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Background: Estimates of life expectancy are a key input
to cost-effectiveness analysis (CEA) models for cancer
treatments. Due to the limited follow-up in Randomized
Controlled Trials (RCTs), parametric models are fre-
quently used to extrapolate survival outcomes beyond the
RCT period. However, different parametric models that fit
the RCT data equally well may generate highly divergent
predictions of treatment-related gain in life expectancy.
Here, we investigate the use of information external to the
RCT data to inform model choice and estimation of life
expectancy. Methods: We used Bayesian multi-parameter
evidence synthesis to combine the RCT data with external
information on general population survival, conditional
survival from cancer registry databases, and expert opin-
ion. We illustrate with a 5-year follow-up RCT of cetuxi-
mab plus radiotherapy v. radiotherapy alone for head and
neck cancer. Results: Standard survival time distributions
were insufficiently flexible to simultaneously fit both the

RCT data and external data on general population sur-
vival. Using spline models, we were able to estimate a
model that was consistent with the trial data and all exter-
nal data. A model integrating all sources achieved an ade-
quate fit and predicted a 4.7-month (95% CrL: 0.4; 9.1)
gain in life expectancy due to cetuximab. Conclusions:
Long-term extrapolation using parametric models based
on RCT data alone is highly unreliable and these models
are unlikely to be consistent with external data. External
data can be integrated with RCT data using spline models
to enable long-term extrapolation. Conditional survival
data could be used for many cancers and general popula-
tion survival may have a role in other conditions. The use
of external data should be guided by knowledge of natural
history and treatment mechanisms. Key words: cost-
effectiveness analysis; survival analysis; restricted cubic
splines; external data; extrapolation. (Med Decis Making
2017;37:353–366)

In randomized controlled trials (RCTs) reporting
survival outcomes, progression-free survival and

overall survival are generally graphically displayed
with the Kaplan-Meier method (KM)1 and analyzed
by Cox Regression.2 However, neither method is suf-
ficient for the purposes of Cost Effectiveness
Analysis (CEA), because they do not provide a
model that can be extrapolated beyond the RCT
period. Instead, parametric survival models are
required to estimate expected survival.3 Models
most often used in submissions to the National
Institute for Health and Care Excellence (NICE) have
a parametric model, such as Exponential, Weibull,
Log-logistic, or Log-normal4–5 distributions, for the
control arm, and a constant hazard ratio (propor-
tional hazards) to predict the treatment arm.3

Parametric distributions differ in their flexibility:
the exponential requires a constant hazard, the
Weibull has monotonically increasing or decreasing
hazards, while the log-normal and log-logistic allow
for ‘‘bowl’’ or ‘‘hat’’ shaped hazards.1 Sometimes,
the proportional hazard assumption is relaxed by fit-
ting an accelerated failure time (AFT) model, or by
fitting unrelated models to each arm, also known as
Fitted Separately to Each Arm (FSEA).3 Model selec-
tion is not straightforward, and models that fit
equally well to the observed RCT data may give very
different estimated mean survival gains.6 This is due
to mean survival being very sensitive to the tails of
the survival distribution, which are usually not cap-
tured within RCT follow-up periods.

There is a well-recognized need to improve extra-
polation of survival data for use in the context of
cost-effectiveness analysis7 and there have been
several attempts to do this using data external to the
trial. One approach has been to use external data to
inform the choice of parametric model to extrapolate
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the trial data.8–11 Other investigators have replaced
the control arm by external data, with12–14 or with-
out15–17 adjustment, while maintaining the treat-
ment effect from the trial. Most methods using data
external to the trial require a process of matching
the trial and external populations,18 but investiga-
tors have differed in the relative weight given to
each, and in how uncertainty in each source of
information is reflected in the final model.

This paper presents a method for using external
information to extrapolate survival curves in the
specific area of cancer trials. Cancer is an interest-
ing and important area in this respect for several
reasons. First, there is a wealth of information about
long-term survival from cancer registries. Second,
the difficulties in choosing parametric models for
extrapolation is well-understood,4 and, in the UK,
these have contributed to a series of controversies
in decisions as to which new cancer treatments
should be used in the National Health Service.19–21

A trial comparing radiotherapy plus cetuximab
(Erbitux)22 to radiotherapy alone for head and neck
cancer patients is used to illustrate our approach.
We consider two types of external information to
inform extrapolation of the control arm: population
data on overall survival of an age- and sex-matched
cohort, and cancer registry information on condi-
tional survival of a matched cohort of head and neck
cancer patients. A third external source is informa-
tion on the relative treatment effect, derived from an
analysis of the literature and treatment mechanisms.

