
APPLICATION OF SOFT COMPUTING

Modeling the leader–follower supply chain network under uncertainty
and solving by the HGALO algorithm

Javid Ghahremani Nahr1 • Anwar Mahmoodi1 • Abdolsalam Ghaderi1

Accepted: 6 July 2022 / Published online: 3 August 2022
� The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
The purpose of this article is to develop a competitive supply chain network (SCN) in the face of uncertainty. The objective

of the leader chain is to maximize total network profits by strategically locating suppliers, manufacturers, distribution

centers, and retailers. Additionally, the follower chain seeks to maximize the network’s profit. Both factors, optimal flow

allocation to different echelons of the SCN and product pricing, are examined in the leader chain and follower chain. The

KKT conditions are used in this article to convert a bi-level model to a one-level model. Additionally, a fuzzy pro-

gramming technique is used to control the problem’s uncertain parameters. According to the results obtained using the

fuzzy programming technique, increasing the uncertainty rate increases demand while decreasing the OBFV and average

selling price of products. Finally, the problem was untangled using a novel hybrid genetic and ant-lion optimization

algorithm (HGALO). The results of problem solving in larger sizes demonstrate HGALO’s superior efficiency in com-

parison with the other algorithm.
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1 Introduction

A supply chain (SC) is a collection of independent com-

panies that encompasses the entire process of acquiring and

converting raw materials into finished goods, as well as

maintaining, distributing, and transferring them to end

customers. Nowadays, researchers emphasize competition

both within and across chains (Zhang et al. 2017). Cus-

tomer competition patterns have altered product and ser-

vice supply chains, resulting in a shift in market

competition between independent businesses and supply

chains (Ghomi-Avili et al. 2018). There is a substantial

body of literature on the SC design, the majority of which

is devoted exclusively to the SC. Until now, the presence of

competitors in SC, as well as their possible future emer-

gence, has been inadequately considered. SC, on the other

hand, competes for market share (Wang et al. 2016). As a

result, even if there is no immediate competitor present, SC

must be prepared for future competition (Saberi et al.

2018). Numerous studies have been conducted in the lit-

erature to evaluate games between different echelons of the

SCN. A non-cooperative game is a type of game in which

the buyer and seller compete for the highest possible profit

margin (Li and Nagurney 2017). In a non-cooperative

Stackelberg game, the strongest player assumes the role of

leader and formulates his strategy first, followed by the

follower (Yue and You 2017).

To address the aforementioned issue, a new model of the

leader–follower network was developed with the goal of

optimizing the profit of the leader and follower chains. As a

result, this game can be classified as a distinct subgenre of

Stackelberg. In the leader and follower SC, four echelons

(suppliers, manufacturers, distribution centers, and retailers)

are considered, and they compete for product pricing in the

market (customers). Due to the uncertainty surrounding the

amount of potential market demand, pricing in both leader

and follower chains is extremely complicated. As a result,
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special tools such as fuzzy programming are used to control

the potential demand parameters as well as the costs of pro-

duct and raw material transportation between different ech-

elons of the chain network (Szmelter-Jarosz et al. 2021;

Nozari et al. 2022). The presence of strategic decisions in the

leader chain is what distinguishes this paper’s leader and

follower chain networks. The location of facilities at all

potential centers, such as suppliers, manufacturers, distribu-

tion centers, and retailers, should be made part of the leader

chain’s strategic planning. The optimal transport of products

and raw materials between the two SCN echelons is a tactical

decision in the leader and follower chains. Finally, opera-

tional decisions include pricing final products in the market

(for customers) based on the leader and follower chains in

order to make the most money in an uncertain environment.

The leader and follower members use the traditional

(forward) SCN. As a result, a mathematical model of SC on

two levels will be developed. In the paper presented here, we

used the KKT technique to convert a bi-level mathematical

model to a one-level mathematical model. Because location

and SCN design problems are NP-Hard, this paper solves the

problem using a novel combination of genetic algorithms

(GA) and ant-lion optimization algorithms (ALO). The

operators of the ant-lion optimization algorithm design the

chromosome of the problem by locating potential facilities

and allocating products optimally between different eche-

lons of the leader and follower chains, whereas the genetic

algorithm operators price the products in themarket. Finally,

statistical comparisons between the developed algorithm and

other algorithms such as the genetic algorithm (GA), the ant-

lion optimizer (ALO), the gray wolf optimizer (GWO), and

the Harris-hawks optimizer (HHO) are made.

The article is structured as follows. The second section

discusses the research background and the investigation of the

research gap. The third section discusses the bi-level mathe-

matical model of SCN. This section discusses a fuzzy pro-

gramming technique for controlling uncertain parameters.

The fourth section presents a novel combination of GA and

ALO algorithms, aswell as the initial chromosome design, for

the problems of facility location, optimal product flow allo-

cation, and market pricing of products. The fifth section

investigates exact and meta-heuristic solution methods, as

well as statistical comparisons, in small and large instances.

The sixth sectionwill examine the presentation of the research

findings and recommendations for future research.

2 Literature review

Numerous studies have concentrated on the presentation of

competitive single- and multi-product games between dif-

ferent SCN echelons as well as product pricing within each

firm. Wu et al. (2012) examined five different power

scenarios for a one-seller, two-buyer SC: (1) The seller, as

the chain’s leader, announces its price first, and then the

retailers determine their profit margins in competition with

one another; (2) The seller, as the chain’s first leader,

makes the decision, and then retailer No. 1 and then retailer

No. 2 announce their decision in response to the seller’s

price; (3) The retailers determine their profit margins

simultaneously, and then the seller makes the decision as a

follower. (4) Retailer No. 1 is regarded as the market’s

initial leader. Then retailer No. 2 and the seller make their

decisions sequentially, and 5) Retailer No. 1 serves as the

leader, with the other seller and retailer making their

decisions concurrently. Leng and Parlar (2010) investi-

gated the Stackelberg game in a chain with multiple sup-

pliers and a single follower manufacturer operating under

repurchase agreements and sharing lost sales costs. The

manufacturer establishes the contract parameters first, and

then the suppliers vote in a concurrent game. Cia et al.

(2011) presented a SC with a seller and several buyers

confronted with the newsboy problem, in which buyers

order during the sales season, causing uncertainty. As a

leader, one of the buyers may place an order earlier in the

season and receive a discount. Two distinct scenarios are

considered: (1) the leader buyer has a single ordering

opportunity, and (2) the leader buyer has two ordering

opportunities. Zhang and Huang (2010) examined a SC

involving a manufacturer and a coalition of suppliers. A

common platform is used to create a family of products

with interchangeable modules. As the customer and chain

leader, the manufacturer initially decides on supplier

selection and platform configuration. The suppliers then

determine the price and quantity of the order in order to

maximize the coalition’s overall profit.

Liu et al. (2010) evaluated a SC with a manufacturer

who distributes its products to the market via two online

retailers. The level of access to demand information varies

between the two sales channels, and the game is analyzed

using contracts in both centralized and decentralized situ-

ations. The findings indicate that when uncertainty is high,

the manufacturer prefers a basket of contracts, whereas

when uncertainty is low, he selects only one contract.

Farahani et al. (2014) analyzed over 200 papers and clas-

sified them according to the type of competitive SCN

design, solution methods, models, and applications. This

article establishes a sound foundation for future research.

Pritchard (2007) devised a bi-level algorithm for solving

the competing SCN problem, in which two chains compete

without the presence of a competitor chain. The proposed

algorithm was developed using the Lemke and Howson

algorithms as a starting point. They then applied the

developed model to a real-world case study and analyzed

the data. Saghaeeian and Ramezanian (2018) described a

multi-product competitive supply chain network (SCN)
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organization. They began by expanding a bi-level mathe-

matical model of SC members in this paper. They then

transformed the competitive chain model into a one-level

mathematical model using the KKT method. Finally, they

used a hybrid genetic algorithm to solve the problem.

Rezapour et al. (2015) proposed a closed-loop SCN that

is price-demand-dependent. Their role in this network was

to help the SCN increase its profits. Their model considered

strategic objectives such as facility location, tactical objec-

tives such as optimal goods flow allocation, and operational

objectives such as product pricing. Finally, they presented a

two-step algorithm for resolving the issue. Amiri et al.

(2018) developed a bi-level mathematical model for a

competitive SC that takes predictive variables into account.

They considered using an iterative search method to address

the leader’s issue. The numerical results indicated that

omitting competition discussions results in a loss of market

share and profitability for a new competitor’s SC. Hassni

(2016) proposed a comprehensive model for developing a

SCN with multiple periods, multiple products, and multiple

stages of inventory control. In the face of static competition,

he considered various marketing techniques and methods

during the design process. The purpose of the presented

model was to achieve an effective customer response in the

presence of existing competitors and a lack of demand-

meeting prices. For solving his two-objective model, he

used the NSGA II algorithm. He indicated that the proposed

model and solution algorithm effectively deal with com-

petitive pressure, most notably through the use of an

effective marketing strategy. Nobari et al. (2019) presented

a two-objective model for developing a competitive closed-

loop SCN for new businesses. In the presented paper, they

examined competitiveness in both forward and reversed

networks concurrently. In the forward chain, competitors

compete on selling prices in order to gain a greater share of

the market, whereas in reverse logistics, competitors com-

pete on incentive purchase prices. They solved their prob-

lem through multi-objective colonial competition.

