
PCR Primers for Metazoan Mitochondrial 12S Ribosomal
DNA Sequences
Ryuji J. Machida*¤, Matthew Kweskin, Nancy Knowlton

National Museum of Natural History, Smithsonian Institution, Washington, D.C., United States of America

Abstract

Background: Assessment of the biodiversity of communities of small organisms is most readily done using PCR-based
analysis of environmental samples consisting of mixtures of individuals. Known as metagenetics, this approach has
transformed understanding of microbial communities and is beginning to be applied to metazoans as well. Unlike microbial
studies, where analysis of the 16S ribosomal DNA sequence is standard, the best gene for metazoan metagenetics is less
clear. In this study we designed a set of PCR primers for the mitochondrial 12S ribosomal DNA sequence based on 64
complete mitochondrial genomes and then tested their efficacy.

Methodology/Principal Findings: A total of the 64 complete mitochondrial genome sequences representing all metazoan
classes available in GenBank were downloaded using the NCBI Taxonomy Browser. Alignment of sequences was performed
for the excised mitochondrial 12S ribosomal DNA sequences, and conserved regions were identified for all 64 mitochondrial
genomes. These regions were used to design a primer pair that flanks a more variable region in the gene. Then all of the
complete metazoan mitochondrial genomes available in NCBI’s Organelle Genome Resources database were used to
determine the percentage of taxa that would likely be amplified using these primers. Results suggest that these primers will
amplify target sequences for many metazoans.

Conclusions/Significance: Newly designed 12S ribosomal DNA primers have considerable potential for metazoan
metagenetic analysis because of their ability to amplify sequences from many metazoans.

Citation: Machida RJ, Kweskin M, Knowlton N (2012) PCR Primers for Metazoan Mitochondrial 12S Ribosomal DNA Sequences. PLoS ONE 7(4): e35887.
doi:10.1371/journal.pone.0035887

Editor: Christian R. Voolstra, King Abdullah University of Science and Technology, Saudi Arabia

Received August 16, 2011; Accepted March 27, 2012; Published April 19, 2012

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for
any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Funding: Financial support was provided by the Alfred P. Sloan Foundation and the Sant Chair of Marine Science discretionary funds. The funders had no role in
study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: ryujimachida@gate.sinica.edu.tw

¤ Current address: Biodiversity Research Center, Academia Sinica, Taipei, Taiwan

Introduction

Human activities pose severe threats to planetary biodiversity,

yet most marine species remain undescribed [1–3]. In this context,

the ability to rapidly assess biodiversity at various spatio-temporal

scales without assigning formal taxonomic names to all samples is

urgently needed. Moreover, the species that comprise the majority

of marine biodiversity are small and difficult to sample

individually. Thus, the availability of second-generation sequenc-

ing methods has the potential to transform our ability to assess

biodiversity via metagenomic and/or metagenetic approaches.

Most studies to date have targeted microbes and protozoans [4–7]

and only a limited number of studies have been carried out for

metazoans [8,9]. Unlike the situation with microbes, where

analysis of the 16S ribosomal DNA sequence is standard, the

appropriate gene for metazoan metagenetic studies is less clear.

Although the cytochrome oxidase (COI) gene is routinely used for

bar-coding [10–12], finding a single set of primers capable of

amplifying most metazoans has been challenging. In the present

study, we present data for a newly developed pair of primers that

target the mitochondrial 12S ribosomal DNA sequence of many

metazoans.

Results

We identified two conserved regions suitable for designing a

pair of PCR primers by performing careful alignments of the 64

complete mitochondrial genomes chosen to represent all metazoan

classes (Fig. 1). Lengths of expected PCR products using the

primer pair were between 329 and 1046 bp, the majority of which

(56 of 64) were 400–600 bp in length (Fig. 1).