We begin with a description of the illustrative
dataset and, to motivate the paper, we compare the
performance of a series of standard parametric

survival models on goodness of fit and predicted
gain in life expectancy. We then briefly review what
is known about the clinical epidemiology of head
and neck cancer and the mechanisms underlying
treatment with radiotherapy and cetuximab, and pro-
vide some preliminary analyses of data from cancer
registries and recent meta-analyses, which justify our
use of conditional survival data and the external
information on treatment effect. The statistical meth-
ods are presented in outline, with further details and
WinBUGS code appearing in a Web Appendix. In
the discussion section, we consider the general prop-
erties of our approach compared to previous uses of
external data in the literature, and consider the gen-
eralizability of the methods to other cancers, and to
extrapolation of survival curves more widely.

MOTIVATING EXAMPLE

Bonner and others22 conducted an RCT to com-
pare radiotherapy plus cetuximab v. radiotherapy
alone, with overall survival recorded over a 5-year
follow-up period. We have used a method23 that
accurately reconstructs the life-table data from the
Kaplan-Meier curves published in that paper. These
data are used throughout the paper and are shown
in the Web Appendix.

In the analyses that follow, we consider how to
extrapolate both arms in order to inform a potential
CEA of cetuximab, aimed at a target population rep-
resented by the Bonner trial. The trial was carried
out between 1999 and 2002 on treatment-naı̈ve
patients in several countries. The patient sample
was 80% male with median age of 57 years, range
34 to 83 years. The most common site of primary
tumors was oropharynx (59.5%), followed by larynx
(25.5%) and hypopharynx (15%). All patients were
classified as stage III or IV. Other factors of potential
clinical and cost-effectiveness relevance are the epi-
dermal growth factor receptor (EGFR) status,22 the
performance status, Karnofsky or ECOG (Eastern
Cooperative Oncology Group), and the severity of
comorbidities.24–25

Results with Standard Survival Models without
External Data

Table 1 shows Deviance Information Criteria
(DIC),26 posterior mean deviance, �D, and gain in life
expectancy predicted by 12 commonly used para-
metric survival models. �D measures the overall
model fit, whereas the DIC is a composite measure
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of fit and complexity useful to identify the most par-
simonious model, trading off fit and complexity.
Models with lower �D and DIC are preferred although
differences less than 3 (or even 5)27 are not consid-
ered important. Models with similar goodness of fit
generate very different estimates of life expectancy
gain (Table 1). Visually, the AFT and FSEA Log-
normal models have an almost identical fit to the
KM curves (Figure 1) and similar DIC (Table 1), but
the predicted gain in life expectancy due to cetuxi-
mab is 80.4 months for the FSEA and only 32.3
months for AFT. Similarly, the Generalized
Gamma28 AFT gives similar DIC to the Log-normal
FSEA; however, the predicted survival gain is only
13.9 months, nearly 6 times lower. The log-normal
and Generalized Gamma models present the best fit
to the data according to the �D and DIC values.

CLINICAL EPIDEMIOLOGY OF HEAD AND NECK
CANCER AND MECHANISM OF TREATMENTS

Head and neck cancer usually displays a rapidly
increasing mortality over the first 36 months from

diagnosis, which then levels off.29 Survival rates
differ markedly according to the site of the cancer.
Cancer of the larynx is typically diagnosed earlier
than cancers of the hypopharynx and oropharynx,
and patients usually have a better chance of surviv-
ing their cancer.24-25, 29 Longer-term, registry-based
studies from the US and Netherlands30,31 show that
relative survival of head and neck cancer stabilizes
after five or six years. Hence, UK guidance advises
regular examination of the neck during the first two
years after treatment, and discharge from routine
follow-up after five years.32 Subsequently, patients
can be considered as essentially ‘‘cured’’ from their
head and neck cancer; although they continue to
experience excess mortality due to risk factors
associated with head and neck cancer, such as
alcohol abuse, tobacco and Human Papillomavirus
(HPV).33, 34 According to the above registry
studies, this excess mortality persists for at least
15 years.