Sarkar and Bhadouriya (2020) proposed a centralized

model for optimizing SC profits and compared it to a

Stackelberg game between retailers and manufacturers. Li

et al. (2020) presented a four-stage Stackelberg game

model with the objective of determining the optimal

information investment strategies. This article discusses a

SC that is two-tiered, with one manufacturer investing in

energy-saving products (ESPs) and another retailer selling

the products and incorporating demand forecasting. Noh

et al. (2019) proposed a two-tiered SC model that included

a manufacturer and a retailer. Three approaches are pro-

posed for resolving the SC’s coordination: retailer leader–

manufacturer follower, manufacturer leader–retailer fol-

lower, and centralized SC. Tang et al. (2020) used a

Stackelberg game framework to demonstrate that by

establishing a contract between the leader and follower, a

CLSC can achieve the same return as a centrally coordi-

nated channel. Ghomi-Avili et al. (2020) presented a robust

bi-level mathematical model for a competitive green SCN

that takes inventory and pricing decisions into account. By

illustrating competition between the leader and follower

chains, the bi-level mathematical model method was used,

and the model’s ability to deal with uncertainties was also

used to analyze disruption risks. Nagurney (2021) develops

a framework for SCN game theory that incorporates labor

constraints through three distinct methods. Equilibrium

status was recalculated in response to various imparity-

related issues. A case study was then conducted to examine

the relationship between COVID-19 and migrant labor.

Sazvar et al. (2021) proposed a bi-objective programming

model for designing a CLPSC that examines expired medi-

cation reverse flows. Additionally, they controlled the

uncertainty parameters via a scenario-based game theory

model. A three-party sustainable supply chain network was

proposed by Liu et al. (2021). Themodel was solved using the

Nash equilibrium strategy in conjunction with a novel coor-

dination technique. Mozafari et al. (2021) developed a

mathematical model of pricing coordination in a two-echelon

supply chain in the presence of uncertainty. They used fuzzy

numbers to represent demand and production costs. Boronoos

et al. (2021) developed a model for a multi-objective closed-

loop green supply chain problem that is uncertain. Simulta-

neously, they used this model to reduce the costs of the entire

supply chain network and greenhouse gas emissions in both

forward and reverse supply chains. Due to the fact that

transportation and operating costs, as well as triangular fuzzy

numbers, are considered indefinitely in this demand model, a

robust-fuzzy optimization method is used to control these

parameters. Liu et al. (2021) proposed a pricing decision

model for an uncertain-demand closed-loop supply chain

network. They factored in critical decisions such as supplier

selection and product flowoptimization into theirmodel. Ziari

and Sajadieh (2022) proposed a closed-loop supply chain

network model based on the pricing structure of the glass

industry. Additionally, they investigated network disruptions

in the study network. Keshavarz-Ghorbani and Arshadi

Khamseh (2022) proposed amulti-period optimization model

for a closed-loop supply chain network, taking into account

quality control and pricing.

According to the literature review, various researchers

have employed a variety of methods and algorithms to

address supply chain network problems under a variety of

different assumptions. In the majority of cases, well-known

algorithms such as the genetic algorithm (GA) and the ant

colony algorithm (ACO) have been used. Each algorithm

utilizes a unique set of operators to search the solution

space. Recent research has shown an increase in the use of

population-based algorithms such as GWO, ALO, and
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others. Numerous studies have demonstrated that the use of

population-based algorithms produces superior results. In

this paper, taking advantage of the GA operators’ strengths

(crossover and mutation) and the ALO’s high search speed,

the operators of the two algorithms were used to search the

problem more efficiently and effectively.

Due to the research gap, the manuscript’s contributions

are divided into two parts: modeling and solution method.

• A competitive supply chain network model (leader–

follower) based on the Stackelberg game was proposed

under uncertainty.

• The proposed bi-level model was converted to a one-

level model using KKT conditions.

• A fuzzy programming approach is used to control the

problem’s uncertain parameters.

• A novel hybrid genetic and ant-lion optimization

algorithm is designed for the model’s solution.

3 Problem definition and mathematical
modeling

We examine two competing supply chains, one of which is

an incumbent whose location of facilities is critical, and the

other of which is a new entrant. Each SC is composed of

four echelons: suppliers, manufacturers, distribution cen-

ters, and retailers. These echelons collaborate to provide

final products to a common market. The network of the SC

is depicted in Fig. 1. The entrant SC must make several

strategic, tactical, and operational decisions, including

determining the locations of suppliers, manufacturers,

distribution centers, and retailers, to name a few. At the

tactical level, each SC determines how the products will be

supplied and distributed to the final customers. They

determine how much raw material each supplier should

provide to each manufacturer, how many products each

manufacturer should produce, and how the DCs and

retailers should distribute it. Finally, the operational level

decision is about product pricing.

The supply chains compete for customers by offering

substitutable products in a common market. We assume the

incumbent SC is currently operating in the market and that

its facility locations are known. As a result, the incumbent

does not face such strategic choices. The incumbent, on the

other hand, would make tactical and operational adjust-

ments in response to the entrant. As a result, there is a

foresight-based competition between the entrant and

incumbent supply chains, which can be modeled as a lea-

der–follower or Stackelberg game. Since the entrant initi-

ates the game, anticipating and incorporating the

incumbent’s response, he or she is the leader. And the

incumbent is a follower because he or she accommodates

the entrant’s tactical and operational decisions following

entry. A leader–follower game can be modeled as a bi-level

programming problem, as is frequently done in the relevant

literature. As a result, our objective is to develop and solve

a bi-level mathematical model of the considered problem.

3.1 Demand function

Demand functions are used to model customer purchasing

behavior. There are several different types of demand

functions described in the relevant literature, but the linear

function is the most frequently used model due to its

superior characteristics. Kurata et al. (2007) discuss the

advantages of the linear demand function, which include

proper tracking, traditional microeconomic analysis, and

congruence with actual data. As a result of this advanta-

geous characteristic, we chose to use a linear demand

model. Customers are assumed to be price sensitive. As a

result, we consider the following price-dependent linear

demand function.

DL
mp ¼ eaLmp � bLmppPr

L
mp þ dFmpPr

F
mp �

X

h 2 P
h 6¼ p

bLmhpPr
L
mh;

8m 2 M; p 2 P

ð1Þ

DF
mp ¼ eaFmp � bFmppPr

F
mp þ dLmpPr

L
mp �

X

h 2 P
h 6¼ p

bFmhpPr
F
mh;

8m 2 M; p 2 P

ð2Þ

where the superscripts L and F denote, respectively, the

leader and follower. Additionally, the following notations

are defined.

ea:mp The uncertain potential demand of customer segment m for

product p

b:mhp The price sensitivity coefficient of customer segment m. If
h ¼ p, it is self-price sensitivity, and if h 6¼ p, it is cross-
price sensitivity and shows the sensitivity of customer’s

demand from segment m for product p to the price of product
h. The products p and h are complementary and produced by

the same SC

d:mp The cross-price sensitivity to the price of the other SC. That is,

dFmp shows the sensitivity of customer’s demand from

segment m for product p of the leader SC to the price of

product p of the follower SC. And, dLmp represents a similar

concept in the followers’ demand model

Pr:mp The price of product p for customer segment m
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The demand for each product from a customer segment

m is proportional to its price and the price of its comple-

ment products in this demand model. And it is increasing in

lockstep with the price of the rival SC’s

substitutable products.

We permit a product’s price to vary across market

segments. That is, it is assumed that third-degree discrim-

ination exists in pricing, and chains can charge different

prices to different customer segments. The model of supply

exceeding demand is prevalent in the pertinent literature.

3.2 Mathematical model

The new SC has been designated as the market leader,

whereas the incumbent SC has been designated as the

follower. Both SCs are divided into four echelons. Sup-

pliers in the first echelon provide raw materials to manu-

facturers for the creation of new products. The second

echelon is made up of numerous manufacturers who ship

their new products to the third echelon’s DCs. Finally,

retailers in the fourth echelon receive products from DCs

and resell them to customers in a variety of markets. While

the incumbent SC’s location of suppliers, manufacturers,

DCs, and retailers is critical, the entrant SC should deter-

mine the locations (with pre-determined capacity) of its

various members. A horizontal competition between two

SCs at the retailer level has been considered. Both of them

have the ability to influence the other’s demand through

pricing decisions. Due to capacity constraints, the chain of

followers has already been formed, and it is capacity

unrestricted. The network structure of the proposed model

is depicted in Fig. 1. The problem has been classified as a

bi-level mathematical model due to the Stackelberg game.

The upper level presented the problem of the first model,

while the lower level defined the problem of the follower.

Profit maximization is the primary objective of both chains.

The following are the primary assumptions that guided

the development of the mathematical model:

• At both levels, demand for each product in each market

is a linear function of self-price, competitor’s price, and

also the complement-price of their own chain.

Fig. 1 Proposed supply chain network
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• The leader’s primary concern has been the need for new

facilities.

• No shortage of the leader’s chain is permitted.

• Depending on the price and transportation costs, the

probable behavior of customers may result in different

demands for retailers.

• Each customer can purchase any product in any

quantity from any retailer.

• In the third stage, the transport price is equal to the

distance between each retailer’s various markets for

both chains.

• The chain of the follower does not have a budget

constraint and is also incapacitated.

• Costs of production and transportation at the upper and

lower ends of the spectrum are considered uncertain.

The model is presented using the notations below.