To test likely efficacy of the primer pair, primer DNA sequences

and the target regions for all available, complete metazoan

mitochondrial genome sequences from NCBI were compared

(Table 1). These sequences represent 23 phyla, but only eight

phyla had ten or more sequences at the time of the analysis

(Platyhelminthes, Chordata, Echinodermata, Mollusca, Arthrop-

oda, Nematoda, Cnidaria, Porifera); the remainder typically had

five or fewer sequences, so that the generality of the findings for

these groups is more limited. We categorize the extent of primer

compatibility by counting the number of mismatches between the

forward and reverse primers and the downloaded metazoan

mitochondrial genomes (no mismatches, one mismatch, two or

more mismatches for both primers). Although many subtleties are

missed in this characterization (e.g. just one mismatch on the 39
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end of the alignment will largely preclude amplification, whereas

mismatches closer to the 59 end will often have much lesser effects

[13]), it provides some indication of groups where amplification

problems are likely.

For 11 phyla, 90% or more of the species with complete

mitochondrial genomes in the dataset have no mismatches for

both the forward and reverse primers. Of these, three are

reasonably well sampled: the Chordata (1499 sequences), the

Annelida (nine sequences), and the Arthropoda (354 sequences).

For an additional eight phyla, more than 90% of species showed

no more than one mismatch for the forward and/or reverse

primers, including four phyla with 25 or more sequences in the

dataset (Platyhelminthes, Echinodermata, Mollusca, Porifera).

However, for one of these phyla, the Mollusca, most of the

mismatches were concentrated in a single class, the Bivalvia (51%

of species with one mismatch and 15% with two or more

Figure 1. Sequence of primers and alignment of the conserved regions of 12S ribosomal DNA gene sequences of 64 metazoan
species belonging to 23 phyla. Accession numbers of individuals are denoted in parentheses. Lengths of amplified PCR products without primers
are indicated. Hierarchy of NCBI taxonomy database is followed in this figure.
doi:10.1371/journal.pone.0035887.g001

Table 1. Observed mismatches between the primer pair and the targeted region for all complete mitochondrial genome
sequences downloaded from the NCBI Organelle Genome Resources database.

Phylum (# species)

No mismatch One mismatch Two or more mismatches

% (# species) % (# species) % (# species)

12SF 12SR 12SF 12SR 12SF 12SR

Metazoa

Eumetazoa

Bilateria

Acoelomata

Platyhelminthes (35) 91.43 (32) 68.57 (24) 8.57 (3) 28.57 (10) 0.00 (0) 2.86 (1)

Coelomata

Deuterostomia

Chaetognatha (5) 60.00 (3) 20.00 (1) 40.00 (2) 40.00 (2) 0.00 (0) 40.00 (2)

Chordata (1499) 90.99 (1364) 98.07 (1470) 7.94 (119) 0.80 (12) 1.07 (16) 1.13 (17)

Echinodermata (25) 92.00 (23) 76.00 (19) 8.00 (2) 24.00 (6) 0.00 (0) 0.00 (0)

Hemichordata (3) 66.67 (2) 100.00 (3) 33.33 (1) 0.00 (0) 0.00 (0) 0.00 (0)

Xenoturbellida (1) 100.00 (1) 0.00 (0) 0.00 (0) 100.00 (1) 0.00 (0) 0.00 (0)

Protostomia

Annelida (9) 100.00 (9) 100.00 (9) 0.00 (0) 0.00 (0) 0.00 (0) 0.00 (0)

Echiura (2) 100.00 (2) 100.00 (2) 0.00 (0) 0.00 (0) 0.00 (0) 0.00 (0)

Brachiopoda (3) 100.00 (3) 100.00 (3) 0.00 (0) 0.00 (0) 0.00 (0) 0.00 (0)

Bryozoa (3) 100.00 (3) 100.00 (3) 0.00 (0) 0.00 (0) 0.00 (0) 0.00 (0)

Entoprocta (2) 100.00 (2) 100.00 (2) 0.00 (0) 0.00 (0) 0.00 (0) 0.00 (0)

Mollusca (103) 92.23 (95) 72.81 (75) 5.83 (6) 21.36 (22) 1.94 (2) 5.83 (6)

Nemertea (3) 100.00 (3) 100.00 (3) 0.00 (0) 0.00 (0) 0.00 (0) 0.00 (0)