To confirm the relevance of these results in the
present context, we constructed a cohort of cancer
patients matched to the Bonner trial population for

Table 1 Model Fit Statistics (Posterior Mean Deviance, �D, and Deviance Information Criteria, DIC) and
Estimated Differences in Life Expectancy between the Two Arms of Bonner22 RCT for Different Survival

Models, With and Without External Data

Total �D Total DIC

Gain in Life Expectancy due to Cetuximab (Months)

Point Estimate 95% CrI

Standard parametric models, no external data
2-parameter Gamma FSEA 2,343 2,345 21.0 (2.6; 44.5)
2-parameter Gamma AFT 2,342 2,345 18.0 (1.7; 36.9)
Weibull FSEA 2,341 2,344 23.3 (0.7; 54.5)
Weibull PH 2,341 2,343 19.4 (1.6; 40.9)
Exponential FSEA 2,342 2,342 17.0 (2.1; 33.4)
Exponential PH 2,342 2,343 17.0 (2.0; 33.4)
Log-logistic FSEA 2,322 2,325 195.5 (-6895.0; 6860.0)
Log-logistic AFT 2,322 2,325 82.5 (-5.7; 487.8)
Log-normal FSEA 2,311 2,314 80.4 (2.0; 237.0)
Log-normal AFT 2,313 2,316 32.3 (-3.1; 78.6)
Generalized Gamma FSEA 2,308 2,313 50.9 (-19.2; 179.4)
Generalized Gamma AFT 2,310 2,313 13.9 (-4.3; 48.2)
Standard parametric models with external data
Log-normal AFT, with general population data 2,327 2,329 32.4 (14.11; 55.73)
Generalized Gamma FSEA with general population data 2,317 2,322 31.7 (-26.4; 162.3)
Spline model with external data
Splines with general population survival,

conditional and relative treatment effect
2,303 2,306 4.7 (0.4; 9.1)

CrI: Credible Interval; DIC: Deviance Information Criterion; FSEA: Fitted Separately to Each Arm; PH: Proportional Hazards; AFT: Accelerated Failure
Time.
For each parameter, or log parameter if the parameter was required by definition to be positive, the prior was assumed to follow a normal distribution
with a mean of 0 and a variance of 1000.
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age, gender, cancer site, and date of diagnosis35

using registry data from the Surveillance
Epidemiology and End Results (SEER) database.36

One-year conditional survival in this cohort is
shown alongside conditional survival in the trial
(Figure 2A). The results accord closely with previ-
ous work reported above, and show the close agree-
ment of trial and SEER data. Also shown is the
conditional survival of an age- and sex- matched
general population cohort based on US survival sta-
tistics.37 (See Web Appendix A and B details
of how these matched cohorts were constructed).
This confirms that conditional relative survival
remains approximately constant and less than one
for at least 20 years after the initial 5 years from
diagnosis.

Cetuximab is administered over a single 8-week
period concurrently with radiotherapy. Its mode of
action is to enhance the effect of radiotherapy,38 by
increasing the proportion of cancer cells that are
sensitive to radiotherapy. For this reason, the time
course of the effect of cetuximab can be expected to
be the same as the time course of the effect of radio-
therapy. Similarly, we would expect that the effect
of both therapies in reducing head and neck cancer
mortality should be limited to the initial 5 or 6
years during which mortality due to the head and
neck cancer predominantly occurs.

To further check our interpretation of the clinical
literature on head and neck cancer, we undertook
additional analyses of data incorporated in the

Pignon meta-analysis comparing loco-regional treat-
ment (radiotherapy and surgery plus postoperative
radiotherapy) v. the same loco-regional treatment
plus chemotherapy.39-40 Five-year overall survival
rates in the meta-analysis control arm and the
Bonner control arm were very close (P = 0.74), in
spite of some differences in stage distribution and
site. Further, this independent source of data con-
firms the same pattern of conditional mortality as
that of previous literature (Figure 2B): a rising con-
ditional mortality over the first 5 years, reflecting an

increasing proportion of deaths from causes other

than head and neck cancer, followed by stable con-

ditional mortality in years 6 to 8.
Also, confirming our understanding of the treat-

ment mechanisms, the advantage of chemotherapy

in conditional survival can be seen over years 1 to

5, but disappears after that. To our knowledge, there

is currently no evidence associating cetuximab with

benefits, or toxicities, after five years.
Based on these findings, we make the following

three assumptions

1. General population survival: Survival in the con-

trol arm of the trial will remain less than survival

in the matched general population cohort over the

entire time horizon of the CEA model.

2. Conditional survival: One-year conditional survival

in the trial control arm will converge to that of a

matched cancer cohort, five or six years after

diagnosis.