Sets

I Sets of suppliers in the leader chain i ¼ f1; 2; . . .; Ig
J Sets of potential manufactures in the leader chain

j ¼ f1; 2; . . .; Jg
K Sets of potential DCs in the leader chain k ¼ f1; 2; . . .;Kg
L Sets of potential retailers in the leader chain l ¼ f1; 2; . . .; Lg
M Sets of fixed markets (Customers) m ¼ f1; 2; . . .;Mg
I
0

Sets of suppliers in the follower chain i
0 ¼ f1; 2; . . .; I 0 g

J
0

Sets of manufactures in the follower chain j
0 ¼ f1; 2; . . .; J 0 g

K
0

Sets of potential DCs in the follower chain k
0 ¼ f1; 2; . . .;K 0 g

L
0

Sets of potential retailers in the follower chain l
0 ¼ f1; 2; . . .;L0 g

P Set of Products p; h ¼ f1; 2; . . .;Pg
C Set of raw materials c ¼ f1; 2; . . .;Cg

Parameters

FixIi Fixed cost of supplier i in the leader chain

FixJj Fixed cost of manufacture j in the leader chain

FixKk Fixed cost of DC k in the leader chain

FixLl Fixed cost of retailer l in the leader chain

gTrIJ
L

ijc
The transportation cost of material c between supplier i
and manufacture j in the leader chain

gTrJK
L

jkp
The transportation cost of product p between manufacture

j and DC k in the leader chain

gTrKL
L

klp
The transportation cost of product p between DC k and

retailer l in the leader chain

gTrLM
L

lmp
The transportation cost of product p between retailer l and
customer m in the leader chain

fPc
L

jp
The cost of producing, product p in manufacture j in the

leader chain

Ocp The raw material c needed to produce a unit of product p

CapIic Maximum supplier i capacity of raw material c

CapJjp Maximum manufacture j capacity of product p

CapKkp Maximum DC k capacity of product p

CapLlp Maximum retailer l capacity of product p

gTrIJ
F

i
0
j
0
c

The transportation cost of material c between supplier i
0

and manufacture j
0
in the follower chain

gTrJK
F

j
0
k
0
p

The transportation cost of product p between manufacture

j
0
and DC k

0
in the follower chain

gTrKL
F

k
0
l
0
p

The transportation cost of product p between DC k
0
and

retailer l
0
in the follower chain

gTrLM
F

l
0
mp

The transportation cost of product p between retailer l
0

and customer m in the follower chain

fPc
F

j
0
p

The cost of producing, product p in manufacture j
0
in the

follower chain

Decision variables

ZIi 1 if supplier i is chosen; 0 otherwise

ZJj 1 if manufacture j is chosen; 0 otherwise

ZKk 1 if DC k is chosen; 0 otherwise

ZLl 1 if retailer l is selected; 0 otherwise

XL
ijc

Amount of raw material c transported between supplier i and
manufacture j in the leader chain

YL
jkp

Amount of product p transported between manufacture j and
DC k in the leader chain

SLklp Amount of product p transported between DC k and retailer l
in the leader chain

UL
lmp

Amount of product p transported between retailer l and
customer m in the leader chain

XF
i
0
j
0
c

Amount of raw material c transported between supplier i
0
and

manufacture j
0
in the follower chain

YF
j
0
k
0
p

Amount of product p transported between manufacture j
0
and

DC k
0
in the follower chain

SF
k
0
l
0
p

Amount of product p transported between DC k
0
and retailer l

0

in the follower chain

UF
l
0
mp

Amount of product p transported between retailer l
0
and

customer m in the follower chain

PrLmp The price of product p for customer m in the leader chain

PrFmp The price of product p for customer m in the follower chain
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The bi-level mathematical model of the proposed

problem is introduced as below.

3.3 The upper level (leader’s model)

max FL ¼
X

l2L

X

m2M

X

p2P
PrLmpU

L
lmp �

X

i2I

X

j2J

X

c2C

gTrIJLijcX
L
ijc

�
X

j2J

X

k2K

X

p2P

gTrJKL
jkpY

L
jkp

�
X

j2J

X

k2K

X

p2P

fPcLjpY
L
jkp �

X

k2K

X

l2L

X

p2P

gTrKLL
klpS

L
klp

�
X

l2L

X

m2M

X

p2P

gTrLML
lmpU

L
lmp

�
X

i2I
FixIiZIi �

X

i2I
FixJjZJj �

X

k2K
FixKkZKk

�
X

l2L
FixLlZLl

ð3Þ
s:t: :

DL
mp ¼ ~aLmp � bLmppPr

L
mp þ dFmpPr

F
mp �

X

h 2 P
h 6¼ p

bLmhpPr
L
mh;

8m 2 M; p 2 P

ð4Þ
X

l2L
UL

lmp ¼ DL
mp; 8m 2 M; p 2 P ð5Þ

X

m2M
UL

lmp �
X

k2K
SLklp; 8l 2 L; p 2 P ð6Þ

X

l2L
SLklp �

X

j2J
YL
jkp; 8k 2 K; p 2 P ð7Þ

X

k2K

X

p2P
OcpY

L
jkp �

X

i2I
XL
ijc; 8j 2 J; c 2 C ð8Þ

X

m2M
UL

lmp �CapLlpZLl; 8l 2 L; p 2 P ð9Þ

X

l2L
SLklp �CapKkpZKk; 8k 2 K; p 2 P ð10Þ

X

k2K
YL
jkp �CapJjpZJj; 8j 2 J; p 2 P ð11Þ

X

j2J
XL
ijc �CapIicZIi; 8i 2 I; c 2 C ð12Þ

ZIi; ZJj; ZKk; ZLl 2 0; 1f g ð13Þ

XL
ijc;Y

L
jkp; S

L
klp;U

L
lmp;Pr

L
mp � 0: ð14Þ

3.4 The lower level (follower’s model)

maxFF ¼
X

l02L0

X

m2M

X

p2P
PrFmpU

F
l0mp �

X

i02I0

X

j02J0

X

c2C

gTrIJFi0j0cX
F
i0i0c

�
X

j02J0

X

k02K0

X

p2P

gTrJKF
j0k0pY

F
j0k0p

�
X

j02J0

X

k02K0

X

p2P

fPcFj0pY
F
j0k0p �

X

k02K 0

X

l02L0

X

p2P

gTrKLF
k0l0pS

F
k0l0p

�
X

l02L0

X

m2M

X

p2P

gTrLMF
l0mpU

F
l0mp

ð15Þ
s:t: :

DF
mp ¼ ~aFmp � bFmppPr

F
mp þ dLmpPr

L
mp �

X

h 2 P
h 6¼ p

bFmhpPr
F
mh;

8m 2 M; p 2 P

ð16Þ
X

l02L0
UF

l0mp ¼ DF
mp; 8m 2 M; p 2 P ð17Þ

X

m2M
UF

l0mp �
X

k02K 0
SFk0l0p; 8l0 2 L0; p 2 P ð18Þ

X

l02L0
SFk0l0p �

X

j02J0
YF
j0k0p; 8k0 2 K 0; p 2 P ð19Þ

X

k02K 0

X

p2P
OcpY

F
j0k0p �

X

i02I0
XF
i0j0c; 8j0 2 J0; c 2 C ð20Þ

DF
mp þ DL

mp � ~aFmp þ ~aLmp; 8m 2 M; p 2 P ð21Þ

XF
i0j0c; Y

F
j0k0p; S

F
k0l0p;U

F
l0mp;Pr

F
mp � 0: ð22Þ

The objective function (3) seeks to maximize the profit

of the leader. Constraint (4) depicts the leader’s demand

function. Constraints (5)–(8) illustrate the volume of raw

materials and products transported between each of the two

leadership chain facilities. Constraints (9)–(12) relate to the

capacity of network facilities in the leader chain. Con-

straints (13) and (14) define the range of decision variables

in the leader chain.

The objective function (15) seeks to maximize the profit

of the follower. Constraint (16) depicts the follower chain’s

demand function. Constraints (17)–(20) indicate the vol-

ume of material or products transported between each of

the two follower chain facilities. Constraints (9)–(12) are

pertinent to the network’s facilities’ valence in the leader

chain. Constraints (13) and (14) define the range of deci-

sion variables in the leader chain. Restriction (21), on the

other hand, regulates the demand for leader and follower

chains. Therefore, they cannot exceed the potential

demand. Restriction (22) defines the leader chain’s positive

decision variables.
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3.5 KKT conditions

In this section, we have introduced the Karush–Kuhn–

Tucker (KKT) conditions for the bi-level mathematical

model. With regard to the KKT conditions for a bi-level

mathematical model, the primary necessary condition for

the lower-level problem is that its constraints are convex.

Due to KKT conditions, the convexity of its restriction

is critical for the lower-level problem and the concavity of

its objective function in a bi-level mathematical model. By

incorporating the follower’s KKT constraints at the upper

level, the optimal strategy of the follower is guaranteed if

these conditions are met.

The following is a typical bi-level mathematical model

(Gümüş and Floudas 2005).

max
u

fl u;wð Þ

s.t:

H u;wð Þ ¼ 0

max
w

ff u;wð Þ

s.t: :

gi u;wð Þ� 0; 8i
hj i;wð Þ ¼ 0; 8j
u;w�

ð23Þ

The above bi-level mathematical model is transformed

into the following one-level mathematical model using the

KKT conditions (Mokhlesian and Zegordi 2014).

max
u

fl u;wð Þ

s.t: :

G u;wð Þ� 0

H u;wð Þ ¼ 0

rffw� u;w�ð Þ ¼ 0; 8i
tigi u;w

�ð Þ ¼ 0; 8i
gi u;wð Þ� 0; 8i
hj u;wð Þ ¼ 0; 8j
u;w� 0

ti � 0; 8i

ð24Þ

where ui denotes the number of dual variables, ki denotes
the Lagrangian multipliers, and u;wð Þ denotes the decision
variables. Equation (24) satisfies the optimal conditions of

the lower-level problem or of the model’s followers. For

the leader’s problem, the Nash equilibrium tactics are

obtained by assuming that the follower employs the opti-

mal tactics. Using the KKT conditions, we can convert the

bi-level model to a single-level model. As a result, we can

be confident that the lower-level optimum solution is

global in nature, as defined by the convex constraints and

concave objective function. The converted KKT one-level

mathematical model is shown below.

