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Abstract: Sulfur (S) is an essential macronutrient for plants, being necessary for their growth and
metabolism and exhibiting diverse roles throughout their life cycles. Inside the plant body, S is
present either in one of its inorganic forms or incorporated in an organic compound. Moreover,
organic S compounds may contain S in its reduced or oxidized form. Among others, S plays roles in
maintaining the homeostasis of essential micronutrients, e.g., iron (Fe), copper (Cu), zinc (Zn), and
manganese (Mn). One of the most well-known connections is homeostasis between S and Fe, mainly
in terms of the role of S in uptake, transportation, and distribution of Fe, as well as the functional
interactions of S with Fe in the Fe-S clusters. This review reports the available information describing
the connections between the homeostasis of S and Fe, Cu, Zn, and Mn in plants. The roles of S- or
sulfur-derived organic ligands in metal uptake and translocation within the plant are highlighted.
Moreover, the roles of these micronutrients in S homeostasis are also discussed.

Keywords: copper homeostasis; iron homeostasis; manganese homeostasis; sulfur homeostasis;
zinc homeostasis

1. Introduction

Iron (Fe), copper (Cu), zinc (Zn), and manganese (Mn) are essential micronutrients
(EM) for plants, animals, and humans. Both their deficiency and excess cause various mal-
functions in each organism. These elements comprise a metalome of central contribution to
plant functioning. For humans to consume food of quality, the soil, plant, and human chain
requires very efficient management of the EM metalome, through acquisition, transport,
translocation, utilization, and re-translocation, by cofunctioning of the biological systems
that will handle the EM within the plants. Understanding of the EM metalome homeostasis
requires a detailed knowledge of the dynamics of this network in plants [1,2].

Soils can present multiple nutrient deficiencies in all classes of nutrients. The phy-
toavailability of soil EM to crops is influenced by various soil factors. Poor EM phytoavail-
ability in soils causes a reduction in crop production and lower nutritional value of the
crops’ products. Increasing the phytoavailability of EM to crops, and the EM content
of crops during plant growth, is a process known as biofortification, and it is distinct to
agronomic and genetic biofortification. Agronomic biofortification is the biofortification
(or phytofortification) process that is based on the application of EM-containing mineral
fertilizer to the soil and/or plant leaves (i.e., foliarly) toward increasing the EM contents of
the edible part of the food crop. On the other hand, genetic biofortification is described
as the biofortification process that involves classical breeding (or genetic engineering) to
achieve this target [3–13].

Cakmak and Kutman [14] mention that “for foliar Zn applications to wheat the options
are zinc sulfate and EDTA-chelated Zn. Zinc sulfate is at least as effective as Zn-EDTA for
correcting Zn deficiency and increasing Zn concentrations in tissues, which means that it
is the most cost-effective option compared with the relatively highly priced Zn-EDTA”.
Specifically, zinc sulfate is mentioned, and not zinc nitrate, which raises the question of
why sulfate is the accompanying anion.
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Sulfur (S) plays crucial roles [15], including in the management of the EM metalome [16,17].
Each of the EM at first exists as a free cation, which is an existence that causes undesirable actions.
Efficient handling of the EM metalome requires efficient chelation, transport, and translocation,
along with efficient management of these actions. For each one of these management systems
toward handling each EM properly, the phytoavailability of EM, along with the proper form of
S in place and in time, is of central interest. Moreover, the functional EM metalome of plants is
modified by S availability.

This review elaborates on the interactions between S and the micronutrients Fe, Cu,
Zn, and Mn, and focuses on the levels of the cellular compartments, the various plant
tissues, as well as the whole plant, toward highlighting their contributions to agronomic
phytofortification.

2. Sulfur Homeostasis in Plants

S is a macronutrient essential for plant growth and development. It is required for the
biosynthesis of cysteine (Cys), methionine (Met), and glutathione (GSH) and for several
secondary metabolites, such as glucosinolates, as well as for the biosynthesis of proteins,
cofactors, and vitamins. S-containing metabolites have central roles in the responses of
plants to various environmental conditions [18–20].

S is taken up from the rhizosphere in the form of sulfate, via sulfate transporters
localized in the cytoplasmic membranes of rhizodermal and outer cortex cells. Subsequently,
sulfate will either be transferred to the root stele and loaded in the xylem to be transported
to the shoot or it will be translocated into root plastids. Upon arrival of the sulfate to the
aerial plant parts, it will be finally transferred into chloroplasts. At any time, depending
on the needs of the plant, sulfate may be also transported into the vacuoles of the cells
either of the roots or the shoot of the plant. All these transfers are made mainly through
specific sulfate transporters, localized either in a cytoplasmic membrane or in a subcellular
organelle’s membrane [19,21,22].

After entering in a root or shoot plastid, sulfate is assimilated into adenosine-5′-
phosphosulfate (APS), which is then reduced into sulfite, and then sulfide, leading to cysteine
biosynthesis. Cysteine is the key metabolite for subsequent biosynthesis of the S-containing
organic compounds in plants, while a major pool of sulfur is GSH, a Cys-containing tripeptide.
In parallel, APS will be phosphorylated to 3′-phosphoadenosine-5′-phosphosulfate, an interme-
diate metabolite used for sulfation reactions. Moreover, sulfite may also be used for sulfolipids
biosynthesis into the plastid, or it may be transported to peroxisome, where it can be reoxidized
to sulfate through the activity of sulfite oxidase [18,19,23,24].

The regulation of S homeostasis takes place predominantly during sulfate uptake
and APS reduction, through transcriptional regulation of the sulfate transporters as well
as of APS reductase (APR) isoforms. Several metabolites have been appointed to have
roles in the control of sulfate assimilation: GSH serves as a negative regulator through
feedback inhibition, while OAS is a positive regulator of the sulfate uptake and assimilation
pathway [18,22,25]. Phytohormones also play outstanding roles in the regulation of S home-
ostasis, such as cytokinins as well as the “stress-related” hormones abscisic acid, jasmonic
acid, and salicylic acid [18]. Furthermore, the roles of regulatory components of sulfate
uptake and assimilation such as the transcription factor SLIM1, the sulfur-responsive ele-
ment SURE, and the miR395 have been described [19]. Recently, an epigenetic regulatory
mechanism involving the nuclear-localized MORE SULFUR ACCUMULATION1 (MSA1)
methyltransferase has been identified [26].

3. The Biological Importance of Essential Micronutrients

EMs play central roles in the metabolism, growth and production, maintenance, abiotic
and biotic stress tolerance, and as structural and functional components of metalloproteins
if they are at an optimal concentration. EMs are transition metals, with Fe and Cu to
undergo redox changes under biological conditions. At supraoptimal levels, they are toxic
because they can cause oxidative stress due to the production of reactive oxygen species via
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Fenton reaction. To sustain the appropriate ion homeostasis, plants maintain equilibrium in
EM homeostasis by the establishment and maintenance of stable linkages with appropriate
organic ligands in a specific geometry [27–31]. The following structural and functional
roles highlight the biological importance of each one of the EMs.

