.018], respectively) [30].

For ADV, the risk of infection in CD34+ cell selection alloSCT is
also higher than with the use of unmodified grafts [44]. In a study
with 215 patients undergoing a CD34+ selection SCT conducted
in a single center, 18 patients (8%) presented ADV viremia with
a median appearance at 57 days [45]. One-third of these patients
developed ADV organ disease.

Similarly, the risk of human HHV-6 infection is also higher than in
alloSCT with unmodified grafts, reaching an incidence up to 17%,
although only 10% of patients require targeted treatment [43].

Given the high incidence of these infections, alloSCT with TCD
could be an ideal platform in which to expand the use of adaptive
immunotherapy with specific T lymphocytes against viral infec-
tions. Both nonspecific (directed to common viral pathogens) and
specific lymphocytes have been investigated in these patients with
promising results [49,50].

3.4. Organ Toxicity

TRM is the most limiting factor for a successful alloSCT, and may
prevent elderly or unfit patients to receive a potential curative ther-
apy. TRM is mostly driven by GvHD and infections, as previously
discussed. In addition to them, direct organ toxicities can also ham-
per the success of the transplant procedure.

Recently, the toxic effects of the CD34+ cell selection alloSCT plat-
form were analyzed in a cohort of 200 patients within the first year
after transplantation [51]. Themost relevant toxicities in this period
were infectious, metabolic, hematological, gastrointestinal, cardiac,
and pulmonary complications. Noteworthy, renal complications
wereminimal and a low incidence of hepatic veno-occlusive disease
was reported. Higher targeted busulfan levels, CMV seropositivity
of the recipient, and a high comorbidity index (HCT-CI ≥ 3) were
associated with an increased risk of death from any cause. Another
study showed that fluid overload continues to be a cause of mor-
bidity in CD34+ selection transplantation, despite the absence of

immunosuppressive drugs, especially in patients over 55 years old
receiving chemotherapy-based conditioning regimens [52].

As for late complications, a recent landmark analysis on 276 patients
who were alive and in complete remission after one year of CD34+
alloSCT disclosed that ferritin levels >1,000 ng/mL, a lymphocyte
count <0.5 × 109/L, and an albumin level of less than 4.0 g/dL
were associated with an increased risk of toxicity after one year.
The overall survival of patients after one year post-SCT was 77% at
4 years [53].

The most common GvHD prophylactic regimens include cal-
cineurin inhibitors, methotrexate, or sirolimus, which contribute
substantially to SCT toxicity. Methotrexate can be hepatotoxic,
nephrotoxic, and, not uncommonly, causes mucositis and related
complications. Calcineurin inhibitors pose serious risk of renal tox-
icity after SCT and can cause hypertension, electrolyte disturbances,
dyslipidemia, glucose intolerance, tremor, posterior reversible
leukoencephalopathy syndrome, and thrombotic microangiopathy
(TMA). Sirolimus has been associated with a higher risk of Hep-
atic veno-occlusive disease (VOD), Thrombotic microangiopathy
(TMA), and other endotelial-related complications [54,55].

The use of CD34+ selected HCT precludes the need for posttrans-
plant GVHD prophylaxis, reducing transplant-related toxicity. It
also has the potential to open myeloablative SCT to elderly or
comorbid patients who would otherwise have been excluded from
SCT or offered a RIC approach. Hence, two recent studies have
shown a similar overall survival between patients older and younger
than 55–60 years old [56,57]. In another recent study in patients
older than 50 years, the CD34+ cell selection platformwas not asso-
ciated with an increased risk of TRM compared with an unmod-
ified reduced intensity conditioning (RIC) approach [28]. Also, it
has been confirmed that the HCT-CI [58] is useful to predict TRM
in patients receiving CD34+ selected grafts, and can be helpful
when deciding on the transplant indication for elderly or comorbid
patients [59].

Finally, it has been demonstrated that the good performance status
of patients after CD34+ selected alloSCT and the low incidence of
GvHD facilitate the administration and tolerability of antineoplas-
tic drugs after transplant, both prophylactically or as a treatment for
disease relapse [60].