maxFL ¼
X

l2L

X

m2M

X

p2P
PrLmpU

L
lmp �

X

i2I

X

j2J

X

c2C

gTrIJLijcX
L
ijc

�
X

j2J

X

k2K

X

p2P

gTrJKL
jkpY

L
jkp

�
X

j2J

X

k2K

X

p2P

fPcLjpY
L
jkp �

X

k2K

X

l2L

X

p2P

gTrKLL
klpS

L
klp

�
X

l2L

X

m2M

X

p2P

gTrLML
lmpU

L
lmp

�
X

i2I
FixIiZIi �

X

i2I
FixJjZJj �

X

k2K
FixKkZKk

�
X

l2L
FixLlZLl

ð25Þ

s.t: :
X

l2L
UL

lmp ¼ ~aLmp � bLmppPr
L
mp þ dFmpPr

F
mp

�
X

h 2 P

h 6¼ p

bLmhpPr
L
mh; 8m 2 M; p 2 P

ð26Þ

X

m2M
UL

lmp �
X

k2K
SLklp; 8l 2 L; p 2 P ð27Þ

X

l2L
SLklp �

X

j2J
YL
jkp; 8k 2 K; p 2 P ð28Þ

X

k2K

X

p2P
OcpY

L
jkp �

X

i2I
XL
ijc; 8j 2 J; c 2 C ð29Þ

X

m2M
UL

lmp �CapLlpZLl; 8l 2 L; p 2 P ð30Þ

X

l2L
SLklp �CapKkpZKk; 8k 2 K; p 2 P ð31Þ

X

k2K
YL
jkp �CapJjpZJj; 8j 2 J; p 2 P ð32Þ

X

j2J
XL
ijc �CapIicZIi; 8i 2 I; c 2 C ð33Þ

X

l02L0
UF

l0mp ¼ ~aFmp � bFmppPr
F
mp þ dLmpPr

L
mp �

X

h 2 P
h 6¼ p

bFmhpPr
F
mh;

8m 2 M; p 2 P

ð34Þ
X

l02L0
UF

l0mp ¼ DF
mp; 8m 2 M; p 2 P ð35Þ
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X

m2M
UF

l0mp �
X

k02K 0
SFk0l0p; 8l0 2 L0; p 2 P ð36Þ

X

l02L0
SFk0l0p �

X

j02J0
YF
j0k0p; 8k0 2 K 0; p 2 P ð37Þ

~aFmp � bFmppPr
F
mp þ dLmpPr

L
mp �

P

h 2 P

h 6¼ p

bFmhpPr
F
mh

0

B

B

B

B

B

@

1

C

C

C

C

C

A

þ

~aLmp � bLmppPr
L
mp þ dLmpPr

L
mp �

P

h 2 P

h 6¼ p

bLmhpPr
L
mh

0

B

B

B

B

B

@

1

C

C

C

C

C

A

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

� ~aFmp þ ~aLmp

� �

; 8m 2 M; p 2 P

ð38Þ

X

m2M

X

p2P

~aFmp � bFmppPr
F
mp þ dLmpPr

L
mp �

P

h 2 P

h 6¼ p

bFmhpPr
F
mh � k1mppb

F
mpp

�
P

h 2 P

h 6¼ p

bFmhpk
1
mhp þ u4mppb

F
mpp þ

P

h 2 P

h 6¼ p

bFmhpu
4
mhp

0

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

A

¼ 0

ð39Þ

�
X

i02I0

X

j02J0

X

c2C

gTrIJFi0j0c þ I0j j
X

j02J0

X

c2C
u1j0c ¼ 0 ð40Þ

�
X

j02J0

X

k02K 0

X

p2P

gTrJKF
j0k0p � K 0j j

X

j02J0

X

p2P

fPcFj0p

� K 0j j
X

j02J0

X

c2C

X

p2P
u1j0pOcp þ J0j j

X

k02K 0

X

p2P
u2k0p

¼ 0 ð41Þ

�
X

k02K 0

X

l02L0

X

p2P

gTrKLF
k0l0p � L0j j

X

k02K0

X

p2P
u2k0p

þ K 0j j
X

l02L0

X

p2P
u3l0p

¼ 0 ð42Þ

�
X

l02L0

X

m2M

X

p2P

gTrLMF
l0mp � Mj j

X

l02L0

X

p2P
u3l0p

� L0j j
X

m2M

X

p2P
k1mpp

¼ 0 ð43Þ

u1j0c
X

k02K 0

X

p2P
OcpY

F
j0k0p �

X

i02I0
XF
i0j0c

 !

¼ 0; 8j0 2 J0; c 2 C

ð44Þ

u2k0p
X

l02L0
SFk0l0p �

X

j02J0
YF
j0k0p

 !

¼ 0; 8k0 2 K 0; p 2 P ð45Þ

u3l0p
X

m2M
UF

l0mp �
X

k02K 0
SFk0l0p

 !

¼ 0; 8l0 2 L0; p 2 P ð46Þ

k1mpp
X

l02L0
UF

l0mp � ~aFmp þ bFmppPr
F
mp � dLmpPr

L
mp þ

X

h 2 P

h 6¼ p

bFmhpPr
F
mh

0

B

B

B

B

B

@

1

C

C

C

C

C

A

¼ 0; 8m 2 M; p 2 P

ð47Þ

u4mpp

~aFmp � bFmppPr
F
mp þ dLmpPr

L
mp �

P

h 2 P

h 6¼ p

bFmhpPr
F
mh

0

B

B

B

B

B

@

1

C

C

C

C

C

A

þ ~aLmp � bLmppPr
L
mp þ dLmpPr

L
mp �

P

h 2 P

h 6¼ p

bLmhpPr
L
mh

0

B

B

B

B

B

@

1

C

C

C

C

C

A

� ~aFmp þ ~aLmp

� �

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

¼ 0; 8m 2 M; p 2 P

ð48Þ

~aFmp � bFmppPr
F
mp þ dLmpPr

L
mp �

X

h 2 P
h 6¼ p

bFmhpPr
F
mh � 0;

8m 2 M; p 2 P

ð49Þ

~aLmp � bLmppPr
L
mp þ dLmpPr

L
mp �

X

h 2 P
h 6¼ p

bLmhpPr
L
mh � 0;

8m 2 M; p 2 P

ð50Þ

ZIi; ZJj; ZKk; ZLl 2 0; 1f g ð51Þ

XL
ijc;Y

L
jkp; S

L
klp;U

L
lmp;Pr

L
mp;X

F
i0j0c; Y

F
j0k0p; S

F
k0l0p;U

F
l0mp;Pr

F
mp; � 0:

ð52Þ

3.6 Fuzzy programming model

Consider the following linear mathematical programming

model with fuzzy parameters (Yildizbaşi et al. 2018):
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Max Z ¼ ~ctx

s.t: :

x 2 N ~A; ~B
� �

¼ fx 2 Rnj~aix� ~bi; i 2 m x� 0g
ð53Þ

where ec ¼ ec1; ec2; . . .; ecnð Þ;A ¼ ½eaij�m�n;
eb ¼ eb1; eb2; . . .;

�

ebnÞt are the fuzzy parameters used in the problem’s

objective function, the vector coefficient, and the right-side

parameter of the constraints? The probability distribution

function of fuzzy parameters is assumed based on the

properties of fuzzy numbers. Finally x ¼ x1; x2; . . .; xnð Þ
represents the decision vector. For the feasibility and

optimization of the problem presented in the above model,

it is necessary to control the uncertain parameters given in

the objective function and constraints. Hence, assuming

parameter a as the minimum feasibility of constraints, the

controlled model is as follows:

Max Z ¼ EV ~cð Þx
s.t: :

1� að ÞEai
2 þ aEai

1

� �

x� 1� að ÞEbi
1 þ aEbi

2 ;

i 2 m x� 0; a 2 0; 1½ �:

ð54Þ

EV ~cð Þ is the anticipated value of the fuzzy membership

function used in the objective function (OBFV) of the

model, which is calculated as follows:

EV ~cð Þ ¼ Ec
1 þ Ec

2

2
: ð55Þ

In this paper, the fuzzy parameters are intended as tri-

angular fuzzy, as illustrated in Fig. 2. Figure 2 indicates

the possibilistic distribution of the fuzzy parameter

eC ¼ ðC1;C2;C3Þ. C2;C1, and C3 represent the optimistic,

probable, and pessimistic values of the fuzzy number eC ,

respectively, which are characterized by the decision-

maker.

Thus, the expected value (the anticipated value of the

fuzzy parameter of the OBFV) can be calculated in the

following manner:

EI ecð Þ ¼ Ec
1;E

c
2

� �

¼ c1 þ c2

2
;
c2 þ c3

2

� 	

: ð56Þ

As mentioned previously, uncertain parameters include

the potential demand, upper and lower-level transport

costs, as well as upper and lower-level production costs. As

a result, the stated uncertain parameters are controlled

using a triangular fuzzy programming method.

Parameter Optimistic Probable Pessimistic

eaFmp a1Fmp a2Fmp a3Fmp

eaLmp a1Lmp a2Lmp a3Lmp

gTrIJ
L

ijc
TrIJ1Lijc TrIJ2Lijc TrIJ3Lijc

gTrJK
L

jkp
TrJK1Ljkp TrJK2Ljkp TrJk3Ljkp

gTrKL
L

klp
TrKL1Lklp TrKL2Lklp TrKL3Lklp

gTrLM
L

lmp
TrLM1Llmp TrLM2Llmp TrLM3Llmp

fPc
L

jp
Pc1Ljp Pc2Ljp Pc3Ljp

gTrIJ
F

i
0
j
0
c

TrIJ1F
i
0
j
0
c

TrIJ2F
i
0
j
0
c

TrIJ3F
i
0
j
0
c

gTrJK
F

j
0
k
0
p

TrJK1F
j
0
k
0
p

TrJK2F
j
0
k
0
p

TrJK3F
j
0
k
0
p

gTrKL
F

k
0
l
0
p

TtKL1F
k
0
l
0
p

TtKL2F
k
0
l
0
p

TtKL3F
k
0
l
0
p

gTrLM
F

l
0
mp

TrLM1F
l
0
mp

TrLM2F
l
0
mp

TrLM3F
l
0
mp

fPc
F

j
0
p

Pc1F
j
0
p

Pc2F
j
0
p

Pc3F
j
0
p

As a result of the expressed relationships, we can write

the fuzzy programming model as follows:

max½FL� ¼
X

l2L

X

m2M

X

p2P
PrLmpU

L
lmp

�
X

i2I

X

j2J

X

c2C

TrIJ1Lijc þ 2TrIJ2Lijc þ TrIJ3Lijc
4

 !

XL
ijc

�
X

j2J

X

k2K

X

p2P

TrJK1Ljkp þ 2TrJK1Ljkp þ TrJK3Ljkp
4

 !

YL
jkp

�
X

j2J

X

k2K

X

p2P

Pc1Ljp þ 2Pc2Ljp þ Pc3Ljp
4

 !