Importance of Fe—Fe is required in several cellular processes, including photosynthesis,
respiration, and sulfur assimilation. Fe exists as Fe(III) or Fe(II) under physiological
conditions, participating in electron transfer reactions of the cells. The bulk of Fe in plant
cells is needed in mitochondria and chloroplasts, where the major sinks of Fe are Fe-S
clusters and heme are, and it is stored in ferritin or in vacuoles.

Several proteins contain Fe as a cofactor, mainly in the form of Fe-S clusters. Such
proteins belong to the electron transport chains of chloroplasts and mitochondria. In the
chloroplasts, the major Fe-S proteins are photosystem I (PSI), cytochrome b6f complex,
ferredoxin, nitrite reductase, sulfite reductase, and adenosine 5′-phosphosulfate reduc-
tase (APR). In mitochondria, the main Fe-S proteins are the complexes I, II, and III of
the respiratory chain and aconitase in the citric acid cycle. The biosynthesis of these
clusters requires tightly regulated provision of chelated Fe and reduced S, in the form of
cysteine [31–35].

Importance of Cu—Cu is a redox-active transition metal and under physiological condi-
tions in vivo, it exists as Cu(II) or Cu(I) and participates in many physiological processes.
Cu ions act as cofactors in a variety of enzymes such as cytochrome c oxidase, Cu/Zn-
superoxide dismutase (Cu/Zn SOD), ascorbate oxidase, plastocyanin, laccase, amino
oxidase, and polyphenol oxidase. At the cellular level, Cu possesses key roles in pho-
tosynthetic and respiratory electron transport chains, C and N metabolisms, biogenesis
of molybdenum cofactor, Fe mobilization, protection against oxidative stress, oxidative
phosphorylation, transcription protein trafficking machinery, ethylene sensing, and cell
wall metabolism [29,36,37].

Importance of Zn—Zn forms tetrahedral complexes with cysteine residues of polypep-
tide chains. Known roles include its presence in enzymes involved in protein synthesis
and energy production. Zn is required for the maintenance and the structural integrity of
membranes via its binding to membrane phospholipid and sulfhydryl groups, resulting in
the protection of membrane lipids and proteins against oxidative damage. It is involved
in signal transduction pathways via mitogen-activated protein kinases, and it plays an
important role in seed development [32,38,39].

Importance of Mn—Mn presents the oxidation states II, III, or IV, and serves as a cofactor
in various enzymes within a plant cell, where it can fulfill two roles in proteins: (1) as a
catalytically active metal or (2) as an enzyme activator. Mn contributes to photosynthesis,
defense against oxidative stress, lipid biosynthesis, nitrogen metabolism, gibberellic acid
biosynthesis, and RNA polymerase activation. Representatives for the catalytic role are the
Mn-containing water splitting system of photosystem II, the Mn-containing superoxide
dismutase, and the oxalate oxidase. The group of the Mn-activated enzymes consists of
PEP carboxykinase, isocitrate dehydrogenase, phenylalanine ammonia lyase, and malic
enzyme. Proteins of this group are known to be involved in the shikimic acid pathway,
as well as the biosynthetic pathways of aromatic amino acids, flavonoids, lignins, and the
indole acetic acid. The role of Mn in the activation process is less specific and in many cases
it can be replaced by magnesium [32,40,41].

4. Functional Interactions between EM and S

The EM-S bonds—The first level of interaction between EM and S is the formation
of an effective EM-S bond (Figure 1). Ligands are distinguished as weakly (or hard) vs.
highly (or soft) polarizable ones. The weakly polarizable ligands include the carboxylate
groups with negatively charged oxygen atoms and the carbonyl groups with polar oxygen
atoms. The highly polarizable ligands include the sulfhydryl groups. Aspartate (Asp) and
glutamate (Glu) participate with their carboxylate groups; asparagine (Asn) and glutamine
(Gln) participate with their carbonyl groups; while Cys and Met, the S-containing amino
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acids, are soft ligands. Histidine (His) carries the imidazole ring that contains the borderline
aromatic N.
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Figure 1. The contribution of S homeostasis in essential micronutrients’ homeostasis within plants
toward efficient seed EM loading.

The contribution of S in the bond—The S atom is a soft donor; hence, it prefers to bind
with soft cations. In this way, it provides high redox potential to metal redox couples. The
reduced form of the metal cation is softer than the oxidized one. Between two metal centers,
the S-containing ligands can function as bridging ligands (M-S-M) or as monodentate
ones (M=S). In proteins, S is found as thiolate or thioether. Thioethers are organic sulfides
(C-S-C). Examples of sulfides are Met and biotin. Thiolates contain the thiol group (C-S-H).

The Fe-S bond—Ligands are electron donors and the metals’ electron acceptors. The
softer Fe(II) catalyzes the Fenton reaction with hydrogen peroxide; hence, an efficient
bonding is needed. Fe-S proteins are characterized by the presence of Fe-S clusters, which
are found in a variety of metalloproteins. These clusters contain di-, tri-, and tetra-Fe
centers and are sulfide-linked in variable oxidation states. Fe-S clusters contribute to
the oxidation-reduction reactions of electron transport chains. There are several proteins
containing Fe-S clusters that regulate gene expression. In most Fe-S proteins, the terminal
ligands are thiolate sulfur centers from cysteinyl residues. The Fe centers are tetrahedral,
while the sulfide groups are two- or three-coordinated [42].

The Cu-S bond—The harder Cu(II) can be co-ordinated by oxygen and nitrogen atoms
of the harder amino acids (Tyr, Thr, His). The Cu(II)-N bonds are stable and often inert,
while the Cu(II)-O bonds are more labile. The soft Cu(I) is stabilized by soft ligands. Cu(I)
catalyzes the Fenton reaction with hydrogen peroxide. Cu(I) in proteins prefers the S atoms
or ions of Cys and Met. Cu-thiolate and Cu-thioether bonds are found in a wide variety of
enzymes with multifaceted co-ordination chemistry. S ligation to the metal centers provides
special properties to Cu enzymes. S atoms from thiolates or thioethers act as donor ligands
in a variety of Cu complexes [43].

The Zn-S bond—Zn is classified as borderline metal; i.e., Zn(II) does not act as either
hard or soft. Moreover, Zn does not have a strong preference for O-, N-, or S-coordination.
In the various plant biological systems, Zn exists only as Zn(II), not taking part in redox
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reactions. In protein Zn-binding sites, the Zn(II) may be co-ordinated by the oxygen
of aspartate or glutamate, the nitrogen of histidine, or the sulfur of cysteine. Among
these, His is the most observed, followed by Cys, through which S plays a functional
(catalytic) and a structural role in enzyme reactions. The Zn-S bond serves several roles:
in metallothionein and Zn release, in thionein and Zn binding, in control of Zn transfer
reactions and availability of cellular Zn in mononuclear sites, in the cellular distribution of
Zn, in proteins that detect the availability of cellular Zn, in redox-active Zn proteins, in Zn
thiolate cluster structures, and in Zn co-ordination dynamics [44].

