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Recently, growing evidence has revealed the significant effect of reprogrammed
metabolism on pancreatic cancer in relation to carcinogenesis, progression, and
treatment. However, the prognostic value of metabolism-related genes in pancreatic
cancer has not been fully revealed. We identified 379 differentially expressed metabolic-
related genes (DEMRGs) by comparing 178 pancreatic cancer tissues with 171 normal
pancreatic tissues in The Cancer Genome Atlas (TCGA) and the Genotype-Tissue
Expression project (GTEx) databases. Then, we used univariate Cox regression analysis
together with Lasso regression for constructing a prognostic model consisting of 15
metabolic genes. The unified risk score formula and cutoff value were taken into
account to divide patients into two groups: high risk and low risk, with the former
exhibiting a worse prognosis compared with the latter. The external validation results of
the International Cancer Genome Consortium (IGCC) cohort and the Gene Expression
Omnibus (GEO) cohort further confirm the effectiveness of this prognostic model. As
shown in the receiver operating characteristic (ROC) curve, the area under curve (AUC)
values of the risk score for overall survival (OS), disease-specific survival (DSS), and
progression-free survival (PFS) were 0.871, 0.885, and 0.886, respectively. Based on the
Gene Set Enrichment Analysis (GSEA), the 15-gene signature can affect some important
biological processes and pathways of pancreatic cancer. In addition, the prognostic
model was significantly correlated with the tumor immune microenvironment (immune
cell infiltration, and immune checkpoint expression, etc.) and clinicopathological features
(pathological stage, lymph node, and metastasis, etc.). We also built a nomogram based
on three independent prognostic predictors (including individual neoplasm status, lymph
node metastasis, and risk score) for the prediction of 1-, 3-, and 5-year OS of pancreatic
cancer, which may help to further improve the treatment strategy of pancreatic cancer.

Keywords: pancreatic cancer, metabolic, prognostic, signature, The Cancer Genome Atlas

Abbreviations: TCGA, The Cancer Genome Atlas; ICGC, International Cancer Genome Consortium; GEO, Gene
Expression Ominibus; GTEx, genotype-tissue expression comprehensive database; DEMRGs, differentially expressed
metabolic-related genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; GSEA, gene set
enrichment analysis; RS, risk score; HR, high risk; LR, low risk; KM, Kaplan–Meier; ROC, receiver operating characteristic;
AUC, the area under the curve; OS, overall survival; DSS, disease special survival; DFS, disease-free survival; PFS,
progression-free survival; FDR, false discovery rate.
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INTRODUCTION

Despite the great progress made in treating pancreatic cancer
over the last few decades, the prognosis has not been effectively
improved (Neoptolemos et al., 2018). Genetic concepts and tools
are increasingly being applied to clinical practice, especially
in precision medicine (Lomberk et al., 2019). However, the
biomarkers related to the prognosis of pancreatic cancer
are still limited.

Recently, more and more evidence has revealed the significant
effect of the reprogrammed metabolism on pancreatic cancer in
terms of carcinogenesis, progression, treatment, and prognosis
(Qin et al., 2020). The so-called metabolic reprogramming
refers to the significant changes in metabolic patterns during
cell carcinogenesis, which involves glycolysis, tricarboxylic acid
cycle, oxidative phosphorylation, as well as metabolism of
amino acid, fatty acid, and nucleic acid (Ward and Thompson,
2012; Huo et al., 2021a,b). During proliferation, tumor cells
rely on metabolic reprogramming to provide nutrition, energy,
and biosynthetic activity (Pavlova and Thompson, 2016;
Neoptolemos et al., 2018). Pancreatic cancer is a malignant
tumor with metabolic heterogeneity. Changes in glucose, lipid
metabolism as well as amino acid in pancreatic tumors, from
cells to microenvironment, and even at the systemic level, can
significantly impact tumor progression (Daemen et al., 2015;
Qin et al., 2020). Even for the same patients with pancreatic
cancer, the metabolic gene expression of the primary focus
and the metastatic focus were relatively different (Chaika et al.,
2012; Qin et al., 2020). Although the metabolic targeted therapy
for pancreatic cancer is not mature at present (Biancur and
Kimmelman, 2018), successive clinical trials have shown that
metabolic treatment of pancreatic cancer may improve the
prognosis of patients (Zachar et al., 2011; Raez et al., 2013;
Alistar et al., 2017). Hence, more metabolic biomarkers related
to pancreatic cancer prognosis need to be identified. Considering
that the effective clinical treatment of pancreatic cancer is still
limited, it is urgent to explore new treatment strategies.