Figure 1 FSEA and AFT Log-normal models compared with Kaplan-Meier curves. KM, Kaplan-Meier; FSEA: Fitted Separately to Each
Arm, PH: proportional hazards; AFT, accelerated failure time.
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3. Relative Treatment effect: The hazard ratio

changes over time as a smooth function with one

turning point (expected to decrease initially and

then increase). The hazard ratio is assumed to

begin at 1 year, when treatment begins, and return

to unity by 6 years.

STATISTICAL METHODS

We begin by illustrating the impact of incorporat-
ing external data constraints on parametric survival
models. We present results for the AFT Log-normal

and the FSEA Generalized Gamma models. These
were chosen as the most compatible with the RCT
data, as indicated by DIC and �D (Table 1), and
because they varied in flexibility (number of para-
meters). A similar issues arose with all of the para-
metric survival models.

As a more flexible alternative, cubic spline func-
tions were chosen to model the relationship
between log cumulative hazards and log-time.41,55

These are cubic polynomials fitted to successive
sets of two points, or internal knots, in a way that
guarantees they are continuously differentiable.

Figure 2 1-year conditional survival predicted in Bonner 2006 and in the Surveillance, Epidemiology, and End Results (SEER) data-
base (A). 1-year conditional survival predicted in Bonner 2006 and in Pignon 2009 (B).
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Further details are given in Web Appendix C. Two
spline models were created on the log cumulative
hazard scale, one for the control arm and one for the
additional relative effect of treatment.

Boundary knots were placed at the extreme ends
of the data. We also specified one internal knot in the
RCT segment of the data, and another internal knot
in the period between the end of the trial (5 years)
and the end of the external data (40 years). The knots
were placed in the mid-point on the log-time scale.

External information was added incrementally:
data on general population and the SEER database
for the control arm were first included separately,
then together, and finally information was also
added on the hazard ratio.

External information was introduced by specifying
the relationship between the parameters estimated by
the external information, and the parameters of the
survival distributions, whether these were parametric
or spline functions. This was implemented by writing
the likelihoods for the external data in terms of the
parameters of the (extrapolated) survival model that
also gives the likelihood for the trial data. In this way,
a single survival model is estimated from all sources
of data (RCT and external) simultaneously.

Estimation

Estimation was carried out by Bayesian Markov
Chain Monte Carlo (MCMC) simulation using
WinBUGS42 and WBDev.43 Observed and fitted sur-
vival, conditional survival, and relative hazard
ratios were visually compared. �D and DIC statistics
were computed within the MCMC simulation and
transformed using a constant to the scale of the
parametric models to allow comparisons.10 These
statistics were recorded, separately for the RCT data
and each type of external data. This allowed us to
compare the model fit to the different data types.
The threshold for choosing one model over another
was a 5-point difference in the DIC27 on the RCT
data. Details regarding choice of initial values,56

convergence checks, burn-in period, and posterior
sampling are given in Web Appendix D.

Introducing External Data on Absolute Survival in
the General Population

The age- and gender-matched general population
is expected to have overall survival, SGP(t), that is
no lower than survival S0,RCT (t) in the RCT control
arm at any time t. We cannot put constraints
directly on S0,RCT (t), because this is a complex

function of the survival model parameters. Instead,
we introduced the external data in a way that
imposes the constraint on the extrapolated curves.
We do this at a single time point at 40 years, when
the matched cohort had rGP(40) 5 1,660 survivors
out of a denominator of nGP(40) 5 158,858 persons
in the matched cohort at time 0 (see Web Appendix
A), corresponding to 40-year survival 1.045%
[95CrL: 1.036; 1.054]. Assuming a binomial distri-
bution for this data, we implemented the belief that
survival in the control arm of the RCT at 40 years,
S0,RCT (40), is no better than that in the matched gen-
eral population, S0,RCT (40)�SGP(40), by giving a
Binomial likelihood for the general population data:

rGP(40);Binomial (SGP(40),nGP(40))
where SGP(40) is constrained to be

greater than S0,RCT (40) so that
SGP(40) 5 S0,RCT (40)1b, b . 0

ð1Þ

Additional constraints are required to ensure that
SGP(40) lies in the interval 0,1.