Panarthropoda

Arthropoda (354) 92.09 (326) 92.66 (328) 5.08 (18) 4.52 (16) 2.82 (10) 2.82 (10)

Onychophora (3) 100.00 (3) 100.00 (3) 0.00 (0) 0.00 (0) 0.00 (0) 0.00 (0)

Priapulida (1) 100.00 (1) 100.00 (1) 0.00 (0) 0.00 (0) 0.00 (0) 0.00 (0)

Sipuncula (2) 50.00 (1) 100.00 (2) 50.00 (1) 0.00 (0) 0.00 (0) 0.00 (0)

Pseudocoelomata

Acanthocephala (1) 0.00 (0) 0.00 (0) 100.00 (1) 100.00 (1) 0.00 (0) 0.00 (0)

Nematoda (48) 4.17 (2) 4.17 (2) 2.08 (1) 8.33 (4) 93.75 (45) 87.50 (42)

Rotifera (2) 0.00 (0) 50.00 (1) 0.00 (0) 50.00 (1) 100.00 (2) 0.00 (0)

Cnidaria (33) 24.24 (8) 60.60 (20) 72.73 (24) 18.18 (6) 3.03 (1) 21.21 (7)

Placozoa (4) 100.00 (4) 100.00 (4) 0.00 (0) 0.00 (0) 0.00 (0) 0.00 (0)

Porifera (42) 88.10 (37) 97.62 (41) 9.52 (4) 2.38 (1) 2.38 (1) 0.00 (0)

Comparisons were performed for each phylum. Hierarchy of the NCBI taxonomy database is followed in this table.
doi:10.1371/journal.pone.0035887.t001
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mismatches for the reverse primer, data not shown). Four phyla

had two or more mismatches for the forward and/or reverse

primers, and two of these, the Nematoda (48 sequences) and the

Cnidaria (33 sequences), were well sampled. An especially high

percentage of mismatches was observed for the megadiverse taxon

Nematoda (94% and 88% of species with 2 or more mismatches

for the forward and reverse primers, respectively; Table 1).

Because the position of mismatches is known to influence

amplification efficacy, with more serious amplification problems

occurring when mismatches are close to the 39 end [13], we

examined this for the Nematoda and Cnidaria (Fig. 2). In the

Nematoda, the 3rd, 7th, 12th, and 17th positions from 39 end of

the primer 12SF, and the 8th, 9th, 12th, and 19th positions from

39 end of the primer 12SR, had low percentages of matches

(,35%). Among the Cnidaria, the only position with a

comparably low percentage of matches was the 2nd position from

39 end of the 12SF primer.

Finally, to test the primer pairs directly, PCR was performed for

25 animals belonging to six phyla (Sipuncula, Echinodermata,

Chordata, Annelida, Arthropoda, Mollusca) (Fig. 3). Reliable PCR

amplifications were obtained from all of these except for one

bivalve species. To confirm the identity of the amplified products,

bands with the expected length were cut out from the gel and

sequenced for the first eight individuals in Fig. 3. Clear

electropherograms for the 12S gene were obtained in all cases

(data not shown).

Discussion

Four genes represent good candidates for use in metazoan

metagenetic analyses: the mitochondrial COI and 12S ribosomal

DNA regions and the nuclear 18S and 28S ribosomal DNA

regions. One factor that influences the choice of a target gene is

the number of available sequences in public databases. The

mitochondrial COI gene currently has advantages over the 12S

gene in this regard. However, because of very rapid advances in

sequencing technologies, more 12S sequences in databases of the

future are anticipated.

The mode of evolution of these four genes is quite different. The

nuclear 18S and 28S ribosomal DNA regions have slower

evolutionary rates compared to the two mitochondrial genes

[14–17]. Therefore, it is rather easy to design metazoan universal

primers for the two nuclear genes, but their ability to discriminate

closely related species is lower. The rate of evolution of the

mitochondrial 12S ribosomal DNA region is generally much faster

than that of the nuclear-encoded ribosomal genes, although it is

slower than that of the mitochondrial COI gene [17–19].