The microenvironment around pancreatic cancer cells
is composed of immune cells, stellate cells/fibroblasts, and
extracellular matrix (ECM). The rapid proliferation of tumor cells
leads to a lack of nutrients in the microenvironment, increased
release of lactic acid and other metabolites, and metabolic
remodeling such as hypoxia and oxidative stress imbalance.
Pancreatic cancer cells rely on metabolic reprogramming
to adapt to the lack of energy and nutrition in the tumor
microenvironment, abnormal oxidative stress, and so on (Bapat
et al., 2011). Therefore, it is necessary to deeply understand the
impact of metabolic reprogramming on the occurrence and
development of pancreatic cancer, so as to provide new ideas
for the targeted intervention of metabolic characteristics for the
treatment of pancreatic cancer.

In this study, we identified metabolic genes with different
expressions between pancreatic cancer and normal tissues
through the TCGA and GTEx databases and explored their
prognostic value. The prognostic model, composed of 15
metabolic genes, can accurately predict the survival rate of
pancreatic cancer and is an independent predictor related to

prognosis. In addition, we integrate the GEO database and
ICGC database to verify the model and build a survival
predictive nomogram.

MATERIALS AND METHODS

Data Collection
We obtained the mRNA sequencing data from The Cancer
Genome Atlas (TCGA)1 as well as the Genotype-Tissue
Expression project (GTEx) (including 178 cancer samples and
171 normal samples). Corresponding clinical data (including
the age, gender, survival time, survival status, histological grade,
AJCC–TNM stage, presence of new tumors after initial treatment,
number of lymph node metastasis, and individual tumor status)
were downloaded from UCSC Xena2. The mRNA sequencing
data together with the corresponding clinical data were
downloaded from the International Cancer Genome Consortium
(ICGC) (including PACA-AU and PACA-CA, n = 273)3 and
the Gene Expression Omnibus (GEO) (including GSE62452
and GSE57495, n = 128)4. The work flow chart is shown in
Figure 1. R package “sva” was employed to remove batch effects
between different datasets; the “sva” package supports surrogate
variable estimation with the “sva” function, direct adjustment for
known batch effects with the “ComBat” function, and adjustment
for batch and latent variables in prediction problems with the
“fsva” function (Leek et al., 2012). The study excluded patients
whose survival time was less than 1 month and included a
total of 572 patients with pancreatic cancer. The acquisition of
the above data follows the regulations and permissions of the
corresponding database, and does not need to be approved by the
local ethics committee.

Identification of Differentially Expressed
Metabolic-Related Genes
We extracted 2,752 metabolism-related genes from mRNA
sequencing data of TCGA and GTEx database, which encoded all
known human metabolic enzymes and transporters (Possemato
et al., 2011). Differential expression of metabolic genes
was identified by R package “limma”; false discovery rate
(FDR) < 0.05 and log fold change (FC) absolute value >1 were
set as the criteria. We also used R package “clusterProfiler” to
annotate the gene ontology (GO) and the Kyoto Encyclopedia of
Genes and Genomes (KEGG) functions of DEMRGs. The items
were recognized with a p-value threshold less than 0.05.

Identification of Prognostic-Associated
Metabolic Genes
We used univariate Cox regression analysis to identify DEMRGs
related to prognosis. p < 0.001 was considered to have a
significant effect on prognosis.

1https://portal.gdc.cancer.gov/
2https://xenabrowser.net/
3https://icgc.org/
4https://www.ncbi.nlm.nih.gov/geo/
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FIGURE 1 | Work flowchart.