Introducing External Data from SEER on
Conditional Survival

We assumed that the RCT control arm population
1-year conditional survival at time t conditional on
being alive at time (t-1), CS0,RCT (tjt � 1), is no differ-
ent to the matched SEER population conditional
survival, CSSEER(tjt � 1), from 6 years onwards until
26 years (last time point available in the SEER data-
base). The methods for calculating the numbers of
person alive and at risk in the SEER population
between time t and t – 1, respectively rSEER(tjt � 1)
and nSEER(tjt � 1), are shown in the Web Appendix
B, along with the data itself. Assuming a binomial
likelihood for 1-year conditional survival probabil-
ities from the SEER population, we implemented
this by specifying:

rSEER(t t � 1j );Binomial(CSSEER(t t � 1j ),nSEER(t t � 1j ))
where CSSEER(t t � 1j ) is constrained
to be equal to CS0,RCT (t t � 1j ) so that

CSSEER(t t � 1j ) 5 CS0,RCT (t t � 1j ), 6� t� 26 years

ð2Þ

Introducing Both General Population Survival
Data and Conditional Survival Data

When adding the SEER data on conditional sur-
vival (Equation [2]), we observed that the 1-year
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conditional estimated survival curve for the RCT
population crossed that from the general population
at 33 years. To avoid conflict between the two
sources of external data, we assumed that 1-year
conditional survival in the control arm of the RCT
was no different to that in the general population at
a time point. In addition to equation (2) we there-
fore specify:

rGP(35 34j );Binomial (CSGP(35 34j ),nGP(35 34j ))
where CSGP(35 34j ) is constrained

to be equal to CS0,RCT (35 34j ) so that
CSGP(35 34j ) 5 CS0,RCT (35 34j )

ð3Þ

Introducing External Data on the Relative
Treatment Effect

We expected that the hazard ratio is a smooth
function with a monotonic decrease followed by a
monotonic increase over years 0-5. This is captured
by having a single knot in this interval. To reflect
that there is some uncertainty about whether the
hazard ratio returns exactly to 1, we introduced
external data on the hazard ratio taking the value of
1 at time points t 5 6 . . . 35 years, each with a stan-
dard error of 0.1. This was achieved using a normal
likelihood:

HR(t);N(
h1,RCT (t)

h0,RCT (t)
,0:12), t 5 6 . . . 35 years ð4Þ

where h0,RCT (t) and h1,RCT (t)are the hazards on the
control and treatment arms of the RCT population,
respectively.

Winbugs code and data are presented in
Appendix D.

RESULTS

Parametric Models with External Data on General
Population Survival

Figure 3A shows estimated curves from an AFT
2-parameter Log-normal model for (i) the uncon-
strained model with no external information, (ii)
the model constrained by overall survival in the
general population (Equation [1]), together with the
KM-curves. It is evident that the external data are
far from compatible with the trial data under this
model. The fit of the trial data deteriorates markedly
with the inclusion of external data, with a DIC

increasing from 2,316 to 2,329 and a �D from 2,313 to
2,327 (Table 1). Similar results were obtained
with the FSEA Generalized Gamma (Figure 3B).
Neither of these distributions is sufficiently
flexible to comply with both the RCT and the gen-
eral population data (Equation [1]). The same prob-
lem arose with all of the parametric models
reported in Table 1. Further external data cannot
improve the flexibility of the parametric models,
and so we do not present results including further
external data.

Spline Models

With restricted cubic splines with two internal
knots, DIC results for the unconstrained model were
between 2,304 and 2,306, depending on the sets of
initial values. When the data on general population
survival were added, the DIC was 2,304 (Table 2).
Convergence of the MCMC simulations was not
satisfactory for all parameters in the model, due to
the lack of data between the end of the trial and
year 40, making it impossible to identify spline
parameters (see Web Appendix E). These numerical
problems were overcome when further external con-
straints were incorporated.

When the external data on conditional survival
was incorporated, the DIC value for the RCT data
from the spline model was found equal to 2,307,
very close to DIC without external data (Table 2).
After the RCT period, the extrapolated trial curves
were visually close to the SEER data (DIC value of
98). The SEER data fully identified the extrapolated
control arm survival curve. The spline model there-
fore produced a survival estimate that was consistent
with both RCT and all external evidence sources.

When conditional survival in the general popula-
tion (Equation [3]) and SEER data (Equation [2])
were both applied, DIC for the RCT and the SEER
data barely changed (Table 2). The survival curves
estimated from the RCT and the general population
now cross at 35 years after the start of the RCT. We
could have extended this general population con-
straint by adding time points between 36 and 60
years. However, considering the low percentage of
patients still alive 35 years after the start of the RCT
(median age at randomization was 57 years), we did
not try to incorporate more general population data.

