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Abstract 

Background:  Despite the dramatic increase in the use of medical imaging in various therapeutic fields of clinical tri-
als, the first step of image quality check (image QC), which aims to check whether images are uploaded appropriately 
according to the predefined rules, is still performed manually by image analysts, which requires a lot of manpower 
and time.

Methods:  In this retrospective study, 1669 computed tomography (CT) images with five specific anatomical loca-
tions were collected from Asan Medical Center and Kangdong Sacred Heart Hospital. To generate the ground truth, 
two radiologists reviewed the anatomical locations and presence of contrast enhancement using the collected data. 
The individual deep learning model is developed through InceptionResNetv2 and transfer learning, and we propose 
Image Quality Check-Net (Image QC-Net), an ensemble AI model that utilizes it. To evaluate their clinical effective-
ness, the overall accuracy and time spent on image quality check of a conventional model and ImageQC-net were 
compared.

Results:  ImageQC-net body part classification showed excellent performance in both internal (precision, 100%; 
recall, 100% accuracy, 100%) and external verification sets (precision, 99.8%; recovery rate, 99.8%, accuracy, 99.8%). 
In addition, contrast enhancement classification performance achieved 100% precision, recall, and accuracy in the 
internal verification set and achieved (precision, 100%; recall, 100%; accuracy 100%) in the external dataset. In the case 
of clinical effects, the reduction of time by checking the quality of artificial intelligence (AI) support by analysts 1 and 2 
(49.7% and 48.3%, respectively) was statistically significant (p < 0.001).
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Background
Medical imaging has greatly advanced in various thera-
peutic fields, and computed tomography (CT) is used 
the most, especially in the field of oncology [1, 2]. In the 
field of clinical trial imaging, regulatory agencies seek 
robust evidence for imaging to emphasize the quality of 
image data [3]. In 2018, the US Food and Drug Admin-
istration issued a “Clinical Trial Imaging Endpoint Pro-
cess Standard Guidance for Industry,” which provides 
current optimal procedures in using imaging in clini-
cal trials, including image transfer, receive, archive, and 
quality check [4]. In multicenter clinical trials, numerous 
CT images are transferred from each site or hospital to 
a central server; thus, the image quality check must be 
performed by a central imaging team to reduce imaging 
defects or violations [5].

In multicenter clinical trials, the first step of image 
quality check is to check whether images are uploaded 
appropriately according to the predefined rules. For 
example, when the site clinical research coordinators 
(CRCs) are supposed to upload the contrast-enhanced 
abdomen-pelvic CT in a multi-center clinical trial, the 
image analyst should check whether the uploaded images 
are contrast-enhanced abdomen-pelvic CT or not. Thus, 
in this study, the first step of image quality check is here-
after referred to as image QC. 

Image QC was only performed manually by image 
analysts, and this requires human resources and time. 
Recently, an artificial intelligence (AI) technique has 
greatly advanced for imaging [6]. If an AI can aid in the 
automation of image QC, it will greatly help in reduc-
ing the resources for clinical trials. An image QC for 
the appropriateness of a sequence or slice thickness can 
be done by managing DICOM header files, whereas the 
appropriateness of body parts and contrast enhancement 
should be checked manually by image analysts.

AI techniques for image QC have been recently 
reported [7, 8]. However, these focused only on a part of 
image QC, which had low accuracy. Thus, we aimed to 
develop comprehensive AI techniques to classify body 
parts and contrast enhancement simultaneously and to 
validate the accuracy and clinical effectiveness of these 
techniques.

Methods
This study was approved by the institutional review 
board of Asan Medical Center (AMC) and Kangdong 
Sacred Heart (KSH) Hospital. As this is a retrospective 
study, informed consent was not required. The results in 
this study were reported according to the methods and 
terms in published literature guidance on machine learn-
ing for medical applications [9].

Data source and datasets
This is a retrospective study. From the picture archive 
and communication system of our institution (PetaVi-
sion), CT images of 1024 patients (464 women and 560 
men; mean age, 60.4 ± 13.8 years) who underwent brain, 
neck, chest, abdomen, and abdominopelvic CT scans 
from May 1 to May 2 were obtained. An external vali-
dation set from 301 patients (113 women and 188 men; 
mean age, 65.4 ± 14.6) was obtained at the KSH hospital. 
The characteristics of the patients included in this study 
are summarized in Table 1. In some patients, multiple CT 
scans were obtained (e.g., chest CT and abdomen CT). 
From here, the unit of datasets was regarded as the num-
ber of CT scans.