The Mn-S bond—There are no Mn metalloenzymes containing an Mn-S co-ordination
sphere, as Mn(II) establishes co-ordination with hard ligands. His is the important ligand
for Mn(II), while Cyst and Met are less likely to co-ordinate with Mn(II) [40].

5. The Chelation Process
5.1. The Need for Chelation

Free EM can be toxic; therefore, EMs in plants exist as free ions in either very small
amounts or not at all. Instead, the metals that are present in plant fluids must be in
less-reactive chemical forms, bound to “proper” organic compounds, to prevent the uncon-
trolled binding. Selected organic molecules are implicated in metal ion binding and are
known as metal ion ligands or chelators. Chelation improves acquisition and transport of
EM with low solubility, along with immobilization, toward EM storage and tolerance. The
formation of EM complexes provides solubility as well as protection during long-distance
transport, as the EM atom is surrounded by the ligands. These chemical species donate a
number of electron pairs to the EM to form the complexes.

5.2. Chelators

Possible candidates as ligands are several small molecules: Organic acids offer their
carboxylate groups for chelation, among them citrate and malate. The amino acids histidine
(His), cysteine (Cys), nicotianamine (NA), and the phytosiderophores (PSs), the high-affinity
Fe(III) chelating compounds derived from NA, i.e., mugineic (MA) and 2′-deoxymugineic
(DMA) acids, count as well. Peptides and proteins (e.g., metallothioneins) are also included.

5.3. Sulfur-Based Chelators

Sulfur interacts with EM at the chelation level [45], and in this section, the correspond-
ing chelators are summarized. Therefore, the second level of S and EM interactions is the
formation and action of S-based chelators (Figure 1). These chelators may contain and
utilize the sulhydryl group or may give genesis to chelators containing, and contributing
with, the carboxyl group. Some of the chelators are excreted into the rhizosphere toward
effective EM phytoavailability, which comprises a third level of S and EM interactions.

5.3.1. Cysteine

Cys contains thiol and it can act directly as a metal-chelator. It combines EM binding
properties along with catalytic activity and redox properties. These properties of the thiol
group are interdependent and permit the redox regulation of proteins, metal binding, and
the control of redox activity by the respective metal, as well as the control of metal-based
enzyme catalysis by the ligands. In proteins, cysteine contributes also to “redox switches”
and to sensing concentrations of oxidative stressors, taking part in key regulatory and
signaling pathways. Additionally, it participates in the biosynthesis of phytochelatins [46].

5.3.2. Nicotianamine

NA has been shown to participate in the transport of the EM Fe, Cu, Mn, and Zn. NA
is produced by methionine and acts as a chelator through its carboxyl groups, possessing
a special role in the interaction between S and EM homeostasis. NA is synthesized by
NA synthase (NAS) from S-adenosyl-L-methionine. It is a ubiquitous metal chelator in
all plants. NA is an Fe chelator, and it has been demonstrated its ability to bind both Fe
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and Cu. It is believed to play a primary role in EM homeostasis, and therefore it links
EM homeostasis to S homeostasis. In vitro, NA can form stable complexes with Fe, Cu,
Zn, and Mn. The maximum stability of all EM-NA complexes is observed at pH 6.5. This
renders NA more likely as a symplastic chelator of metals. Cu is the exception because
Cu-NA complex is stable in mild acidic conditions. This fact favors the probable presence
of Cu-NA complex in the xylem [47–50].

Under Cu, Fe or Zn deficiency, NA synthase (NAS) genes are upregulated in roots
and shoots of plants. The essentiality of NA has been established for the EM transport
in veins and interveinal areas, also for reproductive growth and fertility. These suggest a
role for NA in long-distance translocation of EM. The overexpression of a Hordeum NAS
in transgenic tobacco plants resulted in an elevated Cu, Fe and Zn content in leaves and
flowers and higher Fe and Zn content in pollen and seeds [51]. The Cu-NA, Fe-NA, and
Zn-NA complexes in the phloem, and the Cu-NA and Zn-NA ones in the xylem support
the translocation of EM from roots to shoots [46,47,49].

5.3.3. Mugineic Acid and Its Derivatives

MA has been shown to participate in the transport of the EM Fe, Cu, Mn, and Zn. MA
consists of an azetidine group and three carboxylates. It is a phytosiderophore (PS), i.e., a
plant-produced siderophore, functioning as an Fe accumulating agent. The precursor is NA,
and the ability to modify NA into MA and derivative compounds is unique to graminaceous
species [2]. Those derivative compounds carry modifications on their molecules (mainly
hydroxylations) toward and increasing stability in low-pH environments [52]. The family
of PSs consists of eight compounds [53]. PSs are excreted by graminaceous plants into the
plant’s rhizosphere, they chelate Fe(III), and then the Fe(III)-PS complex is transported into
the root (Strategy II for Fe uptake).

The nongraminaceous species do not synthesize PSs for iron uptake. These plants
solubilize soil Fe(III) by secretion of organic acids and H+ to the rhizosphere. This Fe(III) is
then reduced by ferric-chelate reductases (FRO) localized in the plasma membrane, and the
resulting Fe(II) is transferred into root cells (Strategy (I) for Fe uptake).

There are, however, some plant species known to be exceptions to the Strategy (I)/(II)
classification, and instead use a combined method. The Strategy (I) Fe(II) transporters
OsIRT1 and OsIRT2 have also been discovered in rice. Moreover, Tsednee et al. [54]
described that Arabidopsis halleri utilizes NA as an excreted Fe-chelating agent, resembling
the Strategy (II) secretion of PSs. Finally, the olive tree seems to have Strategy (II) method
for Fe uptake, although it is a nongraminaceous plant species [33,55].

5.3.4. Glutathione

The aforementioned molecules are small ones. Moving to peptides, GSH is the tripep-
tide γ-Glu-Cys-Gly, a thiol compound with major interest as an antioxidant molecule. GSH
is widely distributed in plant cell compartments, in a range of 0.5–10 mM. It performs key
roles in the antioxidant machinery and cellular redox homeostasis, as well as in the defense
mechanism of plants. GSH is involved in the chelation and detoxification of free EM, and
the maintenance of a high GSH level is required to perform these roles, among which is the
reduction of oxidative damage caused by accumulated metals [56–68].

5.3.5. Phytochelatins

Phytochelatins (PCs) are derived from glutathione (γGlu-Cys)n-Gly, produced by the
enzyme phytochelatin synthase, where GSH is a precursor for their synthesis. PCs act
as chelators, which are important for the detoxification of heavy metals. Depending on
the number of the γGlu-Cys group they carry, they are abbreviated as PC2 through PC11.
Apart from Gly (PC), the third component may be Ala (homo-PC), Ser (hydroxymethyl-
PC), Glu or Gln (iso-PC), or none (desglycine-PC). Synthesis of PCs may be metal-specific
and/or plant-specific. Fe has been reported as a strong inducer of PCs, while Zn is a weak
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inducer and Cu is a moderate one [69,70]. The EM ions, Zn(II), Cu(II), and Mn(II) may be
transferred into the vacuoles as forms of PC2-EM complexes [71,72].