When the data on the hazard ratio was also
added (Equation [4]), DIC for trial, SEER, and gen-
eral population data again barely changed (Table 2).
Figure 4 suggests a visually good fit of the spline
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models to each source of data. The estimates com-
plied with the RCT data during the RCT period and
with SEER, general population and expert data after
the end of the RCT. Using the flexible spline
models, we have therefore managed to incorporate
all external data, without deterioration in model fit
for any of the different evidence sources.

The life expectancy gain when all external data
sources were incorporated was 4.7 months
[95%CrL: 0.4; 9.1] (Table 1).

DISCUSSION

We begin this concluding section by reviewing
the choice of survival function (splines, parametric
models, and other options). We then compare our
use of external data to previous work in the litera-
ture from a technical point of view, with a particu-
lar focus on uncertainty propagation. Third, we
consider the modeling choices facing investigators
using external data, and suggest extensions and
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sensitivity analyses that could be used in practical
applications. Finally, we consider the particular
type of external information used here, and what
this implies about the generalizability of the meth-
ods to other cancers and other conditions.

Survival Models

The study adds to a growing literature on the dif-
ficulties associated with extrapolation of survival
curves using standard parametric models.3, 6 Even
the models that fitted the RCT data best without
external data fitted the trial quite poorly compared
to spline models with external data. Indeed,
although it seems a weak requirement that the extra-
polated survival in a cancer trial control arm must
be less than would be observed in the general popu-
lation, for this dataset, it was easily strong enough
to rule out the standard parametric curves. These
distributions do not provide the possibility of
‘‘local’’ parameters: the behavior of the tails is
strongly determined by data fit at the very begin-
ning, and vice versa. It remains to be seen whether
other flexible distributions, such as fractional poly-
nomials,43 mixture distributions,44–46 or join-point
techniques could represent valid alternatives to the
splines, which we found gave rise to numerical
problems in some contexts (see Web Appendix).

Uncertainty Propagation

There are many examples of the use of external
data on the general population9,11,13 and also the
use of registries, meta-analyses or prospective obser-
vational studies of cancer cohorts.8,10,12-13,15-17,47

Many applications are tailored to specific circum-
stances and it is difficult to give an overall review.

There are, however, marked differences in the way
uncertainty is propagated. Our approach to the com-
bination of trial and external data is an example of
Bayesian multiple parameter evidence synthesis
(MPES).48 Typically, vague priors are assigned to
the basic parameters49 and information on para-
meters or functions of parameters is introduced by
the data likelihoods. Simultaneous estimation from
all these data sources ensures a coherent model that
is consistent with all the evidence included, and
that fully reflects the statistical uncertainty in the
evidence for propagation into a cost-effectiveness
model. We would also claim that, by using the
highly flexible cubic splines, we have also appropri-
ately accounted for uncertainty in the choice of
survival model, conditional, of course, on our
assumptions about the number of inflexions
implied by the number of internal knots.

In terms of uncertainty propagation, we therefore
believe our general approach has some clear techni-
cal advantages over other ways of using external
data. For example, the use of external data to
choose a parametric model8–9 fails to account for
uncertainty in the model choice. Methods that
‘‘import’’ an estimate of the relative effect from the
trial and overlay this on a model of the control arm,
will misrepresent the uncertainty in the treatment
effect estimate, because it was generated from a dif-
ferent model of the control arm. In our approach,
we advocate all parameters are estimated simultane-
ously, using combined data from the RCT, the gen-
eral population survival data, conditional survival
data, and information on the relative treatment
effect.

The main difficulty with importing a treatment
effect estimate from a different model is that, in vir-
tually every case, investigators have relied on a

Table 2 Global Goodness of Fit Statistics (Posterior Mean Deviance, �D, and Deviance Information Criteria,
DIC) for the Internal and External Data Elements

RCT Data SEER Data General Population Data Relative Treatment Effect

�D DIC �D DIC �D DIC �D DIC

Log logistic AFT using Equation [1] 2,327 2,329 NA NA 10 11 NA NA
Gen Gamma FSEA using Equation [1] 2,317 2,322 NA NA 10 11 NA NA
Splines, no external data used 2,300 2,307 NA NA NA NA NA NA
Splines using Equation [1] 2,300 2,307 NA NA 10 11 NA NA
Splines using Equation [2] 2,302 2,307 96 98 NA NA NA NA
Splines using Equation [2] and Equation [3] 2,302 2,307 96 97 11 12 NA NA
Splines using Equation [2], Equation [3]

and Equation [4]
2,303 2,306 97 98 11 12 –62 –60
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Figure 4 Overall survival predicted by KM, unconstrained splines, and splines constrained by general population data using Equation