The CT scans were randomly divided into a develop-
ment set (n = 1042 scans) and an internal validation set 
(n = 179 scans). The detailed number of development sets 
and internal validation sets are presented in Fig.  1. The 
development dataset was split into a training set and tun-
ing set at a ratio of 8:2, respectively. The training set was 
used for the development of a deep learning algorithm, 
whereas the tuning set was used to tune the hyperparam-
eters of the model. The internal validation set (n = 179 
scans) was used only for the independent test of devel-
oped models and not for training.

The external validation set (n = 448 scans) was pre-
pared to compare the human experts from the deep 
learning model (DLM). Detailed information about the 
external validation set is summarized in Additional file 1: 
Supplementary Table  1. and Additional file  1: Supple-
mentary Figure 1.

Generation of the ground truth
The body part of the CT scans and presence of contrast 
enhancement were recorded by two board-certified 
radiologists (K.W.K for datasets obtained from AMC 
and J.Y.H. for datasets obtained from KSH). The two 

Conclusions:  Comprehensive AI techniques to identify body parts and contrast enhancement on CT images are 
highly accurate and can significantly reduce the time spent on image quality checks.
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convert method, Image quality check
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Table 1  Summary of demographic variables for development, internal validation, and external validation

*  Number of patients/CT scans

Variables Development set (n = 923/1042)* Internal validation set (n = 101/179) External validation set (n = 301/448)

Demographics

Female (%, female:male) 46.3 (427:496) 36.6 (37:64) 37.5 (113:188)

Age 60.3 ± 14.0 60.5 ± 12.1 65.4 ± 14.6

Height (cm) 163.0 ± 9.1 163.8 ± 8.9 162.7 ± 9.8

Weight (g) 62.4 ± 12.2 64.2 ± 13.8 62.1 ± 13.2

BMI 23.5 ± 3.7 23.8 ± 3.8 23.4 ± 4.0

Disease category Patients CT scan Patients CT scan Patients CT scan

Cancer 558 620 71 126 62 89

Benign tumor 66 70 8 8 2 2

Infection 62 87 5 19 46 97

Hemorrhage 11 11 1 1 33 41

Cirrhosis 14 17 3 6 21 49

Stone 28 36 0 0 4 6

Cyst 16 18 1 1 0 0

Transplant 19 22 1 1 0 0

Blunt trauma 2 2 0 0 33 50

Health check-up 147 159 11 17 100 114

Fig. 1  Details of deep learning model training and internal validation
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radiologists also analyzed the possible cause of misclassi-
fied cases by deep learning models (DLM).

Design of ImageQC‑net architecture
The Fig.  2 illustrated the overall architecture of our 
ensemble AI model which classifies the body part and 
the use of contrast agents. Our ensemble AI model 
was named as ImageQC-net. Our ImageQC-net was 
composed of two separate modules: the body part 
classification module and the contrast-enhancement 
classification module. In each module, there were three 
processing steps: (1) Pre-processing to converted images 
from DICOM to PNG format in three perpendicular 
planes, (2) Individual DLM to yield prediction probabil-
ity for classification in each plane, and (3) Ensemble AI 
model for final classification decision by using soft voting 
based on prediction probability of three different planes.

The ensemble AI model with soft voting based on DLM 
results of three different planes (axial, coronal, and sag-
ittal images) was adopted because the information held 
by axial, coronal, and sagittal data is different and has 
information that cannot be seen in other planes. Thus, we 
proposed the ensemble AI model to combine individual 
model predictions to make a final prediction.

Pre‑processing
At first, preprocessing was executed to transform 3D 
image data with multiple slices into a 2D representative 
image using either maximum intensity projection (MIP), 
average intensity projection (AIP), or mid-plane.