5.3.6. Metallothioneins

Metallothioneins (MTs) are polypeptides of low molecular weight (4–14 kDa), rich
in Cys. MTs are a class of metal chelator thiol compounds and are S-donor ligands. MTs
bind EM through the thiol group of their Cys-residues. MTs are products of mRNA
translation, and their expression is regulated during metal stress toward EM detoxification
and maintaining their homeostasis [73–78].

The ability of MTs to bind and sequester with EM depends upon the distribution
of Cys residues. It has been proposed that the MT is composed of the α and β binding
domains, each one composed of various Cys-clusters. The α-domain is the C-terminal part
that can bind four divalent metal ions. The β-domain is the N-terminal part of the peptide,
which has three binding sites for divalent ions. The two domains are Cys-rich, separated
by a central Cys-free spacer. The Cys residues are arranged in various motifs, such as
Cys-Cys, Cys-X-Cys, and Cys-X-X-Cys sequences, where X represents another amino acid.
Abiotic stresses, such as heat, drought, light, salinity, and senescence, can modify MT gene
expression. The MT family includes a number of small Cys-rich proteins holding the ability
to co-ordinate transition metal ions, such us Zn(II) and Cu(I) [8,73,78–81].

MTs show high affinity for EM through the involvement of peptide donor groups
(S-thiol and N-imidazole) in metal chelation. Metal atoms are covalently bonded via
sulfhydryl residues of cysteines and MTs provide thiols in their reduced state for metal
chelation. Zn and Cu strongly induce MT gene expression in plants. The high affinity of
MTs for metals provides a protective mechanism against metal toxicity, especially against
Zn and Cu toxicity, significant for the maintenance of their homeostasis [78,79,82–85].

6. Transporters of Metal Micronutrients

Sulfur interacts with EM at the translocation and transport levels, too, and in this
section, the corresponding transporters for handling of the EM co-ordinated by the S-
based chelators are summarized. This comprises the fourth level of S and EM interactions
(Figure 1).

A number of gene transporter families are involved in metal micronutrients’ transport
in plants. These transporter families include: Yellow Stripe-Like (YSL), Zinc regulated
transporter/Iron-regulated transporter [ZRT/IRT1]-related Protein (ZIP), Natural Resis-
tance Associated Macrophage Protein) (NRAMP), Heavy Metal ATPase (HMA), Metal
Tolerance/Transport Protein (MTP), Copper Transporter (COPT), and Vacuolar Iron Trans-
porter (VIT).

6.1. Yellow Stripe-like

The YSL transporters belong to the OligoPeptide Transporter superfamily (OPT). The
members of the OPT superfamily transport tri-, tetra-, penta-, and hexapeptides. YS and
YSL proteins mediate the uptake of metals complexed with the plant-derived metal-ligands
known as NA or PSs [49]. The most notable representative of this family is ZmYS1, the
protein of maize known to transport mainly Fe-PS from the rhizosphere inside plant roots.
ZmYS1 is overexpressed under Fe-deficient conditions, but plays a role in the uptake of Cu,
Zn, and Mn complexes with mugineic acid [86–89].

YSL proteins function mainly as transporters of EM-NA complexes inside the plant
body, having roles in the translocation of those complexes inside the vasculature toward
the developing tissues, as well as in the metal loading of the developing seeds. These
roles suggest multiple functions of YSL proteins in Fe, Cu, Zn, and Mn long-distance
transport through vascular tissues to the whole plant body. It has been suggested that YSL
transport divalent cations are complexed with NA in the phloem [49]. Rice OsYSL2 has
been implicated in the transport of Fe(II)-NA and Mn(II)-NA complexes but not with Fe(III)-
NA [90]. Another member of the rice YSL family, OsYSL6 is required for Mn transport and
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sequestration from the apoplast into the symplast, especially when toxic levels of this metal
are present in plant rhizosphere [91].

YSL proteins also have the nongrass plants, which seem to not produce PS for Fe
uptake and transport. In these plants, YSL probably functions as metal-NA transporters.
Arabidopsis thaliana AtYSL1 is overexpressed when plants are grown under high Fe condi-
tions, as well as during leaf senescence [92]. AtYSL2, on the other hand, is expressed under
Fe, Cu, or Zn sufficiency conditions [93,94].

6.2. Zinc Regulated Transporter/Iron-Regulated Transporter [ZRT/IRT1]-Related Protein

The ZIP family is found in all eukaryotes [95]. ZIP transporters are involved in the
uptake, intracellular transport, and detoxification of various divalent cations, including
Zn2+, Fe2+, Cu2+, and Mn2+, in plants. ZIP proteins assist metal ion homeostasis by
mediating the transportation of those cations into the cytoplasm. ZIP transporters are
located in the membranes of various cell organelles, and they are known to play a pivotal
role in Zn homeostasis of the plants. Members of the ZIP family are the Fe-regulated
transporters (IRTs), which are the major Fe transporters in nongrass plants. The genes of
the IRT family exhibit increased expression levels under Fe deficiency conditions, and they
are expressed under different metal stresses [28,96–98].

Arabidopsis thaliana AtIRT1 is the main Fe(II) transporter for Fe uptake from the
rhizosphere [99–102], while AtIRT2 also seems to function for the uptake and transport of
Fe(II) [103]. IRTs of Arabidopsis are implicated in the transport of divalent metal ions such
as Zn(II) and Mn(II). AtIRT3 is involved in Fe and Zn translocation, and overexpression of
AtIRT3 resulted in increased accumulation of Fe in roots and Zn in shoots [104]. Among
A. thaliana ZIP transporters, AtZIP1-AtZIP5, AtZIP9-AtZIP12, and AtIRT3 seem to function
in Zn acquisition under Zn-deficient conditions [105].

Grasses also have functional ZIP transporters. Rice OsIRT1 is a functional Fe trans-
porter for the uptake of Fe from the rhizosphere, contributing also to Fe translocation to the
shoot and seeds [106]. As opposed to this, the accumulation of OsZIP4 and OsZIP5 results
in increased Zn concentration in roots but not increased Zn content in seeds [107,108].
Barley IRT1 is also able to transport Mn and Fe, but it seems that its primary function here
is Mn acquisition from the soil [109].