Figure 2. Nucleotide composition of the primer target regions observed in Nematoda (A and B) and Cnidaria (C and D). Sequences of
the primers are indicated on top of each figure. The nucleotides that matched with the primers are shown stacked in each column. Position of each
site from 39 to 59 is indicated on bottom from left to right.
doi:10.1371/journal.pone.0035887.g002
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Therefore, the 12S gene has the potential to discriminate

congeneric taxa [20,21], including some that are recently diverged

(Neocalanus plumchrus and N. flemingeri [17], Triconia minuta, T. umerus

and T. sp. 8 [19]; Oncaea ovalis and O. parabathyalis [19]), without

sacrificing the ability to amplify species from a broad array of

groups.

In this study, we identified two conserved regions in the 12S

gene suitable for designing a pair of PCR primers. Based on an

analysis of mismatches (Table 1), these primers are expected to

succeed in amplifying 12S genes for many metazoans. Success of

PCR is determined by multiple factors (e.g. annealing tempera-

ture, salt concentration, gDNA concentration, and contamination

by inhibitors), but characteristics of the primers (specificity, length,

melting temperature, GC content) and compatibility of the

primers and target region sequences are the most important

factors influencing success. In general, success of PCR can be

expected even if there are a few mismatches between the

sequences of the primer and the target region. If there is a species

with better compatibility in the environmentally extracted gDNA,

however, then this species will be amplified preferentially.

Furthermore, target region sequences with mismatches located

in the 59 portion will be more effectively amplified than those with

mismatches located in the 39 portion [13]. Therefore, it is expected

that groups with higher number of mismatches, especially in the 39

portion of the primers, will be less effectively amplified when the

primers are used for metagenetic analysis.

The groups most likely to be affected in this regard are the

Bivalvia, Cnidaria and Nematoda. Given the diversity, ubiquity

and small size of nematodes, it might be advisable to use

specifically designed primers that target nematodes when per-

forming analyses of metazoans from environmental samples. In

addition, we are now preparing primer sets targeting metazoan

nuclear 18S and 28S ribosomal DNA sequences. Those gene

sequences have less capacity to discriminate closely related taxa,

but have the ability to recover most metazoans (Machida and

Knowlton, submit).

An additional concern is the possibility of amplification of

bacterial DNA. To assess the extent of this possible source of error,

DNA was extracted from 30 whole individuals, including gut

contents and exoskeletons, representing six phyla (Sipuncula,

Echinodermata, Chordata, Annelida, Arthropoda, and Mollusca).

Preliminary Roche 454 sequence data reveal that there were some

bacterial 16S ribosomal DNA sequences in the dataset, but more

than 83% of quality-filtered (Mothur standard operating proce-

dure [22]) sequences were metazoan mitochondrial 12S sequences

based on BLAST searches against GenBank’s collection of non-

redundant nucleotide sequences (Machida and Knowlton, unpub-

lished data).

Although we have successfully gotten good quality mitochon-

drial 12S ribosomal DNA sequences from various phyla using the

primer pair, double bands were observed in PCR products from

some individuals (Fig. 3). One possible reason for this phenom-

enon is the high degeneracy of the primers. One method to

minimize the probability of double bands is to use hot-start taq

polymerase together with a touchdown PCR thermal profile. Also,

excising target length PCR products from agarose gels is good way

to get clear sequences from individuals with double-banded PCR

products.

Materials and Methods

Designing of PCR primer pair for mitochondrial 12S
ribosomal DNA

A total of 64 complete mitochondrial genome sequences were

downloaded from GenBank (Fig. 1) from each taxonomic level

‘‘class’’ within the Metazoa using the NCBI Taxonomy Browser.

When the dating of sequence submission was clear, the oldest

record of the genome sequence within the class was selected.

First, the mitochondrial 12S ribosomal DNA regions were

excised from the genomes. Next, careful alignment of the

sequences was performed using MAFFT: L-INS-i [23], and four

conserved regions were identified. Out of the four regions, two

were long enough to be able to design the primer pair. In some

species, the target region was not identified by the alignment of

MAFFT. In those cases, target regions were searched for using the

aligned primer regions as seeding sequences. ClustalX was used for

the search [24], and additional manual alignments were

performed by MacClade 4.0.8a [25]. Although the ClustalX is a

global alignment program, it was adequate for the analyses.