YL
jkp

�
X

k2K

X

l2L

X

p2P

TrKL1Lklp þ 2TrKL1Lklp þ TrKL3Lklp
4

 !

SLklp

�
X

l2L

X

m2M

X

p2P

TrLM1Ljkp þ 2TrLM1Ljkp þ TrLM3Ljkp

4

 !

UL
lmp

�
X

i2I
FixIiZIi �

X

i2I
FixJjZJj �

X

k2K
FixKkZKk

�
X

l2L
FixLlZLl

ð57Þ
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s:t: :

X

l2L
UL

lmp ¼
a

a2Lmp þ a3Lmp
2

 !

þ

1� að Þ
a2Lmp þ a1Lmp

2

 !

0

B

B

B

B

B

@

1

C

C

C

C

C

A

� bLmpp Pr
L

mp
þdFmp Pr

F

mp
�
X

h 2 P

h 6¼ p

bLmhp Pr
L

mh
;

8m 2 M; p 2 P

ð58Þ

X

l02L0
UF

l0mp ¼
b

a2Fmp þ a3Fmp
2

 !

þ

1� bð Þ
a2Fmp þ a1Fmp

2

 !

0

B

B

B

B

@

1

C

C

C

C

A

� bFmpp Pr
F

mp
þdLmp Pr

L

mp
�
X

h 2 P
h 6¼ p

bFmhp Pr
F

mh
;

8m 2 M; p 2 P

ð59Þ X

m2M

X

p2P

b
a2Fmp þ a3Fmp

2

 !

þ

1� bð Þ
a2Fmp þ a1Fmp

2

 !

0

B

B

B

B

B

@

1

C

C

C

C

C

A

� bFmppPr
F
mp þ dLmpPr

L
mp�

P

h 2 P

h 6¼ p

bFmhpPr
F
mh � k1mppb

F
mpp

�
P

h 2 P

h 6¼ p

bFmhpk
1
mhp þ u4mppb

F
mpp þ

P

h 2 P

h 6¼ p

bFmhpu
4
mhp

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B
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1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

ð61Þ

b
a2Fmp þ a3Fmp

2

 !

þ
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2

 !
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F
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þ
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þ
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; 8m 2 M; p 2 P

ð60Þ

Fig. 2 The possibilistic distribution of the fuzzy parameter C
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�
X

i02I0

X

j02J0

X

c2C

TrIJ1Fi0j0c þ 2TrIJ2Fi0j0c þ TrIJ3Fi0j0c
4

 !

þ I0j j
X

j02J0

X

c2C
u1j0c ¼ 0

ð62Þ

�
X

j02J0

X

k02K 0

X

p2P

TrJK1Fj0k0p þ 2TrJK2Fj0k0p þ TrJK3Fj0k0p
4

 !

� K 0j j
X

j02J0

X

p2P

Pc1Fj0p þ 2Pc2Fj0p þ Pc3Fj0p
4

 !

� K 0j j
X

j02J0

X

c2C

X

p2P
u1j0pOcp þ J0j j

X

k02K0

X

p2P
u2k0p ¼ 0

ð63Þ

�
X

k02K 0

X

l02L0

X

p2P

TtKL1Fk0l0p þ 2TtKL2Fk0l0p þ KL3Fk0l0p
4

 !

� L0j j
X

k02K 0

X

p2P
u2k0p þ K 0j j

X

l02L0

X

p2P
u3l0p ¼ 0

ð64Þ

�
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Eqs 27ð Þ� 33ð Þ Eqs 30ð Þ� 37ð Þ Eqs 44ð Þ� 46ð Þ Eqs 51ð Þ� 52ð Þ

where u1
j
0
c
; u2

k
0
p
; u3

l
0
p
; u4mpp are dual variables and k1mpp is the

Lagrangian multiplier.

The proposed leader–follower model produces a

MINLP. Numerous studies have established the NP-hard-

ness of the SCN design problem (Jayaraman et al. 2003).

The developed model addresses two distinct problems:

location and allocation. As a result, this model can be

reduced to the facility location problem, which has been

shown to be NP-hard (Davis and Ray 1969). As a result, the

aforementioned leader–follower SCN problem is intro-

duced in this study as NP-hard. Accurately resolving this

problem through precise solutions is time-consuming and

frequently impractical. Thus, numerous meta-heuristic

algorithms with various representations have been pro-

posed to achieve near-optimal solutions, but they are

inefficient. The following section describes the HGALO

algorithm.

4 Hybrid genetic ant-lion optimization
algorithm

The ant-lion algorithm mimics the hunting mechanism of

the ant lion and interacts with the bait, the desired ant, and

imitates them all (Mirjalili 2015). As with other popula-

tion-based algorithms, the ant-lion algorithm approximates

optimal solutions to optimization problems by promoting a

random set of solutions inspired by the ant-lion interaction.

The ant-lion algorithm has two populations: ants and ant

lions. This article discusses how to improve the approxi-

mate optimal solutions for leader–follower SCN design by

utilizing crossover and mutation operators. The ant-lion

algorithm’s general stages for changing these sets and,

finally, for global optimization estimation are as follows:

A. The ant set is initiated using random values, which is

the most critical factor in determining the ant-lion

algorithm.

B. The value of each ant’s fit is determined in each

replication using the (OBFV).

C. The ants in the search area are scurrying about the ant

lions at random.

D. The crowd of ant lions is never evaluated. The ant lions

are supposed to be positioned in the first reps and will

move toward the new position of the ants remaining in

the repeats; of course, if they improve, they will move

toward the new position of the ants remaining in the

repeats.

E. An ant is assigned to one ant lion, and its position is

revealed as the ant gains fitness.

F. There is an ant lion nearby that, regardless of its

distance, has an effect on the ants’ movement.

G. If any ant lion is found to be preferable to the selected

ant, it will be replaced.

Parents

Children

Fig. 3 Two-point crossover operator

Parents

Children

Fig. 4 Mutation operator
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Start Tune the values of ALO and GA 

Initialize the first population of ants and 
antlions randomly  

Find the best antlion and consider it as the elite

Iteration = 0

For every ant:

• Choose an antlion based on the roulette wheel 
• Update the values of c and d using the Eqs. (76 and 77) 
• Create a random walk and normalize it using Eqs. (71 and 73) 
• Update the position of ant i using Eq. (79)

Use two-point crossover operator based on Fig. 4.

Use single-point mutation operator based on Fig. 5.

Compute the fitness of all ants

Substitute an antlion with its corresponding ant if it 
becomes fitter using Eq. (78)

Update the elite if an ant lion becomes better

If Iteration < Max it Stop
NoYes

Fig. 5 The flowchart of HGALO
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H. The stages (B) to (E) are repeated until the final

criterion is deemed satisfactory, and

I. For global optimization, the fitting position and value

of the selected ant lion are returned as the most

accurate estimate.

Ants’ primary role is to inspect the search area. They

should proceed randomly through the search area. Ant lions

select the best ants and direct them to promising search

areas. To solve the problems optimally, the ant-lion algo-

rithm emulates the ants’ random steps, immersion in the

ant-lion cavity, creation of the cavity, movement of the ant

to ant lions, catching the bait, repairing the cavity, and

selection of the preferred one. The following par diagrams

illustrate the model and programming modules associated

with each step. The randomized step used in the ant-lion

algorithm to simulate the random steps of an ant is as

follows:

X tð Þ ¼ 0; cumsum 2r t1ð Þ � 1ð Þ; cumsum 2r t2ð Þ � 1ð Þ; . . .;½
cumsum 2r tnð Þ � 1ð Þ�

ð71Þ

where cumsum denotes the cumulative sum, n denotes the

maximum number of repeats, and t denotes the step size of

a random step.

r tð Þ ¼ 1 if rand[ 0:5
0 if rand� 0:5




ð72Þ

t denotes a random step (in this paper, repetition) and rand

denotes a random number of births distributed uniformly

within the interval [0,1]. To maintain a random step on the

search space’s boundaries and avoid over-hunting, random

steps must be normalized to the following equation.

Xt
i ¼

Xt
i � ai

� �

� dti � cti
� �

bi � aið Þ þ cti ð73Þ

where cti is the least significant variable in repetition t, dti is

the maximum variable i in repetition t, ai is the min of

random variable i, and bi is the max random step in the

variable i. Ant-lion algorithm simulates the ants’ clogging

in the ant-lion hole by changing the ant-lions’ random

steps. The following equations are presented in this regard:

cti ¼ Antliontj þ ct ð74Þ

dti ¼ Antliontj þ dt ð75Þ

where ct is the minimum variables in repetition t, dt is a

vector containing the maximum of all variables in repeti-

tion t, cti is the min variables for variable i, dti is max of all

the variables for ant i, Antliontj is the position of the ant

lion chosen in repetition t.

Fig. 6 A sample of SCN chromosome
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ct ¼ ct

I
ð76Þ

dt ¼ dt

I
ð77Þ

where I is a ratio, ct is min of all variables in repetition t,

and dt shows the vector representing the maximum of all

the variables in repetition t. In the above equations

I ¼ 1þ 10w t
T, in which t is the current repetition, T is the

max number of repetitions and w’s definition is based on

the current replication (w ¼ 2 when t[ 0:1T , w ¼ 3 when

t[ 0:5T , w ¼ 4 when t[ 0:75T , w ¼ 5 when t[ 0:9T

and w ¼ 6 when t[ 0:95T). Parameter W in the equation I

can be used for adjusting the level of operation accuracy.

The 2nd stage up to the last stage of the ant-lion algorithm

is to catch the ant and rebuild the pit. The following

equation stimulates this process:

Antliontj ¼ Antti if f Antti
� �

\f Antliontj

� �

ð78Þ

where t shows the current repetition, Antliontj indicates the

position of the selected ant lion i in repetition t, Antti
indicates position i in repetition t. The last operator in the

ant-lion algorithm is the elitism in which the best-fitted

formed ant lion is stored during the optimization. This is

the single ant lion which can affect all ants. This means

moving the selected ant lion (randomly selected using a

Rolette wheel) to the ant lion. The equation follows both of

them:

Antti ¼
Rt
A þ Rt

E

2
ð79Þ

where Antti shows the position of ant i on repetition t. Rt
A is

random motion in the selected ant lion by the roulette

wheel in repetition t and Rt
E is the random motion around

the elite in repetition t.