Construction of Prognostic Model in the
Cancer Genome Atlas Cohort
One hundred seventy-one samples with completed prognostic
information in the TCGA cohort were used for prognostic
model construction. We used Lasso regression to narrow the
range of prognostic genes, remove overfitting between genes, and
calculated risk scores according to Lasso regression coefficients.
The risk score is equal to the sum of Lasso regression coefficient
of each mRNA multiplied by the normalized expression levels
of each mRNA. The median risk score was taken into account
to divide patients into two groups: high risk and low risk.
Lasso regression analysis was carried out by using R-package
“glmnet”; Kaplan–Meier (KM) survival curve was drawn with the
R-package “survminer.” Log-rank test evaluated if the survival
curve was different, a p-value of less than 0.05 was considered
to be statistically significant, using R-package “survivalROC”
to access the accuracy of risk score. A higher AUC (area
under the ROC curve) value generally represents a higher
prediction accuracy.

Assess Whether the Risk Score Could
Predict Prognosis Independently
We used univariate and multivariate Cox regression analysis for
determining if the risk score was an independent predictor of
the prognosis of pancreatic cancer. p < 0.05 was considered with
statistical significance.

Analysis of the Association Between the
Risk Score and the Clinical
Characteristics
We used Wilcoxon signed-rank test (two groups) or Kruskal–
Wallis (≥ two groups) for analyzing how risk score affected

the clinicopathology. p < 0.05 was considered with statistical
significance. Boxplot was generated using the “beeswarm”
package in the R software.

External Validation of the Prognostic
Model in International Cancer Genome
Consortium and Gene Expression
Omnibus Cohort
For testing the universality exhibited by the risk score, we
integrated 401 pancreatic cancer patients from the ICGC
database and GEO database as an external testing cohort. The
risk score exhibited by each patient was calculated following the
formula and was classified according to the uniform risk group
cutoff value. The R package “survminer” was used to generate the
Kaplan–Meier survival curve between the two groups, and log-
rank assisted in confirming if the survival curve was significantly
different (Huo et al., 2020).

Gene Set Enrichment Analysis Between
Different Risk Groups
We conducted GSEA in the populations of the two groups,
exploring the potential mechanism of prognostic models
affecting prognosis, selecting an annotated gene set file
(c2.cp.v7.1.symbols.gmt) as the reference gene set. We set the
threshold at nom p-value < 0.05.

Analysis of the Association Between the
Risk Score and the Tumor Immune Cell
Infiltration
We used TIMER [TumorImmune Estimation Resource,
which provided the levels of six tumor-infiltrating immune
cells in 10,897 cancer samples (32 types of cancer) from
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FIGURE 2 | Identification and functional enrichment analysis of differentially expressed metabolic-related genes (DEMRGs). (A) Heat map, volcano map, and boxplot
of DMRGs. (B) Gene Ontology (GO) enrichment analysis of DMRGs. (C,D) Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of DMRGs.
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FIGURE 3 | Construction of metabolic prognostic model in The Cancer Genome Atlas (TCGA) cohort. (A) Forest plot of prognostic DMRGs. (B,C) Lasso regression
analysis.

the TCGA database] and CIBERSORT algorithms (using
microarray data and a predefined immune signal matrix,
estimated the proportion of 22 tumor-infiltrating immune
cells in a given sample) to quantify the proportion of
immune cell infiltration in tumor tissue (Li et al., 2017;
Chen et al., 2018).

Building a Survival Predictive Nomogram
We incorporated independent prognostic factors into a
nomogram to construct a combined model for predicting the
OS of pancreatic cancer. The advantage of a nomogram is

that each patient can get his or her own specific total score
and find the corresponding survival rate on the nomogram,
which makes the prognosis assessment more personalized, and
we also used calibration curve, concordance index, and ROC
curve for verifying the precision exhibited by the combined
model. The abscissa of the calibration chart is the predicted
survival rate, and the ordinate is the actual survival rate. The
closer the predicted survival rate is to the actual survival
rate, the higher the overlap between the calibration curve
and the reference line. The nomogram was built with R
package “rms”.
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TABLE 1 | Model gene list and coefficient.