6.3. Natural Resistance Associated Macrophage Protein

The NRAMPs are metal transporters, and they are found in all living organisms.
They are known to be involved in divalent metal uptake into the cell and subsequent
intracellular transportation into the various organelles [110]. The members of the plant
NRAMP family contribute to the homeostasis of Fe(II), Mn(II), Cu(II), and Zn(II) inside
the cell. NRAMP transporters also translocate toxic metals such as arsenic (As3+), lead
(Pb2+), and cadmium (Cd2+) [111,112]. Arabidopsis thaliana AtNRAMP1, AtNRAMP3,
and AtNRAMP4 play crucial roles in the transportation of Fe(II) and Mn(II) [113,114].
Rice OsNRAMP3, OsNRAMP4, and OsNRAMP5 have roles in the transport of Mn(II):
OsNRAMP3 is considered responsible for Mn allocation from source to sink tissues, while
OsNRAMP4 and OsNRAMP5 have functions in intracellular mobilization of Mn [115–117].
Under limiting Mn supply, OsNRAMP3 switches the flow of Mn toward the young leaves
and panicles. When the Mn supply is at toxic levels, the NRAMP3 protein is degraded, and
Mn is directed to older leaves.

6.4. Heavy Metal ATPase

The HMAs (or P1B-type ATPases) play crucial roles in Zn and Cd translocation or
detoxification in plants. They are a diverse group of proteins, both in terms of tissue
distribution and subcellular localization, as well as in terms of metal specificity. HMAs are
divided into two subgroups based on their metal-substrate specificity: a Cu/Ag subgroup
and a Zn/Co/Cd/Pb subgroup [118,119]. Arabidopsis thaliana AtHMA1–AtHMA4 belong
to the Zn/Co/Cd/Pb subgroup [120–122]. AtHMA1 is localized to the chloroplasts [123],
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while AtHMA3 is localized to the tonoplast for the efficient detoxification of Cd and Zn
via vacuolar sequestration [124,125]. AtHMA2 and AtHMA4 are both localized to the
plasma membrane of the cells adjacent to xylem vessels of roots and function in Zn and Cd
efflux from cells [126–129]. AtHMA5-AtHMA8 belong to the Cu/Ag subgroup. AtHMA7 is
considered to have a role in Cu delivery to ethylene receptors [130]. AtHMA6 has a function
in the delivery of Cu to the plastid, especially to the Cu-dependent proteins plastocyanin
and Cu/Zn SOD [131]. Rice OsHMA2 belongs to the Zn/Co/Cd/Pb subgroup, having
an important role in long-distance transport of Zn and Cd, and participating in Zn and
Cd translocation to developing seeds [132]. OsHMA3 belongs to the same subgroup and
transports Cd, having a role in the transportation of Cd into vacuoles of root cells [132,133].

6.5. Metal Tolerance/Transport Protein

The MTP members belong to the Cation Diffusion Facilitators (CDF) superfamily. These
transporters are believed to be responsible for various metal ions’ homeostasis, including Fe,
Mn, and Zn. These proteins are commonly involved in the translocation of metals out of the
cytosol into the organelles or toward the apoplast [134,135]. Arabidopsis thaliana AtMTP1 is a
tonoplast-localized transporter which is expressed throughout the plant body, transporting Zn
into vacuoles [136,137]. Moreover, AtMTP3 and AtMTP8 transport Zn and Mn, respectively,
playing a pivotal role in metal tolerance [138–141]. AtMTP11 functions by transferring Mn into
endosomal vesicles, having a role in Mn transport and tolerance [142,143], while AtMTP12 has
been identified as a Zn transporter [144]. The tonoplast-localized OsMTP8.1 and OsMTP8.2
enhance Mn uptake and tolerance through the sequestration of the metal into the vacuoles of the
shoot and the root [145,146], and OsMTP11 is a transporter responsible for Mn absorption and
translocation in rice plants [147].

6.6. Copper Transporters (COPT)

The major group of proteins implicated in Cu transport is the COPT proteins, which are
localized either in the plasma membrane or in tonoplast and lysosome membranes. COPT
proteins are highly specific for transport of Cu(I) but not for Cu(II) [148,149]. Therefore,
membrane metalloreductases need to catalyze the reduction of Cu(II) to Cu(I) before Cu(I)
transport with COPT. After passing through the transporter pore, an efficient delivery
of Cu(I) to membrane-associated Cu-chaperones is needed [148,149]. Arabidopsis thaliana
AtCOPT1, AtCOPT2, and AtCOPT6 exhibit higher expression levels in leaves, AtCOPT3
and AtCOPT5 in stems, and AtCOPT4 in roots [150–152]. AtCOPT5 is a tonoplast-localized
protein, which is probably involved in stored Cu redistribution [151].

6.7. Vacuolar Iron Transporters (VIT)

The two major Fe storage cellular sites in plants are the vacuoles and ferritin. Ferritin
is a protein which localizes in plastids, where Fe is accumulated in a bioavailable form [153].
On the contrary, vacuolar Fe strongly binds with phytates, resulting in a hardly bioavailable
Fe form. Nevertheless, vacuolar accumulation of Fe represents an important cellular Fe
homeostasis mechanism in plants. Vacuolar Fe compartmentalization and sequestration
is mediated by VIT. VIT play significant roles in Fe homeostasis, especially under high Fe
conditions, where VIT can prevent toxicity at the cellular level by maintaining optimal
concentrations [154–156]. AtVIT1 can transport excess Fe into vacuoles when Arabidopsis
seedlings grow under high Fe conditions [157]. OsVIT1 and OsVIT2 are overexpressed in
the flag leaf blades and sheaths of rice plants, for efficient handling of Fe transport into the
vacuoles [158].

7. Interactions of EM Homeostasis

Maintaining the homeostasis of each EM within the plant is a complex and dynamic
task at all levels. Optimal concentrations must be maintained for safe functioning within
the cells and organelles, which implies that deficiency or excess must be avoided. Moreover,
each EM interacts and influences the functions of the others. Hence, tight regulation is
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needed, because suffering from deficiency or excess of each EM implies impaired cellular
metabolism. Reduced growth and development are anticipated, coupled with imbalance in
the uptake of other EMs and hectic tolerance to diseases [31,159–163].

The membrane transport systems are among the first that take part in the regulation of
crosstalk between EMs. In the rhizosphere, the divalent forms of EM compete for universal
metal transporters such as IRTs or NRAMPs for uptake. Within the plant, EMs compete
for transport, binding, and storage. IRT1 and IRT2 support the entries of Fe(II), Zn(II),
and Mn(II), while NRAMPs support the entries of Fe(II) and Mn(II). The Fe-regulated
transporters of the ZIP family OsZIP1–4, as well as the transporter OsHMA2 which belongs
to the heavy metal ATPase family, may also transport Fe(II) or Zn(II) [28,31,164–166].

In this line, EM binding proteins tend to select EM ions in an order of preference. The
competitive EM must be excluded from binding sites for the proper ions to get their place.
Mismetallation is one reason for impaired metabolism. EM crosstalks is an open field for
research [28,167].

The Contribution of S to EM Metalome Homeostasis

S deficiency reduces plant growth, which in turn has negative effects on the root
uptake of other nutrients, such as, for example, N, K, and Mg, and vice versa: N, K, or Mg
deficiencies reduce the uptake of S. Legumes have high requirements for S, and interaction
between N and S can be found at the nodules. During the synthesis of the Mo co-factor,
an interaction exists between S, Cu, Fe, and Zn. Mo uptake has been shown to be strongly
increased under S deficiency, and to a smaller extent under Fe, Zn, Mn, or Cu deficiency [17].
In particular, the mitochondria are important players in nutrient interplay in plants, and
the EMs are among the most important members of the mitochondrial metalome.