In addition to the solution search method described

previously, the crossover and mutation operators were used

to obtain near-optimal solutions. The operator with two-

point crossover is illustrated in Fig. 3.

Two crossover points are chosen at random from the

parent chromosomes in the two-point crossover. Between

these two points on the parent’s chromosome, the genes are

swapped. Figure 4 illustrates the mutation operator’s

performance.

This operator substitutes a random number for the

selected gene. The genetic algorithm’s crossover and

mutation operators have been used in accordance with the

presented contents and in order to move the ant lions

toward the near-optimal solution.

Fig. 7 Decoding the sample chromosome
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According to (Mirjalili et al. 2017), the ALO algorithm

has a computational complexity of O(mn), whereas the GA

algorithm has a computational complexity of O(2 mn)

(Lobo et al. 2000), where n is the population size and m is

the individual size. This is equivalent to the HGALO’s

computational complexity being O (3 mn). GWO, on the

other hand, has an O(mn) computational complexity,

whereas HHO has an O(m) computational complexity

(Mirjalili et al. 2014; Heidari et al. 2019).

Figure 5 illustrates the proposed HGALO algorithm’s

flowchart and how to use the two algorithms’ operators.

The following section discusses a chromosome that

solves the leader–follower SCN design problem.

Fig. 8 The pseudo-code of decoding the two-echelon SCN
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4.1 Designing the chromosome for leader–
follower SCN design

As it is shown in Fig. 6, consider an echelon of SCN with

ð Kj jÞ sources, ð Jj jÞ depots and ð Pj jÞ products. This chro-

mosome’s length is Kj j þ Jj jð Þ � jPj and each cell’s loca-

tion represents the priorities of each node (Ghahremani

et al. 2019). For example, Fig. 6 shows a chromosome with

3 sources, 4 depots, and 2 products. Also, in this figure, the

demand of each product for depots, potential capacities for

sources, and transportation costs between nodes are shown.

The chromosome is decoded in two steps:

Step 1. For the first product, choose the source with the

highest priority. If the potential capacity of the chosen

sources exceeds the sum of all warehouse demand, the

priority of non-selected sources is reduced to zero. Alter-

natively, assign the highest priority to non-selected sour-

ces. Continue in this manner until the capacity of all

selected sources exceeds the demand of all depots.

This step specifies the location of the resources to be

selected.

Step 2. Determine the highest-priority position among

the nodes. If the node is located between two sources, refer

to (A); otherwise (B).

A. Determine the cheapest mode of transport between the

selected source and all depots. The optimal flow

between two nodes is the smallest of the two (depot

demand and source capacity). Reduce the priority of

the node to zero if the value of depot demand or source

capacity becomes zero.

B. Determine the least expensive mode of transportation

between the selected depot and all sources. The

optimal flow between two nodes is the smallest of

the two (depot demand and source capacity). Reduce

the priority of the node to zero if the value of depot

demand or source capacity becomes zero.

Step 3. Repeat this process until all priorities are equal

to zero.

Finally, repeat the process for all products.

The decoding of the example presented in Fig. 6 is

depicted in Fig. 7.

As illustrated in Fig. 7, sources 1 and 2 are located

optimally. The following is the pseudo-code for decoding

the two-echelon SCN design:

As previously stated, this is a multi-echelon, multi-

product, leader–follower SCN design problem, and the

initial proposed solution must address these factors. As

illustrated in Fig. 9, the priority-based encoding is repre-

sented by a matrix, in which M, P, C, I, J, K, and L rep-

resent the number of customers, products, raw materials,

suppliers, potential DCs, production centers, and potential

retailers in the leader SC, respectively. Additionally, I’, J’,

K’, and L’ denote the number of production centers, sup-

pliers, potential DCs, and potential retailers in the follow-

ing SC.

The designed leader and follower SCN’s search area is

discrete, which means that no individual from the popu-

lation components can have an arbitrary value. Allowable

Fig. 9 The final solution of the multi-echelon SCN

Fig. 10 An example of shipment in the solution search area
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values are limited to natural numbers between 1 and N. As

a result, the continuous search area in the HGALO algo-

rithm must be changed to a discrete search area. In the

solution search area, Fig. 10 illustrates an example of a

shipment.

Select the largest number in the continuous space of the

chromosome in Fig. 10. This number corresponds to the

first gene in the new solution. Continue checking the

numbers in this manner until all of them have been

checked. Figure 11 illustrates the pseudo-code for decod-

ing the leader–follower multi-echelon SCN design.

5 Numerical results

In the preceding section, we examined how to model the

leader–follower SCN problem under uncertain conditions

and how to control its uncertainty parameters using a fuzzy

programming approach (demand, transportation, and pur-

chase costs). The exact method (using Baron Solver) and

algorithms are used in this section to evaluate the model

and compare the output variables of the problem. The

primary objective of this section is to evaluate the HGA-

LO’s efficiency in obtaining the near-optimal solution. As a

result, a small sample problem is designed first, followed

by the solution of the proposed model using Baron Solver.

The problem’s sensitivity analysis is also discussed below.

After solving the model with meta-heuristic algorithms, the

Fig. 11 The pseudo-code of decoding the leader–follower multi-echelon SCN design
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Table 1 The parameters of the

boundaries of production based

on uniform distribution

Parameter Range interval

FixIi;FixJj;FixKk;FixLl 	Uð100000; 120000Þ
CapIic 	Uð1500; 1800Þ
CapJjp;CapKkp 	Uð1000; 2000Þ
CapLlp 	Uð500; 700Þ
Ocp 	Uð1; 2Þ
bFmpp 	Uð0:3; 1:5Þ

bLmpp 	Uð0:4; 1:8Þ

dLmp 	Uð0:5; 0:9Þ

dFmp 	Uð0:3; 0:8Þ

gTrIJ
L

ijc; gTrJK
L

jkp; gTrKL
L

klp; gTrLM
L

lmp
	 U 5; 10ð Þ;U 10; 15ð Þ;U 15; 20ð Þf g

fPc
L

jp
	 U 2; 4ð Þ;U 4; 6ð Þ;U 6; 8ð Þf g

gTrIJ
F

i
0
j
0
c; gTrJK

F

j
0
k
0
p; gTrKL

F

k
0
l
0
p; gTrLM

F

l
0
mp

	 U 7; 12ð Þ;U 12; 18ð Þ;U 18; 25ð Þf g

fPc
F

j
0
p

	 U 3; 5ð Þ;U 5; 8ð Þ;U 8; 10ð Þf g

eaFmp 	 U 200; 300ð Þ;U 300; 400ð Þ;U 400; 500ð Þf g

eaLmp 	 U 350; 500ð Þ;U 550; 700ð Þ;U 700; 900ð Þf g

Fig. 12 The location of the potential facilities and allocation between each node
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performance of the HGALO algorithm is compared to that

of the GA, GWO, ALO, and HHO algorithms.

5.1 Solving the small size sample problem

A small sample problem is designed in this subsection to

evaluate the presented model and compare the output

variables. It encompasses two distinct product categories,

two distinct raw material categories, four suppliers, four

manufacturing facilities, four distribution centers, five

retailers, and six customers.

Due to the lack of available benchmarks in the literature,

random data from a uniform distribution is generated using

the MATLAB software, as illustrated in Table 1.

Due to the model’s nonlinearity, Solver Baron is used on

the GAMS 24.8.5 software. The numbers and locations of

potential facilities, as well as the optimal flow between

each node, are shown in Fig. 12 and Tables 2 and 3,

Table 2 The optimal flow between each node in the leader chain

Decision

variable

Amount Decision

variable

Amount Decision

variable

Amount Decision

variable

Amount Decision

variable

Amount

UL
2;1;1

421 SL2;2;1 812 YL
1;2;1

1205 XL
211

1172 PrL1;1 526.19

UL
4;1;2

405 SL2;2;2 665 YL
1;2;2

1498 XL
212

1207 PrL1;2 424.78

UL
2;3;1

391 SL2;4;1 393 YL
3;3;1

1964 XL
231

833 PrL2;1 904.07

UL
2;3;2

665 SL2;4;2 833 YL
3;3;2

1321 XL
232

1386 PrL2;2 909.76

UL
3;2;1

640 SL3;3;1 1964 XL
331

1164 PrL3;1 517.13

UL
3;2;2

497 SL3;3;2 1321 XL
332

1527 PrL3;2 377.2

UL
3;4;1

678 XL
312

1518 PrL4;1 797.71

UL
3;4;2

444 PrL4;2 97.76

UL
3;6;1

646 PrL5;1 523.32

UL
3;6;2

380 PrL5;2 830.41

UL
4;5;1

393 PrL6;1 371.22

UL
4;5;2

428 PrL6;2 144.4

Table 3 The optimal flow between each node in the follower chain

Decision

variable

Amount Decision

variable

Amount Decision

variable

Amount Decision

variable

Amount Decision

variable

Amount

UF
2;1;1

318 SF2;2;1 1014 YF
3;2;1

1014 XF
231

1014 PrL1;1 227.63

UF
2;1;2

637 SF2;2;2 1120 YF
3;2;2

1120 XF
232

2240 PrL1;2 972.3

UF
2;2;1

696 SF3;4;1 1119 YF
4;3;1

1994 XF
441

1994 PrL2;1 63.23

UF
2;2;2

483 SF3;4;2 853 YF
4;3;2

1624 XF
442

3248 PrL2;2 252.57

UF
4;3;1

460 SF3;5;1 875 PrL3;1 624.87

UF
4;3;2

367 SF3;5;2 771 PrL3;2 401.07

UF
4;5;1

659 PrL4;1 676.65

UF
4;5;2

486 PrL4;2 533.49

UF
5;4;1

404 PrL5;1 381.99

UF
5;4;2

383 PrL5;2 440.15

UF
5;6;1

471 PrL6;1 280.67

UF
5;6;2

388 PrL6;2 326.45
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respectively, when uncertainty rates (a ¼ b ¼ 0:5) are

taken into account.