Gene symbol Gene name Coef

ABCA5 ATP Binding Cassette Subfamily A Member 5 −0.09947

MTHFD1 Methylenetetrahydrofolate Dehydrogenase,
Cyclohydrolase And Formyltetrahydrofolate
Synthetase 1

0.001956

GALNT10 Polypeptide N-Acetylgalactosaminyltransferase
10

0.004045

SULF2 Sulfatase 2 0.002094

INPP4B Inositol Polyphosphate-4-Phosphatase Type II
B

0.008312

IP6K1 Inositol Hexakisphosphate Kinase 1 −0.0174

CACNA2D4 Calcium Voltage-Gated Channel Auxiliary
Subunit Alpha2delta 4

0.056197

GPD2 Glycerol-3-Phosphate Dehydrogenase 2 0.001588

MTAP Methylthioadenosine Phosphorylase 0.019387

GART Phosphoribosylglycinamide Formyltransferase,
Phosphoribosylglycinamide Synthetase,
Phosphoribosylaminoimidazole Synthetase

0.005862

DPYD Dihydropyrimidine Dehydrogenase 0.006427

OAS2 2′–5′-Oligoadenylate Synthetase 2 0.006223

SLC25A27 Solute Carrier Family 25 Member 27 −0.01972

SLC2A8 Solute Carrier Family 2 Member 8 −0.01262

STS Steroid Sulfatase 0.006514

RESULTS

Function Annotation of Differentially
Expressed Metabolic-Related Genes
Among the 379 differential genes, there were 169 and
210 upregulated genes in normal tissues and tumor tissues,
respectively (Figures 2A,B). They are mainly involved in
a variety of metabolic processes, such as small molecular
catabolism, coenzyme metabolism, carbon metabolism, oxidative
phosphorylation, and so on (Figures 2C,D).

Identification of Prognostic Differentially
Expressed Metabolic-Related Genes
Through univariate Cox regression analysis, we screened 18 genes
most significantly related to prognosis (p < 0.001) from the
379 DEMRGs, of which four genes were protective factors of
prognosis and 14 genes were risk factors (Figure 3A).

Prognostic Model Construction in the
Cancer Genome Atlas Cohort
We performed Lasso regression analysis on the above prognostic
genes, and after 1,000 cross-validations, the error of a prognostic
model containing 15 genes is the smallest (Figures 3B,C). The
risk score is equal to the sum of Lasso regression coefficient of
each mRNA multiplied by the normalized expression levels of
each mRNA. Table 1 lists the calculation coefficient of the risk
score. The median risk score (0.655) was taken into account
to divide patients into two groups. The group with a high risk
exhibited a significantly lower overall survival rate (OS), disease-
specific survival rate (DSS), and progression-free survival rate

(PFS) compared with the group with a low risk (Figures 4A,C,E).
The AUC for 1-year OS was 0.766, for 3-year OS, 0.768, and for
5-year OS, 0.871 (Figure 4B); The AUC for 1-year DSS was 0.805,
for 3-year DSS, 0.775, and for 5-year DSS, 0.885 (Figure 4D);
The AUC for 1-year PFS was 0.651, for 3-year PFS, 0.808, and
for 5-year PFS, 0.886 (Figure 4F). The risk score distribution
is shown in Supplementary Material 1. Accordingly, the risk
score can be reliably applied for predicting pancreatic cancer
patients’ prognosis.

Independence Validation of the
Prognostic Model
Through univariate and multivariate Cox regression analyses,
we found three independent prognostic factors, including risk
score, lymph nodes metastasis, and individual neoplasm status
(Figures 5A,B).

Analysis of the Association Between the
Risk Score and the Clinical
Characteristics
The risk score exhibited an obvious association with histological
grade, lymph node metastasis, new tumor after initial treatment,
pathologic stage, and neoplasm status (Figures 6A–E). We also
performed chi-square test on the TCGA cohort for analysis of
clinical features with different risk groups, the results showed
that there were significant differences in lymph node metastasis
(p = 0.002), personal tumor status (p = 0.002), and survival status
(p < 0.001) among the different risk groups (Table 2).

External Validation of the Prognostic
Model Combined International Cancer
Genome Consortium and Gene
Expression Omnibus Database
The validation cohort included 401 pancreatic cancer patients
from ICGC (PACA-AU and PACA-CA) and GEO databases
(GSE62452 and GSE57495). Based on the uniform cutoff value
obtained in the TCGA cohort, the group with a high risk included
74 patients, and the group with a low risk included 327 patients.
KM survival curve showed that the group with a high risk had a
significantly lower OS compared with the group with a low risk
(p < 0.001) (Figures 7A–C). The AUC values for the risk score
predicting OS at 1, 3, and 5 years were 0.589, 0.560, and 0.586,
respectively (Supplementary Material 2).