For each CT scan, MIP images were reconstructed by 
selecting the voxels with maximum intensity that fall in 
the way of parallel rays traced from three perpendicular 
planes: axial (MIPaxial), sagittal (MIPsagittal), and coronal 
(MIPcoronal) plane. AIP images were reconstructed by 
averaging the voxels with maximum intensity that fall in 
the way of parallel rays traced from the three perpendicu-
lar planes: axial (AIPaxial), sagittal (AIPsagittal), and coronal 
(AIPcoronal) plane. Mid-plane images were selected from 
three planes—mid-axial, mid-sagittal, and mid-coronal 
plane [10].

The DICOM images of the CT scans were converted 
into one-channel grayscale images in Portable Network 
Graphics (PNG) format as the standard image format. 
The window level and window widths were normalized to 
generate consistent grayscale information, irrespective of 
the scanner type and protocol [11, 12]. Set the window 
level to 50 and the window width to 1000 to produce con-
sistent grayscale information regardless of scanner type 
and protocol. Subsequently the images were rescaled 
into a size of 512 × 512 pixels, and the pixel values were 

Fig. 2  Overview of the ImageQC-net pipeline
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normalized to a range between zero and one. Figure  3 
shows an example after the CT scan data is preprocessed.

Development of individual DLM per plane
We developed several individual DLMs per plane for 
both the body part classification module and the con-
trast-enhancement classification module. For the body 
part classification module, DLMs were developed to clas-
sify images into one of the five body parts, including the 
brain, neck, chest, abdomen, abdomen & pelvis. For the 
contrast-enhancement classification module, DLMs were 
developed to classify the presence of contrast-enhance-
ment. To measure the performance of each DLM, it was 
trained using the data sets obtained through the nine 2D 
conversion methods described in the preprocessing step.

All individual DLMs were developed by transfer learn-
ing with InceptionResNetV2 as the backbone. Inception 
architecture is known to achieve excellent performance 
at relatively low computational costs, and we chose it as 
a backbone because the combination with residual con-
nections significantly accelerates the training of inception 
network [13]. Transfer learning is a widely used method 
in the field of computer vision because it can create accu-
rate models in a short time. DLMs are set to the same 
hyperparameters as shown in Additional file  1: Supple-
mentary Table 2.

The layers of DLM are described in Additional file  1: 
Supplementary Figure  2. In the input layer, a CT series 
was converted into a 2D image using the preprocess-
ing method described above. After the preprocessing 

stage, in the input layer, we arranged three channels 
(299 × 299 × 3) by copying the one-channel normalized 
image. The three channel images were fed into the pre-
trained model layers. The InceptionResnetv2 model was 
adopted as pretrained model layers, which performed 
well in both learning speed and accuracy. The learning 
strategy was to update the weight of all layers of the back-
bone model, and these choices were based on the results 
of repeated experiments. The output layer was com-
posed of a flatten layer and SoftMax layer. The number 
of classes was adjusted for each network (five classes for 
body part classification networks and two classes for con-
trast enhancement use detection networks).

In the development set, fivefold cross-validation was 
performed to check the generalization ability of the 
model. The development dataset (n = 1042 scans) was 
partitioned into five equal subgroups in a stratified man-
ner. Of the five subgroups, a single subgroup was retained 
as the test data to evaluate the model, and the remaining 
four subgroups were used as the training data. The pro-
cess was repeated five times, where each of the five sub-
groups was used exactly once as the test data. In addition, 
to reduce overfitting on the model, two distinct forms of 
data augmentation were employed in the training set—
image rotation and flip. Using data augmentation, 8336 
CT scans were generated from the 1042 CT scans. In 
the data augmentation method for rotation, the angles of 
rotation were randomly selected between − 20° and 20°. 
Horizontal and vertical flips were performed on all CT 
scans in the training set.

Fig. 3  The image reconstruction method used in this study. The 3D CT image data with multiple slices are transformed into a 2D representative 
images using the maximum intensity projection in a coronal image (MIPcoronal) (a), average intensity projection (AIPcoronal) (b), and mid-coronal plane 
(c). In this example, we used a contrast-enhanced abdomen and pelvis CT
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Development of ensemble AI model
Ensemble AI model for final classification decision was 
developed by using soft voting based on prediction prob-
abilities of selected individual DLMs from three different 
planes.