3.5. Relapse

The main objective of alloSCT in malignant diseases is to decrease
the risk of relapse through the graft-versus-leukemia (GvL) effect.
Since the latter is mostly mediated by T-cells, some concerns have
been raised on the ability of CD34+ selected alloSCT to control dis-
ease relapse. The earlier reports using CD34+ selected grafts dis-
closed an increased risk of relapse in these patients [61]. However,
those studies used old CD34+ cell selection methods, and post-
transplant immunosuppression was routinely administered. Also,
themain transplant indication in those studies was chronicmyeloid
leukemia (CML), which is a highly sensitive disease to the GvL
effect. A retrospective analysis compared the results of two groups
of patients with CML in chronic phase receiving CD34+ selection
alloSCT (n = 46) and unmodified alloSCT (n = 40). The 3-year
relapse incidence in the TCD group was 2.5 times higher than in
the group without depletion. However, most of these patients were
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rescued with donor lymphocytes infusions (DLI). Due to the high
risk of relapse in this indication, the use of TCD alloSCT in CML is
currently not recommended [61].

In contrast, several more contemporary studies have shown a
similar risk of relapse in patients receiving CD34+ selected com-
pared with unmodified grafts in several hematological malignan-
cies, including AML [19,24], ALL [25,26], MDS [27], and in some
subtypes of non-Hodgkin’s lymphoma [62]. One of these reports
focused on patients with AML in first complete remission evaluat-
ing the clinical outcome of 115 patients receiving CD34+ selected
alloSCT at Memorial Sloan Kettering Cancer Center (MSKCC) and
181 patients treated with unmodified alloSCT at M.D. Anderson
Cancer Center (MDACC) [19]. This study observed a similar risk
of relapse at 1 year (17% vs 21%, p = 0.4) and at 3 years (18% vs
25%, p = 0.9) between the two groups. Other analyses in ALL [25]

and MDS [27] patients transplanted at MSKCC and MDACC with
the same strategies also found a similar risk of relapse between
the two groups. Finally, a recent study in patients older than 50
years with AML and MDS found a lower risk of relapse in those
receiving CD34+ selected grafts compared with RIC-alloSCT with
unmodified grafts [28]. This was probably because a higher inten-
sity conditioning regimen could be administered in the CD34+
selected cohort, since these patients do not have the additional tox-
icity from posttransplant immunosuppression.

Donor lymphocyte infusions (DLI) have been used in this plat-
form to stimulate the GvL effect, both as preemptive and as a
therapeutic strategy. Bryant et al. [63] retrospectively reviewed
a cohort of 58 CD34+ selected patients who received DLI to
treat overt relapse (n = 20), minimal residual disease [MRD]
(n = 11), or mixed chimerism (n = 27). Seventy-three percent of

Table 2 Comparative studies of CD34+ selection alloSCT versus unmodified alloSCT.

Cohort Donor Disease aGvHD Grade II-IV
(TCD vs UMT)

cGvHD (TCD vs UMT) DFS and OS
(TCD vsUMT)

Pasquini
et al. [64]

AlloTCD
BMTCTN
0303
n = 44

UM+IS
BMT CTN
0101
n = 84

Identical
sibling AML 23% vs 39%

P = 0.07
19% vs 50%
p < 0.001

2 years DFS
54% vs 55%

2 years OS
65% vs 59%

Bayraktar
et al. [19]

AlloTCD
MSKCC
n = 115

UM+IS
MDACC
n = 181

Identical
sibling
HLA 10/10
URD
HLA 9/10 RD
HLA 9/10 URD

AML
5% vs 18%
p = 0.005

13% vs 53%
p < 0.001

3 years DFS
58% vs 60%

3 years OS
57% vs 66%

Hobbs and
Perales [26]