Figure 3. Agarose gel images of the compatibility test using PCR. The newly designed primers were used in PCR reactions for individuals
belonging to various groups within six phyla: Sipuncula- 1 Phascolosoma sp.; Echinodermata- 2 Ophiocoma erinaceus (brittlestar); Chordata- 3
Pseudamiops gracilicauda (fish); Annelida (Polychaeta)- 4 Pherecardia striata, 5 unidentified terebellid species; Arthropoda- 6 Xanthias latifrons
(brachyuran crab), 7 Pilodius flavus (brachyuran crab), 8 Liomera sp. (brachyuran crab), 9 Carupa sp. (brachyuran crab), 10 unidentified pilumnid
species (brachyuran crab), 11 unidentified xanthid species (brachyuran crab), 12 Calcinus gouti (anomuran crab), 13 Synalpheus sp. (caridean shrimp),
14 Periclimenes sp. (caridean shrimp), 15 unidentified caridean shrimp, 16 unidentified amphipod species; Mollusca- 17 Cypraea helvola (gastropod),
18 Cypraea fimbriata (gastropod), 19 Trivia sp. (gastropod), 20 Erato sandwichensis (gastropod), 21 unidentified haminoeid species (gastropod), 22
Berthellina sp. (gastropod), 23 Chlamys sp. (bivalve), 24 Lima sp. (bivalve), 25 unidentified lucinid species (bivalve). nc-negative control. Good
amplifications were observed for all individuals except one bivalve (24).
doi:10.1371/journal.pone.0035887.g003
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Accession numbers of all sequences used in this study are listed in

Fig. 1 (in the present study, no new sequences were generated).

Compatibility test using PCR
The newly designed pair of primers was tested for individuals

belonging to various phyla (Fig. 3). Extractions of DNA were

performed using DNeasy Blood & Tissue Kit (Qiagen) following

the manufacturer’s protocol. PCR was done in a 9700 thermal

cycler (Applied Biosystems), and reactions were carried out with a

15 ml reaction volume containing 9.8 ml of sterile, distilled H2O,

1.5 ml of 106 2 SA PCR buffer (Clontech), 1.2 ml of dNTP

(2.5 mM each), 0.6 ml of each primer (5 mM), 0.3 ml of Advantage

2 DNA Polymerase Mix (Clontech), and 1.0 ml of the templates. A

PCR mixture without template was also prepared as a negative

control. Initial denaturation was carried out at 95uC for 10 min.

This long denaturation is important when the PCR is performed

using hot-start polymerase. Touchdown PCR was applied for the

reaction: denaturation at 95uC for 10 s, annealing at 62uC for

30 s, and extension at 72uC for 60 s. Temperatures for the

annealing were progressively decreased with advancing cycles

(21.0uC per cycle) from 62 to 46uC during the first 16 cycles and

kept constant at 46uC during the subsequent 25 cycles. PCR

products were electrophoresed on a 2.0% TBE agarose gel

containing ethidium bromide and visualized using an ultraviolet

transilluminator.

Compatibility test using all metazoan mitochondrial
genome sequences in the NCBI Organelle Genome
Resources database

A total of 2201 complete metazoan mitochondrial genome

sequences (all those available) were downloaded from the NCBI

Organelle Genome Resources database in February 2011 (ftp://

ftp.ncbi.nlm.nih.gov/genomes/MITOCHONDRIA/Metazoa/).

The 12S ribosomal DNA regions were excised from the genomes.

During the excising, we found several genomes with incorrect or

incomplete annotation of the 12S ribosomal RNA gene. These

sequences were removed from the dataset, resulting in 2183

mitochondrial 12S mitochondrial DNA sequences used for the

analysis. Using this sequence dataset, target regions for the primers

were searched for based on three criteria: 1) complete match, 2)

one mismatch, 3) two or more mismatches (Table 1). For

Nematoda and Cnidaria, the positional patterns of mismatches

with the primer pairs were also analyzed (Fig. 2).
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