Equation  (1) selects the highest class by summing the 
probabilities predicted by the individual DLM for each 
class. Here y represents the final prediction, i represents 
the number of classes, and j represents DLM. In the body 
part classification module, i is set to 5 and in the contrast-
enhancement classification module, it is set to 2. The j 
value is set equally to 3 in both modules of ImageQC-net.

Performance evaluation and statistical evaluation
In the internal and external validation sets, the perfor-
mances of individual DLMs per plane and the ensem-
ble AI model (i.e., ImageQC-net) in classifying the body 
parts and in classifying the presence of contrast-enhance-
ment were evaluated. To evaluate the performance accu-
racy, precision, recall, and F1-score were used.

The accuracy, precision, and recall were defined as:

(a)	 Accuracy = TP+FP
TP+TN+FN+FP

(b)	 Precision =
TP

TP+FP
(c)	 Recall = TP

TP+FN
(d)	 F1-score = 2× (precision× recall)/(precision+ recall)

(1)y = arg max
i

m∑

j=1

pij

Clinical effectiveness evaluation
To evaluate the clinical effectiveness of ImageQC-net 
in classifying body parts and in identifying contrast 
enhancement, the overall accuracy and time spent on 
image QC for either conventional manual methods or 
ImageQC-net were compared. Two image analysts with 
different experience levels for image QC in clinical tri-
als (Analyst 1: S.J.H., 9  years of experience; Analyst 2: 
S.Y.L., 1  month of experience) independently checked 
the body parts and presence of contrast enhancement 
in two different sessions with a 2-week interval. The 
first session was for conventional manual QC and image 
analysts were required to check, the body part and con-
trast-enhancement based on raw CT images. The second 
session was for AI-aided quality check and image ana-
lysts were required to check the body part and contrast-
enhancement based on the AI label and summary images 
generated by the ImageQC-net. If necessary, image ana-
lysts reviewed the raw CT images.

Results
Performances of individual DLMs for body part 
classification
In the internal validation set, the individual DLMs 
showed excellent performance in all preprocessing 
methods and planes (accuracy, 100%), as presented 
in Table  2. In the external validation set, the DLMs of 
MIPsagittal (accuracy, 99.33%), MIPaxial (accuracy, 98.66%), 
and MIPcoronal (accuracy, 98.66%) were selected for the 
ensemble algorithm for body part classification, as the 
DLMs of MIP preprocessing method achieved high 

Table 2  Performance of individual DLMs for body part classification: comparison among the algorithm models based on 
preprocessing methods and planes

a The DLMs with the highest performance in each plane are selected to apply for ensemble AI model
b The DLM with the highest performance from all pre-processing methods is selected as the best performing individual DLM

Pre-
processing 
Method

Internal validation set External validation set

Precision (%) Recall (%) Accuracy (%) F1-score (%) Precision (%) Recall (%) Accuracy (%) F1-score (%)

AIP

Axial 100 100 100 100 94.99 94.15 94.86 94.6

Sagittal 100 100 100 100 97.52 96.85 97.09 97.2

Coronal 100 100 100 100 95.24 91.73 93.75 93.45

MIP

Axial 100 100 100 100 98.85 98.33 98.66a 98.6

Sagittal 100 100 100 100 99.33 99.33 99.33ab 99.3

Coronal 100 100 100 100 98.85 98.33 98.66a 98.6

Mid-plane

Axial 100 100 100 100 96.24 96.51 96.2 96.4

Sagittal 100 100 100 100 97.7 96.32 97.32 97

Coronal 100 100 100 100 96.24 96.51 96.2 96.3
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performances in each plane compared to those of other 
preprocessing methods. The cross-validation perfor-
mances of individual DLMs based on various preprocess-
ing methods for body part classification are presented in 
Additional file 1: Supplementary Table 3.

The confusion matrix of the best performing DLM 
(MIPsagittal) validated in the external validation set is pre-
sented in Fig. 4. There were three cases with discrepancies 
between AI-predicted results and ground truth results. 
These discrepancies were primarily attributed to the 
resemblance of MIPsagittal images between abdominal CT 
and chest CT scan in a patient with diaphragm elevation 
(b), between neck CT and abdominal CT scan (case c), and 
between abdominal CT and abdominopelvic CT scan (d).