According to Fig. 12, the optimal locations are suppliers

with numbers 2 and 3, production centers with numbers 1

and 3, distribution centers with numbers 2 and 3, and

retailers with numbers 2, 3, and 4. The objective function

value (OBFV) of the proposed model is 1989577.94, and

the optimal flow between each leader–follower chain is

shown in Tables 2 and 3. Additionally, this table shows the

prices charged by retailers in the leader–follower chain.

5.2 Sensitivity analysis

After verifying and validating the proposed model, it is

necessary to analyze its sensitivity. To do so, an uncer-

tainty rate is chosen, and the resulting changes in the

OBFV are shown in Table 4.

According to Table 4, as the uncertainty rate increases,

the demand for products increases, while the OBFV and

average selling price of products decrease. Figure 13

depicts the trend of changes in OBFV at various levels of

uncertainty.

Table 4 Changing of the OBFV through adjustment of the uncertainty rates

Uncertainty rates ða ¼ bÞ OBFV Average selling price

of products (leader chain)

Average selling price of

products (follower chain)

0.9 1927883.3 500.71 397.56

0.8 1934265.5 507.87 410.97

0.7 1943648.4 516.90 418.74

0.6 1964793.3 525.17 423.94

0.5 1989577.9 535.32 431.75

0.4 2027543.2 545.67 440.34

0.3 2063654.2 550.94 453.17

0.2 2094678.5 555.47 462.84

0.1 2124876.8 556.24 473.67

Fig. 13 Changes in the OBFV and average selling price of products by changing the uncertainty rates
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Table 5 The value of proposed

and optimized parameters of

meta-heuristic algorithms

Algorithm Parameter Level one Level two Level three Optimum level

GA Maxit 50 100 200 200

N � pop 50 100 200 100

Pc 0.7 0.8 0.9 0.7

Pm 0.03 0.05 0.07 0.05

HGALO Maxit 50 100 200 200

N� ant 50 100 200 100

bi 500 1000 1500 1500

ai 200 300 400 400

Pc 0.7 0.8 0.9 0.8

Pm 0.03 0.05 0.07 0.05

ALO Maxit 50 100 200 200

N � ant 50 100 200 200

bi 500 1000 1500 1000

ai 200 300 400 300

GWO Maxit 50 100 200 200

N �Wolf 50 100 200 200

A 1 2 3 3

C 1 2 3 2

HHO Maxit 50 100 200 200

N � pop 50 100 200 100

Strategyrate 0.05 0.1 0.15 0.05

Fig. 14 The convergence of the

algorithms in achieving the

OBFV
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5.2.1 Tuning the meta-heuristics algorithms by Taguchi
method

Prior to solving the problem with meta-heuristic algo-

rithms, the Taguchi method was used to tune the parame-

ters of the GA, HGALO, ALO, HHO, and GWO

algorithms. Prior to beginning the Taguchi process, it is

necessary to identify the relevant factors. Then, the

appropriate levels for each factor should be determined,

followed by the appropriate test design for these control

factors. After establishing the design of the experiment, the

experiments are conducted and the results are analyzed to

determine the optimal parameter combination. Three levels

are considered in this paper for each factor in accordance

with Table 5. We can determine the design and imple-

mentation of experiments for each algorithm by consider-

ing the number of factors and the numbers of their levels.

Given that the proposed model is a single objective func-

tion, we use the RPD index to tune the parameters during

the data analysis.

RPD ¼ Best�sol � Algorithmsol

Best�sol
: ð80Þ

5.2.2 Solving sample problems in small size

This subsection evaluates the meta-heuristic algorithms

used to solve the previous section’s small size example.

The purpose of this analysis is to determine how algorithms

converge toward a near-optimal solution and its output

variables. Thus, a sample problem is considered that

includes two types of products, two types of raw materials,

four suppliers, four manufacturing centers, four distribution

centers, five retailers, and six customers. After solving the

numerical example using meta-heuristic algorithms, the

algorithms’ convergence toward achieving the OBFV is

determined, as illustrated in Fig. 14.

As illustrated in Fig. 14, the HGALO algorithm con-

verges faster and has a greater OBFV than other algo-

rithms. Table 6 shows the OBFV obtained by solving a

numerical example and comparing it to Baron’s solver.

Table 6 The OBFV obtained

from different solution

approaches

Algorithm OBFV Gap between baron solver

and algorithms (%)

CPU-time

Baron solver 1989577.94 – 84.25

HGALO 1989398.88 0.009 33.14

GA 1989100.44 0.024 27.26

ALO 1989458.57 0.006 25.94

GWO 1989299.40 0.014 20.34

HHO 1989219.82 0.018 26.47

Table 7 The optimal location and number of facilities obtained from

different solution methods

Algorithm Suppliers Production centers DCs Retailers

Baron solver 2–3 1–3 2–3 2–3–4

HGALO 2–3 1–3 2–3 2–3–4

GA 1–3 1–3 2–3 2–3–4

ALO 2–3 1–3 1–3 1–3–4

GWO 1–3 2–3 2–3 2–3–4

HHO 1–2 1–3 2–3 2–3–4

Table 8 The Average selling price of products (leader and follower

chain) obtained from different solution methods

Algorithm Average selling price of

products (leader chain)

Average selling price of

products (follower chain)

Baron

solver

535.32 431.75

HGALO 535.72 430.17

GA 535.24 429.37

ALO 536.14 431.20

GWO 534.94 430.25

HHO 534.86 430.86

Table 9 The sample problems size

Sample problem no I J K L M P C

1 5 5 5 7 8 3 2

2 7 6 6 8 10 3 2

3 8 7 7 10 12 3 2

4 9 8 8 12 15 4 2

5 10 10 10 14 18 4 3

6 12 12 12 16 21 4 3

7 15 14 14 18 23 5 3

8 18 16 16 20 25 5 4

9 20 18 18 22 28 5 4

10 25 20 20 25 30 6 4
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According to the results of Table 6, the maximum gap is

equal to 0.024 percent, indicating the algorithms’ high

efficiency in achieving the OBFV in less time than the

Baron Solver. Additionally, the results indicate that meta-

heuristic algorithms solve problems 60% faster than Baron

Solver.

The optimal location and number of facilities for solving

small numerical examples are shown in Table 7.

According to Table 7, all solution methods produce the

same number of optimal locations. Finally, Table 8 illus-

trates the average selling price of products (Leader and

Follower chains) when the uncertainty rate is set to 0.5.

Table 10 OBFV obtained from

solving sample problems, using

different solution methods

Sample problem OBFV

HGALO GA ALO GWO HHO (Baron solver)

1 2416876.1 2415789.6 2416556.7 2415824.2 2416090.5 2427541.6

2 2826497.4 2824613.6 2824700.6 2824796.6 2826164.8 2846237.1

3 3124685.5 3124259.7 3124555.6 3131394.7 3124664.3 3147820.3

4 3264975.6 3261974.3 3262077.7 3264291.1 3263119.5 –

5 3478945.7 3471165.1 3477121.3 3477352.2 3472619.1 –

6 3864472.3 3854687.7 3859479.8 3859047.6 3861011.6 –

7 3947651.2 3924686.4 3950976.8 3942017.6 3931025.3 –

8 4157666.4 4111794.6 4142973.8 4141845.1 4159253.9 –

9 4268794.3 4213428.6 4220017.0 4241020.9 4266565.5 –

10 4378261.4 4304789.8 4325278.2 4350018.1 4364981.6 –

Mean 3571554.6 3550718.9 3560373.7 3564760.8 3569877.5

Sample problem RPD (%)

HGALO GA ALO GWO HHO (Baron solver)

1 0.000 0.045 0.013 0.044 0.033 –

2 0.000 0.067 0.064 0.060 0.012 –

3 0.214 0.228 0.218 0.000 0.215 –

4 0.000 0.092 0.089 0.021 0.057 –

5 0.000 0.224 0.052 0.046 0.182 –

6 0.000 0.253 0.129 0.140 0.090 –

7 0.084 0.665 0.000 0.227 0.505 –

8 0.038 1.141 0.391 0.419 0.000 –

9 0.000 1.297 1.143 0.651 0.052 –

10 0.000 1.678 1.210 0.645 0.303 –

Table 11 CPU-time obtained

from solving sample problems,

using different solution methods

Sample problem HGALO GA ALO GWO HHO (Baron solver)

1 67.1 54.4 55.5 46.4 52.4 126.47

2 71.2 58.6 65.4 56.6 62.3 347.68

3 80.3 69.8 80.4 67.3 73.5 846.82

4 91.7 80.6 94.7 85.2 88.4 [ 1000

5 112.3 99.3 120.4 110.3 109.2 [ 1000

6 140.4 122.3 148.5 134.1 134.5 [ 1000

7 170.6 152.3 187.0 181.3 167.7 [ 1000

8 210.3 190.0 237.6 229.8 208.0 [ 1000

9 261.7 235.4 292.7 281.3 258.4 [ 1000

10 328.7 290.7 364.0 353.1 329.4 [ 1000

Mean 153.4 135.3 164.6 154.5 148.3 [ 1000
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Additionally, the results of Table 8 demonstrate the

close proximity of the average selling prices of products

(leader and follower chains) obtained using various solu-

tion methods in comparison with the Baron Solver.