S interacts with Fe, while Fe, Cu, and Zn strongly interact with each other [168–170].
Hence, below, we elaborate on these interactions.

Due to the role of S in Fe uptake and transport within the plant, Fe deprivation induces
a rebalancing of S metabolism to cope with increased needs for more efficient Fe mining
and distribution. In this line, the response of graminaceous plants growing under Fe
limitation is associated with S limitation. A connection point of Fe and S homeostasis is the
Fe-S clusters. APS-reductase and sulfite reductase, two of the enzymes of S-assimilation
pathway, are metalloenzymes containing Fe-S clusters, and are examples that highlight the
role of Fe in S assimilation.

Fe ligands have a wide range of affinities, and this trait affects Fe homeostasis. The
regulation of EM homeostasis and the maintenance of a stable metabolism requires complex
crosstalk pathways in cells (for review see [31]), and below, we summarize these crosstalks.
In particular, Fe competes with the other EMs during uptake, transport, and chemical
reaction. Fe and Zn interact due to the similarity between both their divalent cations as well
as their transporter proteins. As regards to their uptake and distribution, an antagonistic
relationship between them has been reported. Zn concentration influences Fe uptake.
Higher concentrations of Cu in relation to Zn due to the application of a Cu fertilizer in the
rhizospheric solution can reduce Zn phytoavailability, and vice versa. This is due to the
competition for the same transporters for absorption by the root. On the other hand, the
use of Zn fertilizers has been described to have an impact on Cu concentration in wheat
tissues. Both Fe and Cu function as cofactors for components of the cells’ electron transport
chains. Fe and Cu interact and influence the uptake of each other. Antagonism also exists
between Fe and Mn. During transport, it is their ratio in the solution that is more important
compared with their absolute amounts.

8. From Rhizosphere to Seed

After taken up from the rhizosphere, EM and S follow a complex path through many
different membrane systems and plant compartments. For an EM, or an S, form to be
utilized by the seed, the route includes availability in the soil for uptake by the roots
(phytoavailability) and entry into roots; transport and translocation within the vasculature,
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including xylem loading in roots; xylem unloading and phloem loading in the leaves; and
finally, phloem unloading in the developing organs and seeds [48,49,171–176].

Once an EM is taken up into roots, it continues apoplastically or it enters a symplast.
Then, forwarding of the EM requires movement from this symplast to a new one. This
process includes either movement of the EM through plasmodesmata, or it must leave the
first symplast by entering the apoplast outside the cells, and then enter again in another
symplast. This represents a retardation in the translocation of the EM within the plant. The
membrane potential of the plasma membrane is negative inside, maintained by the plasma
membrane H+-ATPases. Hence, the membrane potential is the major driving force for the
passive uptake of positively charged EM ions into the cell. When inside the cytoplasm,
the tonoplast has an inside positive membrane potential, and in this case, active transport
systems are required for import and export from the vacuole [4,175,177].

In this route to the seed, we will highlight the contribution of sulfur and the S-based
contributing components and mechanisms to the movement of an EM.

8.1. Bioavailability for Uptake

The rhizosphere is the source of sulfate and EM for plants; thus, efficient sulfate and
EM uptake systems by plants are required. The phytoavailability of an EM depends upon
its solubility in the rhizosphere, and this attribute varies considerably according to soil
composition, pH, and available P [38].

Fe in aerated soils is poorly phytoavailable; it is present as Fe(III) and precipitates
by forming poorly soluble oxides, hydroxides, and oxyhydroxides not readily available
for plant uptake. The connection between the redox Fe switch and S has been reviewed
by Li et al. [178]. To uptake Fe from the rhizosphere, plants have developed two different
strategies. Based on this trait, plants are divided into two groups: graminaceous and
nongraminaceous plants. Nongraminaceous plants have adopted the reductive strategy
(the Strategy I) for Fe uptake from their rhizosphere. This strategy includes rhizosphere
acidification, along with secretion of chelators, toward chelating Fe(III). Graminaceous
plants have adopted the chelation strategy (the Strategy II) for Fe uptake. This strategy
is based on the release of PSs, that act as Fe(III) chelating compounds synthesized from
Met via NA. As such, this strategy is inevitably linked to S homeostasis. In this line, in a
graminaceous plant facing S deficiency, the release of PSs is reduced [45].

It is still obscure how the Cu ions are actively mobilized by the plant. PS secretion by
graminaceous plants enhances Cu mobilization, but so far, no evidence is available for the
uptake of Cu-PS complexes by the root. Zn and Mn are taken up as the free divalent ions.
Zn uptake is not closely related to the Zn concentration in the soil solution [38,179].

8.2. Entry into Roots

The root cortex is the first symplastic domain EM enters. When inside root cells, the
EM binds to the existing organic molecules and travels bound to a symplastic EM chelator.
The EM-NA complex is transportable; it diffuses between cells of the root symplast, through
the plasmodesmal connections, and toward the xylem. The transportation of the EM in the
root symplast is restricted by the storage into the vacuole, and this import requires active
transporters [175].

Fe uptake—The components of the reductive strategy for Fe uptake include: H+-
ATPases for root apoplast and rhizosphere acidification, transporters involved in Fe(III)-
chelators secretion, Fe(III) chelate reductase for the reduction of Fe(III) to Fe(II), and Fe(II)
transporters for the translocation of Fe(II) across the plasma membrane inside the root
cells. The components of the chelation strategy are: enzymes involved in PSs (Fe(III)
chelators) biosynthesis, PSs exporters to root apoplast and rhizosphere, and transporters
for the translocation of Fe(III)-PS complexes inside the root cells. This division presents
exceptions, the most known of which is the case of rice. Rice follows a combined strategy:
apart from the components of the chelating strategy, it also utilizes Fe(II) transporters for
the translocation of Fe(II), which is the predominant Fe species in rice fields. It is evident
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though that the two strategies are not as different as it was initially assumed. Both of them
include the secretion of an Fe(III) chelator, which will chelate Fe(III). Then, they either
facilitate its reduction to Fe(II) and translocation of Fe(II) inside the cells, or they mediate
the translocation of the resulting complex directly inside root cells.

Zn uptake—In nongraminaceous plants, Zn(II) uptake into root cells is mediated by
IRT3, which also transports Fe(II) in addition to Zn(II). IRT1, the uptake transporter for Fe,
also has a broad substrate range and uptakes Zn(II) too. Graminaceous plants release MA
for Fe(III) uptake, and may employ this mechanism toward acquiring Zn. MA chelates
Zn(II) in addition to Fe(III). The Fe(III)-MA transporter YS1 transports the Zn(II)-MA
complex as well.