Performances of ensemble AI model for body part 
classification
The performance of ensemble AI model for body part 
classification showed 100% precision, 100% recall, 
and 100% accuracy in the internal validation set, and 
99.8% precision, 99.8% recall, and 99.8% accuracy in the 

external validation set. Among the 448 CT scan in the 
external validation set, only one CT showed discrepancy 
between AI result (classified as chest CT) and ground 
truth value (abdominal CT), as illustrated in Fig. 4b.

Performance of individual DLMs for contrast‑enhancement 
classification
The cross-validation results of individual DLMs in the 
tuning set are provided in Additional file  1: Supplemen-
tary Table 4. In the tuning set, the DLM algorithms based 
on mid-plane showed an excellent performance in all body 
parts (accuracy, 94–100%) compared with those based 
on MIP or AIP (accuracy, < 90%). Based on these cross-
validation results, the candidate models for ImageQC-net 
were chosen from each preprocessing method. In each 
body part, the performance of DLM algorithms based on 
various preprocessing methods for contrast-enhancement 
classification is summarized in Table  3. When we com-
pared the performance of DLM algorithms based on mid-
plane with various planes, the performance differed in 
each body part, as shown in Table 3.

Fig. 4  Comparison between the individual DLM and the ensemble AI model for body art classification based on the external dataset. a Confusion 
matrices of the best performing individual DLM and the ensemble AI model. b Abdominal CT misclassified as chest CT in both the best performing 
individual DLM and the ensemble AI model. c Neck CT misclassified as abdominal CT from the best performing DLM. d Abdominopelvic CT 
misclassified as abdominal CT from the best performing DLM
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In the external validation set, the plane to obtain 
highest performance differed in each body part, as 
follows: mid-axial plane for brain CT (100%), mid-
axial plane for neck CT (accuracy, 98.33%), mid-cor-
onal plane for chest CT (100%), mid-coronal plane 
for abdominal CT (100%), and mid-coronal plane for 
abdominopelvic CT (100%). These results are primar-
ily attributed to the anatomic characteristics of each 
body part. In the brain and neck CT, strongly enhanc-
ing organs, such as vessels, are demonstrated in the 
axial image. The coronal and sagittal neck CT images 
primarily show bones and muscles. In the chest, 
abdominal, and abdominopelvic CT, strongly enhanc-
ing organs, such as the heart, liver, and aorta, are best 
demonstrated in the mid-coronal plane images.

Performances of ensemble AI model 
for contrast‑enhancement classification
The performance of ensemble AI model for contrast-
enhancement classification showed 100% precision, 
100% recall, and 100% accuracy in the internal and 

external validation sets. As shown in (b) of Fig. 5, cases 
misclassified in individual DLM was classified cor-
rected in the ensemble AI model.

Comparison of overall performance for body part 
and contrast‑enhancement classifications
Figure 6 shows the overall performance of the best per-
forming individual DLM and the ensemble AI model, 
ImageQC-net, in the external verification set. The overall 
accuracy of best performing individual DLM for proper 
classification of both body parts and contrast enhance-
ment was 99.1%, as it misclassified 4 CT scans out of 448 
CT scans. In contrast, the ImageQC-net based on ensem-
ble AI models, demonstrated 99.8% overall accuracy by 
misclassifying only one CT scan out of 448 CT scans.

Clinical effectiveness
The ImageQC-net was published into a graphic user 
interface software package (Fig.  7). In the first session 
(conventional manual quality check), the time spent by 
analysts on checking the body parts and the presence of 
contrast enhancement in the external validation set (448 

Table 3  Performance of individual DLMs for contrast-enhancement classification: comparison among the algorithm models in each 
body part

Body 
part

Preprocessing Internal validation set External validation set

Precision (%) Recall (%) Accuracy (%) F1-score (%) Precision (%) Recall (%) Accuracy (%) F1-score (%)