AlloTCD
MSKCC
n = 52

UM+IS
MDACC
n = 115

Identical
sibling
HLA 10/10
URD
HLA 9/10 RD
HLA 9/10 URD

AAL
17% vs 43%
p = 0.001

14% vs 33%
p = 0.006

3 years DFS
43% vs 36%

3 years OS
43% vs 43%

Tamari
et al. [27]

AlloTCD
MSKCC
n = 60

UM+IS
n = 121
(MDACC)

Identical
sibling
HLA 10/10
URD
HLA 9/10 RD
HLA 9/10 URD

MSD

Low risk
13% vs 41%

p = 0.015

High risk
16% vs 22%
P = 0.75

Low risk
5% vs 48%
p < 0.001

High risk
0% vs 24%
p = 0.013

3 years DFS
Low risk
60% vs 53%
High risk
32% vs 11%

3 years OS
Low risk
59% vs 54%
High risk
36% vs 15%

Barba
et al. [28]

AlloTCD
MSKCC
n = 204

UM+IS
RIC. GETH
N = 152

Identical
sibling
HLA 10/10
URD

AML
MSD

18% vs 46%
p < 0.001

6% vs 55%
p < 0.001

3 years DFS
55% vs 50%

3 years OS
58% vs 56%

Abbreviations:AlloTCD: AlloSCT with T cell depletion; UM: Unmodified; IS: Inmunosuppression; BMT CTN: Blood andMarrow Transplant Clinical Trials Network; MDACC:MDAnder-
sonCancerCenter;MSKCC:Memorial SloanKetteringCancerCenter;MAC:myeloablative conditioning; aGvHD: acuteGraft versusHostDisease; cGvHD: chronic graft-versus-host disease;
AML: acutemyeloid leukemia;MDS:myelodisplastic syndrome; ALL: acute lymphoblastic leukemia; RD: related donor; URD: Unrelated donor; EFS: event free survival; OS: overall survival;
RIC: reduced intensity conditioning; GETH, Grupo Español de Trasplante Hematopoyético.
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patients with MRD achieved remission, versus 15% in those with
overt relapse. DLI was associated with low rates of acute (3%) and
chronic (7%) GvHD indicating that it could be an effective strategy
to manage relapse, especially in patients with MRD+ disease.

3.6. Survival

Most of the comparative studies have shown a similar overall sur-
vival between CD34+ cell selection SCT and unmodified trans-
plants in different diseases and conditioning intensities (Table 2).
Again, the results of the prospective BMT CTN (NCT02345850)
clinical trial are awaited and will help to clarify the role of
CD34+ selection from a controlled, prospective, and multicentric
perspective.

4. FUTURE DIRECTIONS

Probably, the main challenge of CD34+ selection alloSCT is to
improve the management of infections. Exploring modifications to
the conditioning regimen (e.g., by excluding or lowering the dose of
ATG), modulating the anti-infectious prophylaxis with new antivi-
ral drugs such as letermovir or maribavir, and extending the use
of anti-infectious cell therapy with viral-specific T cells or with
CAR-T cells can contribute to such improvement. Other pharma-
cologic strategies to enhance immune reconstitution as the use of
Il-7 deserve further investigation.

Additional areas with unmet needs in the field of CD34+ selected
alloSCT include the improvement in the selection of patients and
the evaluation of patient-reported outcomes and quality of life.

5. CONCLUSIONS

The substantial scientific evidence published in the last decade has
contributed to demonstrate that CD34+ selection alloSCT reduces
the incidence and severity of acute and chronic GvHD without
increasing the risk of disease relapse. At least similar survival has
been reported between CD34+ selected alloSCT and unmodified
transplants. Moreover, specific populations of patients, such as
those with comorbidities (especially renal failure) or advanced age
could also have a benefit in terms of survival. Infection-related com-
plications (mostly viral) are the main challenge for this transplant
platform. The results of the randomized phase III clinical trial com-
paring its use with other GvHD prophylaxis strategies (BMT CTN
1301, NCT02345850) will contribute decisively to define the place
for this modality of transplantation in the near future.
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