3, SEER conditional survival data using Equation 2, and expert data using Equation 4 (A). 1-year conditional survival (B). Hazard

ratio (C).
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proportional hazard assumption. Based on a logical
consideration of how treatments work, our view is
that the proportional hazards assumption is highly
implausible in many cancer treatment trials.
Instead, the effect of a treatment on mortality risk
can be expected to accelerate over an initial period,
and then decelerate as non-cancer causes of death
begin to predominate. Although we have made
quite strong assumptions about the relative treat-
ment effect, they are reasonably well-grounded
in evidence and in theory, and far weaker than
the routinely accepted proportional hazards
assumption.

In view of the wild variation in estimated life
expectancy gain between parametric models (Table
1), it is interesting to observe that the relative uncer-
tainty in our final estimate of mean survival gain
from the spline model with all sources of external
data (4.7 months with 95%CrI 0.4 to 9.1 month) is
commensurate with the log hazard ratio in the origi-
nal Bonner trial:22 -0.30 (-0.56 to -0.03). Both esti-
mates exclude the null effect by a narrow margin,
and have a similar coefficient of variation (standard
error divided by mean), based on the 95% intervals:
0.47 from the present study compared to 0.45 from
the trial.

An earlier attempt to extrapolate survival in the
Bonner trial appeared in the manufacturer’s submis-
sion to NICE.47 A cure model with a logistic link
was used to model the survival of head and neck
cancer patients. For the non-cured patients, a Log-
Normal distribution was chosen. The non-cured
fraction was extrapolated for both control and
treated group, while subsequent mortality in the
cured fraction was based on UK population data
adjusted down using a hazard ratio derived from
the Pignon meta-analysis.40 This generated an
expected gain of 10.6 months. A credible interval
was not published. This approach has several simi-
larities to what we are advocating here, in assuming
a time-limited treatment effect and stable condi-
tional survival subsequently, but it relies on a spe-
cific parametric form for the cured fraction and fails
to incorporate uncertainty in the model choice.

Modeling Choices and Sensitivity Analyses

In constructing what is primarily a methodologi-
cal exercise to demonstrate the feasibility of a
method in principle, we have the luxury of not
having to face the modelling choices that investiga-
tors in a real decision making context must

confront. In this section, we consider how the pres-
ent methods could be varied or extended to differ-
ent target populations, and what kinds of sensitivity
analyses might be required in practice.

While we believe our approach appropriately
reflects statistical uncertainty in the combined data,
as well as uncertainty in model choice, it cannot in
itself propagate uncertainty about the relevance or
applicability of the external evidence to the target
population. Bayesian theory distinguishes strictly
between the ‘‘subjective’’ prior and the ‘‘objective’’
data likelihood, but this overlooks the subjectivity
in the interpretation of the data—specifically, the
assumption that the data are providing unbiased
estimates of the target parameters. For example, we
assume that conditional survival is exactly the same
in the target (trial) population as in the matched
SEER cohort. Further analyses of SEER and other
registries, such as those shown in Figure 2A, can be
used to show how sensitive conditional survival
might be to imbalances in cancer site mix, age, and
date of diagnosis and Karnofsy score.

We used the US SEER data, and, hence, US popu-
lation data, to supply external data on survival and
conditional survival because of the comprehensive-
ness of this database. Decision makers in other juris-
dictions would preferentially use locally relevant
population and cancer registration data. If this was
unavailable, or partially available, it might be still
possible to use SEER data, perhaps making suitable
adjustments. Note, however, that conditional sur-
vival or relative conditional survival is more likely
to generalize across jurisdictions than overall sur-
vival. Alternatively, the similarity of SEER and
other national cancer registries could be investi-
gated to inform sensitivity analyses. Similarly, we
assumed that the target population was identical to
the trial population, which is frequently done in
Health Technology Assessments, rather than repla-
cing the control arm with appropriately matched
external data that precisely represents the chosen
target population. In this case, unless the external
data is drawn from a cancer registry, it may still be
necessary to use conditional survival register data
in the way we have to extrapolate lifetime survival.
Note that the same flexible spline approach we have
proposed for the time course of the relative treat-
ment effect can still be applied, whether the control
arm is constructed from extrapolated trial data or
based entirely on external data.