Gene Set Enrichment Analysis Between
Different Risk Groups
We identified five oncogenic gene sets with significant
enrichment in the group with a high risk: p53 signaling pathway
(NES = 1.99, NOM p-value < 0.001), pathways in cancer
(NES = 1.87, NOM p-value < 0.001), cell cycle (NES = 1.92,
NOM p-value < 0.001), pancreatic cancer (NES = 1.85, NOM
p-value < 0.001), and small cell lung cancer (NES = 1.83,
NOM p-value = 0.002) (Figure 8A), while the enriched gene set
in the low-risk group was significantly related to metabolism
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FIGURE 4 | Survival assessment of the prognostic model in TCGA cohort. (A,B) Kaplan–Meier survival analysis and time-dependent receiver operating characteristic
(ROC) analysis of overall survival (OS). (C,D) Kaplan–Meier survival analysis and time-dependent ROC analysis of disease special survival (DSS). (E,F) Kaplan–Meier
survival analysis and time-dependent ROC analysis of progression-free survival (PFS).
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FIGURE 5 | Independence validation of the prognostic model and other clinical features. (A) Univariate Cox regression analysis. (B) Multivariate Cox regression
analysis.

FIGURE 6 | Correlation analysis between risk score and clinicopathological characteristics. (A) Histopathological grade. (B) Lymph node metastasis. (C) New tumor
event after initiate treatment. (D) Pathological stage. (E) Individual neoplasm status.
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TABLE 2 | The chi-square test of the relation between risk score and clinical
features in TCGA.

Clinical feature Risk Score c2 p-Value

High risk n (%) Low risk n (%)

Age 0.155 0.694

>65 37 (48.05%) 30 (44.78%)

≤65 40 (51.95%) 37 (55.22%)

Gender 0.218 0.64

Male 43 (55.84%) 40 (59.70%)

Female 34 (44.16%) 27 (40.30%)

Histologic grade 2.489 0.115

G1–2 48 (62.34%) 50 (74.63%)

G3–4 29 (37.66%) 17 (25.37%)

New tumor event after initiate treatment 0.068 0.794

YES 35 (45.45%) 29 (43.28%)

NO 42 (54.55%) 38 (56.72%)

Lymphnodes metastasis 9.666 0.002

Positive 63 (81.82%) 39 (58.21%)

Negative 14 (18.18%) 28 (41.79%)

Pathlogic stage 0.346 0.556

I–II 73 (94.81%) 64 (95.52%)

III–IV 4 (5.19%) 3 (4.48%)

Person neoplasm status 9.399 0.002

Tumor free 59 (76.62%) 35 (52.24%)

With tumor 18 (23.38%) 32 (47.76%)

Survival status 10.833 <0.001

Alive 26 (33.77%) 41 (61.19%)

Dead 51 (66.23%) 26 (38.81%)

(Figure 8B), indicating that the metabolic activity of the high-risk
group was significantly different from that of the low-risk group.

Tumor-Infiltrating Immune Cells Between
Different Risk Groups
The results of the TIMER database showed that there was a
negative correlation between risk score and CD4T cell infiltration

(Figure 9B). The group with a high risk exhibited an obviously
higher infiltration level of macrophage M0 compared with
the group with a low risk, while the group with a low risk
exhibited an obviously higher infiltration level of B cells and
CD8T lymphocytes (Figures 9A,C). There was a negative
correlation between macrophage M0, and B cells and CD8T cells
(Figure 9D). Besides, the risk score was positively associated with
the expression level of CD274 (PDL1) (r = 0.369, p < 0.001)
(Figures 9E,F).

Building a Survival Predictive Nomogram
The nomogram we constructed consists of tumor status, lymph
node metastasis, and risk score. Each index is an independent
factor affecting prognosis. We can estimate patients’ 1-, 3-,
and 5-year survival rates based on the cumulative scores of
the three indicators (Figure 10A). We used two methods to
evaluate the accuracy of the nomogram. The large overlap
between the calibration curve and the reference line indicated
that the predicted survival rate is close to the actual survival
rate, especially in the prediction of patients’ 3- and 5-year
survival rate (Figure 10B). The ROC curve demonstrates a
better prediction performance exhibited by the combined model
compared with a single prediction index (Figure 10C). The
concordance index was 0.71, which indicated that the probability
of the predicted results consistent with the observed results was
high (Supplementary Material 3). Therefore, the combination
of risk score and clinical factors can reliably assist in evaluating
pancreatic cancer patients’ prognosis.