Mn uptake—Mn is taken up as Mn(II) into the root epidermal or cortical cells by various
transporters, among which is the NRAMP [180].

8.3. Transport within the Vascular System

The EM species existing in any given compartment determines its biological activity.
According to Alvarez-Fernandez et al. [45], the existing information on the actual EM
complexes of the plant fluids is still hectic because the metal speciation affects most of
the physicochemical and physiological traits, such as solubility, precipitation, acid-base
equilibria, diffusivity, electron-transfer reactions, and the possibility for EM toxicity. These
traits also affect the capability of the EM complex to be a substrate of membrane transporters
for loading and unloading to xylem and phloem.

8.3.1. Transport in the Xylem Vascular Tissue

The xylem contains slightly acidic sap with a pH level of around pH 5–5.5. To enter
the xylem, EM is actively exported from the symplast. Entering the xylem sap, EM is trans-
ported complexed or as a free cation. In this sap, carboxylic acids exist at concentrations
from 2 to 9 mM.

It is not known how the Fe complexes enter into the xylem sap, where the Fe-citrate
complex is localized. NA is not essential for xylem Fe transport. In graminaceous plants,
PSs could also serve as Fe chelators in the xylem. NA seems to be the player for xylem Fe
unloading. The Fe(II)-NA complex mediates the long-distance Fe allocation between plant
organs. It has also been suggested that Fe-NA may be unloaded into the xylem by a YSL
transporter [173].

Zn exists either as free hydrated Zn(II) ions, or co-ordinated with citrate and/or malate.
The Zn-NA complex is involved in long-distance transport. Histidine has been proposed
as a Zn ligand within cells. Zn-phytate complexes have been found in roots, whereas
Zn-malate and Zn-citrate are the major species in shoots.

Cu(II)-DMA, but not Cu(II)-NA, has been detected in xylem sap of rice plants, although
NA and DMA were found in the xylem and in comparable concentrations [45,47,181].

An EM is not transferred directly to the developing seed through the xylem. It is
first allocated to the leaves. Then, it is exported from the xylem into the parenchyma and
mesophyll cells. The transport proteins in action are not fully characterized. In turn, the
EM is transferred out of the mesophyll cells toward the leaf apoplast, and it is loaded into
the phloem, which is the vascular pathway to the developing seeds. In the graminaceous
species, vascular bundles of the stem favor a more direct transfer of EM from the xylem to
phloem strands for the transportation to the panicle [182].

8.3.2. Transport in the Phloem Vascular Tissue

Loading of EM into the phloem occurs in leaves. The distribution of EM to developing
organs depends on phloem transport, while the phloem is the only route for an EM to
enter the developing seeds. When demand starts to increase, the EM is remobilized from
senescing leaves toward allocating to the reproductive tissues. During EM remobilization,
required active transport is not required for EM to exit the vacuole because membrane
potential inside the tonoplast is positive.
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The phloem sap is alkaline, with pH values ranging between 7 and 8, where EMs are
sparingly soluble. Due to the alkaline pH of the phloem, an EM travels in the phloem
bound to a chelator, most likely the NA. EM complexation with suitable chelators provides
solubility and shielding for efficient phloem transport of EM to their sinks. Fe and Cu are
highly reactive species, and they can easily undergo changes of valence, thus favoring the
production of ROS [49,183].

Fe-containing compounds or complexes, and the Fe(III)-DMA complex, were detected
in the phloem sap. The Fe(II)-NA complex has not yet been found in the phloem sap. It
seems that NA is significant in Fe loading to the phloem, and once transferred into phloem,
Fe may be transported in another chelated form, such as bound to proteins [45,184].

The phloem sap of rice contains the complexes Cu(II)-NA, Cu(II)-His, and high
molecular-weight compounds. The Cu-containing proteins detected in phloem sap so
far include a Cu-chaperone (CCH homolog), Cu/Zn-superoxide dismutase, and several
MTs [180,185,186].

During the period of grain loading, the remobilization of Zn in the graminaceous
species is not restricted to leaves; it also occurs from the stems, peduncles, florets, and
rachis. How Zn is transported out of leaf mesophyll cells and how Zn enters the phloem
is far from well-known. Almost all Zn in the phloem sap of rice was identified as the
Zn(II)-NA complex [175,183,187].

Hectic information on the chemical forms of Mn in the phloem sap is available. In R.
communis, Mn was detected in association with low molecular weight peptides [175].

EM in the apoplastic fluid—The apoplastic fluid plays important roles in the transport
and storage of EM, and its composition is dependent on the import via xylem, the following
absorption by cells, and finally the export by phloem. The available information is very
hectic regarding tackling direct EM speciation on apoplastic fluid. For example, there are
indications that Fe is present in the leaf apoplastic fluid as Fe-citrate complexes [45,188–191].

8.4. Unloading in Developing Seeds

The EM content of the seed—Several mechanisms are involved in phloem unloading
and postphloem movement of EM in the developing seed. These include the movement
through apoplastic barriers. The loading rates of EM imported through the phloem are
regulated by translocation processes localized in both the sources, i.e., the leaves and the
stems, and the seed sinks [192].

Phloem unloading in the developing seed seems to be symplastic into a specific
domain, with symplastic connections to the entire seed coat. Active transport is required
for EM to exit from living cells, as membranes present highly negative potential on the
inside. The HMA-type transporter is the prime candidate for export of EM from the plant
into the endosperm cavity. Transporters of the MTP family may also be associated with the
regulation of the amount of EM entering the developing seed [192–194].

The S content of the seed—Yield and seed quality are related to the S content of the
seed. S presents a great impact on the improvement of seed yield and quality. The S is
transported from leaves, as the major source, during the various developmental phases of
seed. Remobilization of S takes places in mature leaves and/or stems which are S transient
storage pools. The information on the source-to-sink relationship during the time of seed
development is hectic. The same holds true for the role of sulfate exported from the seed
vacuoles during the seed developmental stage in order to maintain cellular homeosta-
sis. SULTR3 and SULTR4 family transporters seem to be involved in S transportation
mechanisms during seed development [195].

As regards the form of S delivered to seeds through the phloem, this is diverse; S is
delivered as sulfate to pods of legumes, as GSH to rice grains, and as S-methylmethionine
in wheat. Rice seeds receive an amino form of S as a nutritional form. Transportation of
sulfate through sulfate transporters localized in the phloem contributes to the import of S
in seeds. The S-reducing enzymes are also present in the developing seeds, resulting in the
accumulation of reduced sulfur in mature seeds [195–201].
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9. The Contribution of S to EM Agronomic Biofortification

The agronomic phytofortification activity to increase the EM content is associated with
an increase in yield and quality. The sulfate salts of Fe, Cu, Zn, and Mn have been used for
alleviating low contents of EM in seeds and edible parts, in comparison to EM complexed
with synthetic ligands. The presowing application of S in the form of granular kieserite,
in S-deficient soil, along with top dressing with magnesium sulphate heptahydrate and
ammonium nitrate, was sufficient to achieve optimal grain yield with beneficial Fe, Mn, Zn,
and Cu content in grain dry mass [202,203].