Brain Mid-axial 100 100 100 100 100 100 100 100

Neck 100 100 100 100 98.38 98.33 98.33 98.3

Chest 100 100 100 100 98.38 98.48 98.41 98.4

Abdo-
men

100 100 100 100 100 100 100 100

Abdo-
men 
and 
pelvis

100 100 100 100 97.78 97.87 98.34 97.9

Brain Mid-sagittal 100 100 100 100 99.13 98.33 98.85 98.7

Neck 100 100 100 100 84.09 76.66 76.66 80

Chest 100 100 100 100 100 100 100 100

Abdo-
men

100 100 100 100 100 100 100 100

Abdo-
men 
and 
pelvis

100 100 100 100 100 100 100 100

Brain Mid-coronal 100 100 100 100 99.13 98.33 98.85 98.7

Neck 100 100 100 100 91.17 91.66 91.66 91.4

Chest 100 100 100 100 100 100 100 100

Abdo-
men

100 100 100 100 100 100 100 100

Abdo-
men 
and 
pelvis

100 100 100 100 100 100 100 100
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CT scans) was 149 min for analyst 1 and 205 min for ana-
lyst 2. In the second session (ImageQC-net aided qual-
ity check), the mean time spent was 74  min for analyst 
1 and 99 min for analyst 2. The actual time spent by the 
ImageQC-net for the overall classification was 688 s for 
448 CT scans (equivalent to 1.51 s/scan) using GPU RTX 
Titan. The time reduction by AI-aided quality check in 
both analyst 1 and 2 (49.7% and 48.3% decrease, respec-
tively) was statistically significant (t-test, p < 0.001 for 
both analysts). The accuracy of the two image analysts 
was 100% in all the sessions. The one misclassified case 
by the ImageQC-net was corrected by the analysts in the 
second session.

Discussion
This study demonstrated that the ensemble AI model, 
ImageQC-net, to check the body parts and contrast 
enhancement in the CT images was highly accurate 
(99.8%) and could greatly reduce the time spent for image 

QC (48.3–49.7% decrease). Our AI technique, named 
ImageQC-net, was designed to provide image QC results 
with two thumbnails of mid-plane image and MIP image 
so that image analysts can quickly identify the body parts 
and contrast enhancement of the CT images. More spe-
cifically, image analysis can skip scrolling down the CT 
images to check the scan coverage if ImageQC-net is 
used.

Indeed, the ImageQC-net was incorporated as a cen-
tral imaging core lab in our clinical trial image manage-
ment system (Asan Image Metrics, www.​aim-​aicro.​com) 
to assist our image analysts [14]. Based on our real-world 
experience, the ImageQC-net is also greatly helpful for 
the image QC by image analysts, who should check the 
quality of the received CT images, and for image senders, 
who should transfer CT images to the central imaging 
core lab. For example, when a site or hospital is sup-
posed to transfer the neck, chest, and abdominopelvic 
CT scans, but a clinical research coordinate (CRC) or 

Fig. 5  Comparison between the individual DLM and the ensemble AI model for contrast-enhancement classification based on the external 
dataset. a Confusion matrices of the best performing individual DLM and the ensemble AI model. b Misclassified case in the individual DLM. In the 
neck mid-plane CT image, the neck vessels are small; thus, the DLM algorithm may not identify contrast enhancement

http://www.aim-aicro.com
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Fig. 6  overall DLM and ensemble AI model classification performance for the external dataset. a Overall DLM classification performance for 
the external dataset. b Overall Ensemble AI model classification performance for the external dataset. c Ensemble AI model external dataset 
misclassified case
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research nurse missed to transfer the neck CT scans, a 
CRC may transfer the non-contrast abdominal CT scan 
only when contrast-enhanced abdominopelvic CT scan 
is required for a clinical trial. In these situations, the 
image senders, such as the CRC, can quickly check the 
CT images immediately before image transfer using the 
ImageQC-net. Our future research topic is to further 
evaluate the benefit of our ImageQC-net in the real-
world setting.

The accuracy of ImageQC-net was very high (99.8%, 
447/448), which exceed the accuracy of best performing 
DLM models (99.1%, 444/448).