DISCUSSION

Pancreatic cancer is a highly malignant digestive tract tumor.
Because of its concealed early symptoms, rapid disease
progression, low resection rate, and low effective rate of
chemotherapy, patients have a very poor prognosis (Ilic and Ilic,
2016). With the accumulation of high-throughput sequencing
data, more and more biomarkers have been developed for

FIGURE 7 | External validation of the prognostic model. (A) The Kaplan–Meier curve of overall survival. (B,C) The heatmap of the 15 genes and the survival status of
patients.
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FIGURE 8 | Gene Set Enrichment Analysis between different risk groups (A) Multiple GSEA plot of the KEGG pathways enriched for the high-risk group. (B) Multiple
GSEA plot of the KEGG pathways enriched for the low-risk group.

diagnosing and treating pancreatic cancer. These prognostic
signatures involve m6A methylation, autophagy, immunity,
and many other aspects (Zheng et al., 2018; Wu et al., 2019;
Zhou et al., 2019; Tian et al., 2020; Yue et al., 2020). In recent
years, more and more evidence shows that reprogramming
metabolism could greatly affect pancreatic cancer in terms
of the occurrence, the development, as well as the treatment

(Qin et al., 2020). However, the prognostic signatures related
to metabolic reprogramming in pancreatic cancer are far
from fully cleared.

Patients (572) with complete prognostic information were
included in this study. First, we compared 178 pancreatic cancer
tissues with 171 normal pancreatic tissues in TCGA and GTEx
databases, and identified 379 DEMRGs. Then univariate Cox
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FIGURE 9 | The landscape of immune infiltration in high- and low-risk HCC patients. (A) The bar plot of immune infiltration in high- and low-risk HCC patients (B)
Correlation of the risk score with the immune infiltration of six kinds of immune cells (TIMER method). (C) Violin plots visualizing significantly different immune cells
between high-risk and low-risk patients (CIBERSORT method,red represents the high-risk group, blue represents the low-risk group). (D) Correlation matrix of all 22
immune cells proportions. (E) Boxplot plot of the expression level of CD274 between high-risk and low-risk patients. (F) Correlation of the risk score with the
expression of CD274 (p-value significant codes: 0 ≤ ∗∗∗ < 0.001 ≤ ∗∗ < 0.01 ≤ ∗ < 0.05).

regression analysis together with the Lasso regression assisted
in constructing a novel prognostic model. The unified risk
score formula together with the cutoff value were considered
to divide patients into a group with a high risk and a group
with a low risk. The ROC curve showed the prognostic model
with high accuracy in predicting OS, DSS, and PFS of patients.
There were 15 genes included into our signature. Among
them, ABCA5 is a member of the ATP binding cassette (ABC)
transporters, which play a variety of roles in cancer biology
and drug resistance. Low expression of ABCA5 is associated
with poor prognosis of serous ovarian cancer (Hedditch et al.,
2014). Irene Aksoy and others (Aksoy et al., 2017) combined
sequencing technology with IPSC technology to identify that
GTDC1 is related to neurodevelopmental disorders. Ema et al.

(2015) found that SLC25A27 was amplified in advanced gastric
cancer with lymph node metastasis. Sulfate endonuclease SULF2
regulates heparan sulfate protein polysaccharide 6-O-sulfation.
Alhasan reported that the increase in SULF2 in PDAC is
related to advanced tumor stage, vascular invasion, short interval
between imaging progression, and short OS (Alhasan et al.,
2016). GPD2 is a component of glycerol phosphate shuttle,
which can promote the oxidation of glucose, thus, promoting the
production of acetyl-CoA. Langston found that GPD2 is involved
in the regulation of macrophage inflammation (Langston et al.,
2019). MTHFD1 is an enzyme that provides tetrahydrofolic
acid-carbon derivatives. Yu found that the high expression
of MTHFD1 in hepatocellular carcinoma is associated with a
lower survival rate and higher recurrence rate (Yu et al., 2019).
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FIGURE 10 | Construction of combined prognostic model in TCGA cohort. (A) Nomogram for predicting the probability of 1-, 3-, and 5-year overall survival (OS) for
pancreatic cancer patients. (B) Calibration plot of the nomogram for predicting the probability of OS at 1, 3, and 5 years. (C) Time-dependent ROC curve analyses of
the combined prognostic model.