In a practical application, investigators would
carry out a series of sensitivity analyses. Placement
and number of internal knots in the spline function
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might seem obvious candidates, but general experi-
ence with splines is that the location of knots has
little impact on estimates, whereas too few or too
many knots may degrade the goodness-of-fit.41, 50

The strategy we have followed has been to place
internal knots in the middle of the (log) range, to
use the same points in all models, and to have just a
single knot for each segment of data. These model-
ing choices avoid post hoc trawling, and are a priori
the most easily defended. The choice of a single
internal knot in the trial period is informed by our
assumption that the hazard ratio would fall monoto-
nically then rise, and that changes in conditional
relative survival over time would be smooth. In a
practical application, however, some sensitivity
analysis around the placement of knots would be
expected. One would also expect a sensitivity anal-
ysis around the assumption that the time at which
the hazard ratio is assumed to return to unity.

The present analysis relied on a period-analysis35

of survival and conditional survival. This only
partly allows for improvements over time in cancer
survival. Another form of sensitivity analysis, or
perhaps an extension to our approach, might con-
sider a more sophisticated model of the registry
data that allows for the continual improvement in
cancer survival rates into the future. A further issue
is the time between diagnosis and randomization.
Patients in the Bonner22 trial would have been
recruited soon after diagnosis, but the methods
could be modified to allow for other scenarios.

More broadly, our construction of ‘‘external infor-
mation’’ on the relative treatment effect is based on
a whole series of assumptions about head and neck
cancer and treatment mechanisms. This should not
be regarded as a weakness of the analysis: similar
assumptions would have to be made in any decision
analysis concerned with cancer treatments.
Investigators need to be explicit about their choice
of external data and their interpretation of it, back-
ing this up if possible with supporting analyses,
such as those illustrated in Figure 2. The assump-
tions must be open to examination, debate, and sen-
sitivity analyses, as in any other analysis of clinical
or cost effectiveness.

Limitations and Generalizability to Other Cancers
and Conditions

Any use of data to make predictions requires sub-
jective judgment about the relevance and applic-
ability of the data. But among the limitations of the

method, is the degree of reliance on subjective judg-
ment about the clinical epidemiology of the condi-
tion and the treatment effect. ‘‘Uncertainty’’
regarding what are, in effect, structural assump-
tions, is difficult to express. Another limitation is
the technical difficulty in fitting spline models, par-
ticularly in evidence-sparse situations. We have
experienced this problem mainly when fitting
models incrementally: the problem is much less
acute when all sources of external data are
included. A great deal could be learned from apply-
ing these methods to extrapolate a range of survival
curves in other cancers.

Besides the uncertainty propagation properties of
the method, which could be applied very generally,
a more substantive contribution of the paper is the
suggestion that relative conditional survival, based
on cancer registers or meta-analyses of cancer trials,
provides a relatively accurate way of extrapolating
cancer trials. Studies of registry data from many
countries shows that, while conditional survival is
sensitive to age at diagnosis and stage at diagnosis,
for many cancers, it tends to stabilize 5 to 8 years
after diagnosis.51-54

We do not expect all cancers and all treatments
to behave in precisely the same way as head and
neck cancer. An examination of the available litera-
ture and registry data guided by clinical experts,
alongside preliminary analyses, such as that in
Figure 2, is a procedure that could be adopted in
other circumstances. For example, cetuximab is
usually administered in a single, relatively brief
course: treatments involving a longer course, several
courses, and other modes of treatment, like surgery
or radiotherapy, might require a somewhat different
approach. Similarly, if there was a suspicion of later
toxicity, a sensitivity analysis could be readily con-
structed to allow for this.

In the present case, external data on general pop-
ulation survival did not represent much of a con-
straint on extrapolation, although it served to rule
out a large number of commonly used models quite
decisively. In the UK, where manufacturers submit
evidence to NICE to obtain approval for the use of
drugs in the NHS, uncertainty about which para-
metric model to apply when extrapolating cancer
survival curves has, on several occasions, contribu-
ted to controversy that led eventually to an appeal
process.18-20 The use of external information, in the
way suggested above, both for extrapolating the con-
trol arm and the treatment effect, would contribute
to obtaining better evidence-based estimates of gain
in life expectancy.
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