5.2.3 Solving sample problems in large size

After evaluating the meta-heuristic algorithms, this sub-

section solves the leader–follower model using the

Fig. 15 Changes in averages of

the RPD % and CPU-time in

large sample sizes

Table 12 T Test outputs at 95%

confidence level
Algorithm Index Means different Confidence interval 95% T value P value

Lower bound Upper bound

GA-HGALO OBFV 20,836 3725 37,946 2.75 0.022

GA-ALO 9655 1212 18,097 2.59 0.029

GA-GWO 14,042 2980 25,104 2.87 0.018

GA-HHO 19,159 - 634 38,951 2.19 0.056

ALO-HGALO 11,181 - 1819 24,181 1.95 0.084

ALO-GWO 4387 - 3134 11,908 1.32 0.220

ALO-HHO 9504 - 6948 25,955 1.31 0.224

GWO-HGALO 6794 - 349 13,936 2.15 0.060

GWO-HHO 5117 - 4678 14,911 1.18 0.268

HHO-HGALO 1677 - 3592 6946 0.72 0.490

GA-HGALO CPU-time 18.09 11.96 24.21 6.679 0.000

GA-ALO 29.28 12.35 46.21 3.91 0.004

GA-GWO 19.20 2.18 36.22 2.55 0.031

GA-HHO 13.04 4.69 21.39 3.53 0.006

ALO-HGALO 11.19 - 0.19 22.57 2.22 0.053

ALO-GWO 10.08 8.272 11.88 12.61 0.000

ALO-HHO 16.24 7.28 25.20 4.10 0.003

GWO-HGALO 1.11 - 10.47 12.69 0.22 0.833

GWO-HHO 6.16 - 3.03 15.35 1.52 0.164

HHO-HGALO 5.05 1.97 8.13 3.71 0.005
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HGALO, GA, ALO, GWO, and HHO algorithms. As a

result, ten sample problems of varying sizes are designed to

evaluate the performance of the proposed algorithms.

Tables 9, 10, and 11 illustrate the size of the exemplified

problems and the OBFV and CPU-time of the proposed

algorithms (11).

According to the results of Tables 9, 10, and 11, the

exact solution cannot be found by increasing the size of the

problem. It is obvious that the CPU-time required to solve

the model using the exact method is quite high, as the third

sample problem requires 846.82 s. By comparing the meta-

heuristic algorithms for solving large-scale sample prob-

lems, it is possible to deduce that the OBFV obtained from

the HGALO algorithm was superior to the other algorithms

in all sample problems. Additionally, when the RPD index

of the algorithms is compared, it is observed that as the size

of the problem increases, the GA algorithm loses its ability

to obtain a near-optimal solution. Simultaneously, it con-

sumes less CPU-time than the other algorithms.

Figure 15 illustrates the changes in the OBFV and CPU-

time averages as a result of the proposed meta-heuristics

algorithms in all sample problems.

The T Test was used at a 95% confidence level to

compare the significant difference between the OBFV and

CPU-time obtained from the proposed algorithms. If the P

value is less than 0.05, the hypothesis test indicates that

there is a significant difference in the averages of that

computational index between the algorithms used. T Test

output results for large sample size problems using these

algorithms are shown in Table 12.

The P value for the OBFV index is less than 0.05,

indicating a significant difference between the averages of

the OBFV index for the GA–HGALO, GA–ALO, and GA–

GWO algorithms. Additionally, there is no discernible

difference in the averages of this index between the other

algorithms. Due to a lack of decision-making regarding the

most efficient algorithm for solving the proposed mathe-

matical model, the TOPSIS method for ranking algorithms

has been discussed using two indicators of OBFV and

CPU-time. The results of these comparisons are shown in

Table 13.

According to the results in Table 13, the HGALO

algorithm obtained the optimal value of the objective

function when compared to other algorithms. While the GA

algorithm took less time to solve the model than other

algorithms. However, based on the TOPSIS ranking results,

it is observed that the HGALO algorithm, with a utility

weight of 0.6435, is more efficient than other algorithms

when both OBFV and CPU-time are considered. Apart

from the scientific findings, the proposed model has the

strongest correlation with the activities of companies

manufacturing electronic and automotive components in

the global SC. Within these networks, manufacturing firms

compete fiercely for market share and product pricing. As a

result, large and small businesses compete against one

another under the leader and follower chains, respectively.

Under conditions of uncertainty, the model presented in

this paper can provide beneficial management results for

managers of companies that manufacture electronic and

automotive components, enabling managers to make

appropriate decisions about product pricing, volume of

production, distribution, and facility location.

6 Conclusion

The purpose of this paper was to develop a new leader–

follower SCN model that maximizes both the leader and

follower chains’ profits. In the leader and follower SC, four

echelons (suppliers, manufacturers, distribution centers,

and retailers) are considered, and they compete for product

pricing in the market (customers). The high degree of

complexity associated with pricing the two leader and

follower chains is a result of the uncertainty surrounding

the amount of potential market demand. Special tools such

as fuzzy programming are used to control the potential

demand parameters and the transportation costs of products

and raw materials between different echelons of the chain

network. The difference between the leader and follower

chain networks in this paper is due to strategic decisions

made in the leader chain. The location of facilities at all

potential centers, such as suppliers, manufacturers, distri-

bution centers, and retailers, should be made part of the

leader chain’s strategic planning. The tactical decisions

made in the leader and follower chains concern the optimal

flow of products and raw materials between the two SCN

echelons. Finally, operational decisions include pricing

final products in the market (for customers) by leader and

Table 13 Algorithm

performance ranking results
Algorithm Mean of OBFV Mean of CPU-time Utility weight Rank

HGALO 3,571,554.6 153.43 0.6435 1

GA 3,550,718.9 135.34 0.4618 5

ALO 3,560,373.7 164.62 0.5218 4

GWO 3,564,760.8 154.54 0.5517 3

HHO 3,569,877.5 148.38 0.5611 2
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follower chains in order to maximize profit in the face of

uncertainty.

In this paper, the KKT method is used to convert a bi-

level mathematical model to a one-level mathematical

model. Due to the NP-Hard nature of location and SCN

design problems, this paper employs a novel hybrid of

genetic algorithm (GA) and ant-lion optimization algo-

rithm (ALO) to solve the problem. The ant-lion optimiza-

tion algorithm operators design the problem’s

chromosome, locate potential facilities, and optimally

allocate products between the different echelons of the

leader and follower chains, while the genetic algorithm

operators price the products in the market. Finally, statis-

tical comparisons between the developed algorithm and the

genetic algorithm are performed. According to the findings,

as the uncertainty rate increases, demand also increases,

while the OBFV and average selling price of products

decrease. By comparing the meta-heuristic algorithms for

solving large-size sample problems, it is possible to deduce

that the OBFV obtained from the HGALO algorithm was

superior to the GA algorithm in all sample problems.

Additionally, the P value for both the OBFV and the OBFV

is less than 0.05, indicating a significant difference between

the averages of this index in the GA–HGALO, GA–ALO,

and GA–GWO algorithms. Finally, the high OBFV of the

HGALO algorithm in solving sample problems demon-

strates the algorithm’s superior efficiency in comparison

with other algorithms. In addition to the proposed algo-

rithm, other novel algorithms such as the whale optimiza-

tion algorithm, the slap swarm algorithm, and others may

be used to solve the introduced model. Additionally, it is

suggested that researchers consider the facility location

problem in the follower’s model and control the uncer-

tainty parameters using a robust possibilistic optimization

method. Additionally, researchers can use a permutation-

based encoding to encode the solution.

Appendix

Convexity conditions are established using continuous

decision variables and linear equations for the follower’s

constraints, and thus we wish to establish the concavity of

the follower’s OBFV in the following manner:

Lemma OBFV f F is concave.

Proof We can prove the concavity of f F by negative definite

Hessian matrix. It is necessary to demonstrate the con-

cavity of the first nonlinear statement of f F using the

summation rule for multiple concave functions, as well as

the concavity of the other statements’ summation. Thus, if

m = 2 and r = 2, the OBFV’s first term is presented as

follows using the Hessian matrix.

P11D11 þ P12D12 þ P21D21 þ P22D22:

The above statements considering the equations, can be

replaced with their equals. Next, the following Hessian

matrix can be proved for P11;P12;P21;P22D22 as below:

H ¼

�2bF111 �bF121 � bF112
�bF121 � bF112 �2bF122

0 0

0 0

0 0

0 0

�2bF211 �bF221 � bF212
�bF221 � bF212 �2bF222

2

6

6

6

4

3

7

7

7

5

:

Then, we have eigenvalues:

The first three rows of eig Hð Þ are negative. So, we will

apply the negativity for the last three rows, if:

eig Hð Þ ¼

�bF111 � bF122 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bF111
2 þ bF112

2 þ bF121
2 þ bF122

2 � 2 bF111
� �

bF122
� �

þ 2 bF121
� �

bF112
� �

q

� 0

�bF211 � bF222 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bF211
2 þ bF212

2 þ bF221
2 þ bF222

2 � 2 bF211
� �

bF222
� �

þ 2 bF221
� �

bF212
� �

q

� 0

�bF111 � bF122 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bF111
2 þ bF112

2 þ bF121
2 þ bF122

2 � 2 bF111
� �

bF122
� �

þ 2 bF121
� �

bF112
� �

q

� 0

�bF211 � bF222 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bF211
2 þ bF212

2 þ bF221
2 þ bF222

2 � 2 bF211
� �

bF222
� �

þ 2 bF221
� �

bF212
� �

q

� 0

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

:
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� bF111 � bF122

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bF111
2 þ bF112

2 þ bF121
2 þ bF122

2 � 2 bF111
� �

bF122
� �

þ 2 bF121
� �

bF112
� �

q

� 0

� bF211 � bF222

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bF211
2 þ bF212

2 þ bF221
2 þ bF222

2 � 2 bF211
� �

bF222
� �

þ 2 bF221
� �

bF212
� �

q

� 0:

That means:

bF112
2 þ bF121

2 � 2 bF111
� �

bF122
� �

bF212
2 þ bF221

2 � 2 bF211
� �

bF222
� �

:

As a result of the negative eigenvalues of the Hessian

matrix, the follower’s OBFV f F will be concave if the sum

of the self-price coefficients multiplied by two is greater

than the square of the complementary coefficient’s sum. In

light of these conditions, the results indicate that all

problem sizes exhibit concavity of the lower-level OBFV.
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