Type II inositol polyphosphate 4-phosphatase (INPP4B) is a
member of the PI3K/Akt signaling pathway. Zhai found that
the overexpression of INPP4B in pancreatic cancer could lead
to poor OS and DFS (Zhai et al., 2019). Glycosylation can
remarkably affect tumor invasion and immune escape. Zhang
found that the high expression of GALNT10 in high-grade
ovarian serous cancer (HGSC) is related to immunosuppressive
microenvironment, thus promoting tumor progression (Zhang
et al., 2020). No reports focus on studying the effect of the
remaining genes on cancer.

The group with a high risk presented a worse prognosis
compared with the group with a low risk. The external validation
results of the ICGC and the GEO cohorts further confirm
the effectiveness of this prognostic model. GSEA revealed the
oncological characteristics with significant enrichment in the
group with a high risk, and pancreatic cancer is one of
them, while the group with a low risk was associated with
multiple metabolic pathways, indicating that the imbalance of

tumor metabolic microenvironment may affect the progression
of pancreatic cancer. The tumor microenvironment is a hot
topic in the field of tumor research in recent years. Multiple
studies have shown that metabolic reprogramming can have a
significant impact on the tumor microenvironment (Lyssiotis and
Kimmelman, 2017; Reina-Campos et al., 2017). Immune cells
are an important component of the tumor microenvironment,
which has been proved to be valuable in predicting the
prognosis of tumors (Gentles et al., 2015). YIno found that
tumor-infiltrating CD8T cells can be used to independently
predict the prognosis of pancreatic cancer, and the high
infiltration of CD8T cells is associated with longer survival
(Ino et al., 2013). In this study, we also found that the
proportion of CD8T cell infiltration in the group with a low
risk was higher than the group with a high risk, further
confirming the prognostic value owned by tumor-infiltrating
CD8T cells in pancreatic cancer. Programmed cell death
ligand 1 is one protein encoded by the CD274 gene. When
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it binds to PD1, it transmits a negative regulatory signal to T-cells,
induces T-cells to enter a resting state, reduces the proliferation
of CD8T cells in lymph nodes, making them unable to recognize
cancer cells, reduces T-cell proliferation or apoptosis, effectively
relieves the immune response of the body, and promotes
further proliferation of cancer cells (Chen and Han, 2015;
Naidoo et al., 2015). This study found that the risk score was
positively related to the expression level of CD274 (PDL1), so
the group with a high risk exhibited a poor prognosis possibly
caused by the mechanism of immune escape. Besides, we can also
predict the degree of tumor differentiation, clinicopathological
stage, and lymph node metastasis according to the risk score,
which has important reference value for clinical decision making.
As revealed by the univariate and multivariate Cox regression
analyses, individual neoplasm status, lymph node metastasis, as
well as risk score were independent predictors of prognosis. We
combined three indicators to construct one nomogram for the
prediction of 1-, 3-,and 5-year OS of pancreatic cancer. The
nomogram further enriches the prognosis evaluation system of
pancreatic cancer, and the predictive ability of the risk score is
further improved. The nomogram has a better prediction effect
than a single predictor.

The study integrated as well as analyzed high-throughput
sequencing data from multiple databases, and a personalized
nomogram for survival prediction was gradually created.
However, due to the lack of corresponding clinical data in
the validation queue, we only performed internal validation on
nomogram. Metabolic genes in the model may be potential
targets for diagnosis or treatment of pancreatic cancer, and
their detailed mechanisms need to be explored with the help of
in vivo and in vitro verification experiments. This study is only a
retrospective study, and further prospective results are needed to
support each other.

CONCLUSION

The study focused on constructing a signature and a nomogram
associated with metabolic reprogramming for predicting the
prognosis of pancreatic cancer, which may help to further
improve the treatment strategy of pancreatic cancer.
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