In the best performing DLM model, the primary reason 
of misclassification might be attributable to a selected 
plane. For example, it adopted the best model for body 
part classification based on MIPsagittal images, but the 
MIPsagittal images between chest CT and abdomen CT 
or between abdominal CT and abdominopelvic CT may 
be similar. Moreover, the best performing DLM adopted 
the best model for contrast-enhancement classifications 
based on mid-axial plane images for brain and neck CT 
scans and mid-coronal plane images for chest, abdomi-
nal, and abdominopelvic CT scans. More specifically, a 
differentiation between chest and abdomen CT scans 
can be overlapped with patients’ anatomy. For example, 
in patients with kyphosis or diaphragm elevation, the 

MIPsagittal image of both chest CT and abdomen CT scan 
would show most of the bony thorax, which may cause 
misclassification. Between abdominal and abdominopel-
vic CT scans, the coverage of the pelvic bone might be 
tricky even for expert humans. Interestingly, the neck 
and pelvic CT scans may show similar bone structures; 
the scapula and cervical spine bones may resemble the 
iliac bone and lumbar spine bones in MIP images. Mid-
plane images may not contain strongly enhancing organs, 
which hamper the accuracy of contrast-enhancement 
classification. For example, in the neck, only the thyroid 
glands are the enhancing solid organs, but these may not 
be included in mid-plane images. In neck mid-axial plane 
images, only vessels can be the enhancing structures, 
but these are small, which may hamper the classification 
accuracy of the AI algorithm.

To overcome these drawbacks of best performing indi-
vidual DLM, an ensemble approach to combine various 
models from various planes increase the classification 
accuracy, as proven in our study.

So far, only a few studies have developed an AI algo-
rithm for image QC. Philbrick et  al. reported that 
they developed a classifier model trained to predict 
contrast-enhancement phases from CT images based 
on a convolutional neural network (CNN), which 
can generate gradient-weighted class activation maps 

Fig. 7  ImageQC-net GUI software. a ImageQC-net GUI software. b Results available to users
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(Grad-CAMs) for whole-slice abdominal CT data 
[7]. The classifier was developed only for multiphasic 
abdominal CT images, which may limit its application 
in real-world practice for comprehensive image QC. 
Sugimori et al. reported that a classifier was developed 
to classify the body parts and contrast enhancement 
using the CNN architecture of AlexNet and Goog-
LeNet. However, the accuracy of these models was not 
high (72.1–86.2%), hampering its application in real-
world practice [8].

To incorporate the AI-aided image QC solution in 
real-world practice, our development strategy was to 
achieve a high accuracy while balancing the comput-
ing power to run the AI algorithm on a personal com-
puter. Thus, a 2D-based AI algorithm was chosen rather 
than 3D or whole-slice data-based algorithm. Then, 
the optimal representative 2D image plane for the AI 
algorithm was determined through extensive repeated 
experiments, and ensemble AI model was found to be 
the best for both body part classification and contrast-
enhancement classification.

In our study, transfer learning was adopted [11]. As 
a pretrained model, InceptionResnetV2 [13] was used, 
which was selected through repeated experiments [15]. 
Among the pretrained models, VGG16 took a long 
time to learn many parameters and was less accurate 
(< 90%); the Inception line had fewer parameters, so the 
learning time was fast, but InceptionResnetV2 achieved 
the best accuracy.

The ImageQC-net does not require a high comput-
ing power. A conventional personal computer or laptop 
with a CPU only can be used. For example, the clini-
cal effectiveness session to measure the time spent for 
image QC was performed using a personal computer 
with Intel i3-10100 CPU 3.6 GHz (without GPU) and a 
laptop with Intel i7-6500 CPU 2.5 GHz (without GPU).

Limitations
First, the ImageQC-net was tested in a relatively small 
number of CT scans (179 CT scans for internal vali-
dation and 448 CT scans for external validation). The 
external validation set was acquired from only one 
external institution. Thus, a large-scale validation 
study might be required. Second, the ImageQC-net 
was trained based on brain, neck, chest, abdominal, 
and abdominopelvic CT scans, excluding the extremity 
or spine CT scans. Thus, it is necessary to update the 
ImageQC-net to check all kinds of CT scans. Third, we 
developed AI algorithm for only the first step of image 
QC, which is to check whether images are uploaded 
appropriately according to the predefined rules. We 
did not develop to find out presence of image artifacts 

or low spatial resolution, which is our future research 
topic.

Conclusions
An integrated ensemble AI model to classify body parts 
and contrast enhancement simultaneously is feasible. 
Our ImageQC-net is currently used in routine clinical 
practice and is very helpful to reduce the time spent for 
image QC for both image senders and receivers.
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