Fertilizer type along with application method influence the effectiveness of application
on crop performance. The fertilizer formulation largely determines the EM phytoavail-
ability. Toward increasing yield and nutritional quality of a crop, the fertilization of the
rhizosphere with EM has been suggested as a sustainable strategy. However, foliar fertiliza-
tion with EM often stimulates more nutrient uptake and efficient allocation in the edible
plant parts compared with soil fertilization. Their combination is often the most effective
method [9].

Foliar fertilization with FeSO4 is applied when low-Fe content is found in the soil.
This treatment improved grain Fe concentration in wheat by about 28% in China, and
21% in Iran, whereas in Canada, it remained ineffective. By increasing soil N application,
shoot and grain Fe contents significantly enhanced both under field and greenhouse
conditions [204–214]. Application of Fe fertilizers alone either in inorganic (FeSO4) or in
chelated form (e.g., Fe-EDDHA, Fe- EDTA or Fe-citrate) presented a small positive impact
on increasing Fe content in grain, while in combination with soil N application, it enhanced
by 47%. At a given Fe treatment, soil N supply can enhance shoot Fe concentrations by up
to 70%. Foliar application of urea also improved grain Fe concentration [204–214].

Zn application as ZnSO4 increased grain yield and Zn content [202,215]. When plants
are enriched with Zn, N should be taken care of, especially during the grain pouring phase,
as N plays an important role in Zn uptake [216–219]. Zn and the other EMs concentrations
increased after the use of appropriately high doses of N coupled with foliar fertilization
with EMs [208,218,220,221].

Foliar applications of MnSO4.H2O and CuSO4.5H2O, three times and separately at
three critical stages of wheat grain development, i.e., middle boot, early milk, and dough
stages, along with increased dose of N as top-dressing prior to heading, enhanced nutrient
uptake of N, Cu, and Mn, improved yield, and enriched mineral content of the wheat
grains [9].

Another phytofortification example is based on the use of elemental S. Fertilizer
granules can be enriched with 2% elemental sulfur (FES). A durum wheat crop that received
the enriched fertilizer accumulated a higher amount of Fe compared to a conventional
one. The fertilization with FES at sowing mobilized iron, thus providing more iron to the
crop, and fortified the S status of the crop, too. The initiation of the fast stem elongation
stage constituted a turning point. Prior to its initiation, the use of FES increased the iron
concentration in the main stems, followed by an increase in the organic S concentration.
Thereafter, the FES-crop presented plants with higher main stems and fewer tillers. At
harvesting, all plant parts of the FES-crop were heavier, containing more iron and organic
sulfur, and the obtained commercial yield of the FES-crop was higher by 27.3% [222].

The need for integrated soil fertility management—It is highlighted that the application
of sulfate salts of Fe, Cu, Zn, and Mn is effective, or more effective, under an integrated
soil fertility management approach. The form of the nutrients and the interactions between
them can have positive, neutral, or negative effects on yields and nutrient use efficiencies.
Various factors determine the success of agronomic phytofortification, depending on EM
phytoavailability at different stages, along with efficient uptake and handling of EM by
the plant. Soils with (multiple) EM deficiencies are nonresponsive to NPK, despite the
addition of NPK fertilizers. Management of rhizosphere N and P is important for increasing
the effectiveness of the applied EM. Wheat fertilization with NP fertilizer enriched in Zn
has been effective in increasing the yield of wheat grain. The adequate N and P status
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of plants presents positive effects on root development, EM transport to the shoot, and
remobilization of EM from leaves to seeds. In wheat crops, proper N application increased
Zn and Fe contents in the grain endosperm. In sorghum and finger millet crops fertilized
with blends of mineral NPK enriched with Zn, B and S, the N, P, Zn, B, and S contents were
increased significantly, along with crop productivity [208,223,224].

Depending on the amount of the phytoavailable Zn, the rhizospheric P can stimulate
root growth and Zn uptake, or the same application of P fertilizer can trigger Zn deficiency
by precipitating the already hectic concentrations of Zn, as Zn phosphate is insoluble.
Addition of P appears to induce Zn deficiency through dilution effects and interference
with Zn translocation from the roots.

Symbioses with arbuscular mycorrhizal fungi (AMF) increases the uptake of nutrients,
such as P, Fe, and Zn, that are sparingly soluble in rhizosphere. Mycorrhizal symbiosis
modifies plant demands for reduced S and regulates the uptake, distribution, and assimila-
tion of the sulfate accordingly [225]. Sulfate possibly regulates the expression of ZmNAS1,
ZmNAS3, and ZmYS1 genes, revealing its potential role as signal molecule for the Fe home-
ostasis in AMF plants. The symbiosis with AMF prevented Fe-deprivation responses in the
S-deprived maize plants. It seems that Fe was provided directly to the mycorrhizal plants
through the fungal network [226]. Moreover, it has been proposed that the gene expression
of the DMA exporter ZmTOM1 can be used as an early indicator for the establishment of a
mycorrhizal relationship in maize [227]. The Fe uptake pathway seems to be regulated by
sulfate supply in S-deprived maize plants. Moreover, a strong correlation seems to exist
between the transcriptional regulation of the Fe-uptake pathway genes and the sulfate
phytoavailability, and this holds true independently of the existence of mycorrhizal associa-
tion or not. Sulfate is probably a key component of the signal transduction pathway that
regulates the expression of the Fe-uptake pathway genes in maize plants [228].

10. Conclusions

The functional interactions of S with EM can be categorized into four groups:
(1) effective EM bonding, (2) effective EM chelation, (3) effective EM phytoavailability,
and (4) effective EM transport. Each category contributes to retaining EM metalome home-
ostasis, and then to the effective re-translocation of S and EM from source leaves to sink
seeds. These interactions are based first on the properties of the sulfhydryl group, which
contribute to the sequestration of the proper EM by a variety of molecules, enzymes, or
chelators. The fact that NA is produced from Met and that NA serves as a ligand with
carboxylic groups broadens the interaction spectrum with more capacities, along with
chelation and transportation components. The allocation and the action of the discussed
components explain why the sulfate salts of Fe, Zn, Cu, and Mn are efficient phytofor-
tification agents. Coupled with ES and AMF, under integrated and balanced fertility
management of the rhizosphere, it is anticipated that yield and its quality can be obtained.
The existing knowledge on the interactions discussed above provides opportunities both
for future improvements of the biofortification programs and actions, as well as for deeper
understanding of the acting mechanisms about re-translocation from the source leaf to the
specific sink. In a biofortification program, selected metabolites could be included such as
S-containing amino acids or metabolites, alone or in combination with EM sulfate salts, to-
ward sustaining plants’ resistance to transient deficiencies or stresses. This suggests further
research on the physiological background of how the applied metabolites are translocated,
handled, and re-translocated to the sink organ, and what the contribution of S is in the
acting mechanisms.
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