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ABSTRACT Rhizobium leguminosarum strain Al is used in inoculation experiments
with a wide range of pea (Pisum sativum L.) lines. In this study, we report the ge-
nome sequence of strain A1, consisting of a 5.06-Mbp circular chromosome and cir-
cular plasmids ranging from 804,800 bp to 154,738 bp long.

train A1 was first isolated in 1986 from the nodules of a pea plant cultivated in
a field adjacent to the All-Russia Research Institute for Agricultural Microbiology
(ARRIAM) (1). It was shown to possess useful qualities, such as being able to
nodulate a wide range of pea varieties, including those carrying the Sym2A allele
inherent in line NGB2150 (JI1357, WBH 2150) with the Afghan or Afghanistan
phenotype, and it was capable of overcoming competitive nodulation blocking,
making it an efficient strain for agricultural use (1, 2). Additionally, it was shown to
produce large quantities of various lipochitin oligosaccharides (LCOs), including
Nod factors (3). The strain was observed to lose symbiotic properties much faster
than other strains used in inoculation experiments (e.g., RCAM1026) (data not
shown). The genetic factors responsible for the multiple unique features remained
undiscovered.
Plants of Pisum sativum line NGB2150 were inoculated with the A1 strain, pink
nodules were harvested, bacteria were isolated as described previously (4), and the
strain was preserved in 10% glycerol at —80°C. For DNA isolation, the strain was revived
on solid tryptone-yeast extract (TY) medium. One colony was chosen for subsequent
procedures. The strain was cultivated in 50 ml of liquid TY medium in a 100-ml flask at
28°C and 200 rpm (5). The culture was harvested after 48 h of incubation. DNA was
isolated using the phenol-chloroform method (6) and quantified with a spectropho-
tometer (BioSpec-mini; Shimadzu, Japan). The required library absorption parameters
were an A,g/ALg, ratio of ~2 and an A,q/A,5, ratio of >1.8.
Long-read whole-genome sequencing was performed using a MinlON sequencer
(Oxford Nanopore, United Kingdom) in the ARRIAM. The SQK-LSK109 ligation sequenc- Citation Afonin AM, Gribchenko ES, Sulima AS,
. . . . . . Zhukov VA. 2020. Complete genome sequence
ing kit and the EXP-NBD104 native barcoding expansion 1-12 kit were used to prepare Ly M
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step. The reads were base called and demultiplexed using Guppy base caller (v. 3.3.0). Ric002 92O tps/dotergI0HIRS/MRA
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The resulting read Ny, value was 31,627 bp, with a total read length of 0.2 Gbp and Editor Irene L. G. Newton, Indiana University,

estimated coverage of 25X. The Flye pipeline (v. 2.6) (7) was used to assemble the Bloomington
Nanopore reads. The resulting assembly was corrected four times using Racon (v. 1.3.2) Copyright © 2020 Afonin et al. This is an open-
(8) (with the modifiers -m 8 -x -6 -g -8 -w 500), followed by a single polish using the taﬁgecs::a?vce'ec‘iiii;’gﬁiiﬁ?@iit:fformSOf
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Short-read whole-genome sequencing of the strain was carried out on an Illlumina Address correspondence to Alexey M. Afonin,
system with the TruSeq DNA PCR-free kit; in total, 8,721,349 bp of 2 X 150-bp sequence aafonin@arriam.ru.
reads were generated. The reads were quality trimmed and adapter sequences and xz:;;’teej%’\:;ﬁhzégéo
possible contaminants were removed as described previously (9); after filtering, the Published 7 May 2020

expected coverage was about 218X. The short reads were used to polish the assem-
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TABLE 1 Characteristics of the replicons of strain Rhizobium leguminosarum A1

Amplicon Length (bp) No. of CDSs No. of tRNAs GC content (%) Accession no.
A1 chromosome 5,067,161 4,943 52 60.94 CP049730
pRL12 804,800 745 0 60.71 CP049731
pRL11 661,136 656 2 60.70 CP049732
pRL10 632,304 588 0 60.87 CP049733
pRLa11 328,507 321 0 57.67 CP049734
pRLa12 154,738 185 0 56.48 CP049735

bled genome using the Pilon (v. 1.22) algorithm (10). PGAP was used to annotate the
assembled transcripts (11).

The genome of strain A1 consists of 6 replicons, including 1 chromosome and 5
plasmids. The statistics for the amplicons are presented in Table 1.

The circularity of all of the assembled fragments was reported by the Flye assembly
pipeline and verified by mapping the long reads to the assembled fragments using
Minimap2 (12), with the map-ont mapping mode, and inspecting the coverage unifor-
mity. The chromosome was rotated so that the dnaA gene was placed at the start of the
sequence; for each plasmid, a repABC operon was located and placed at the start of the
sequence.

The relation to other Rhizobium leguminosarum strains was determined using the
average nucleotide identity (ANI) method (13). The strain closest to the A1 strain was
strain RCAM1026 (97.2%), which is used for inoculation studies in the ARRIAM (14),
placing the strain in genospecies C, according to reference 15.

The coding sequences (CDSs) predicted by the PGAP were annotated using eggNOG
mapper (v. 2) (16) with the eggNOG (v. 5.0) database (17). Additionally, the CDSs were
compared to the latest version of the UniProt Swiss-Prot curated database (18). BLASTp
(v. 2.9.0+) was used to search the database with the value 1e—10, and the identity
threshold was set at 60% (19).

The plasmid pRLa11 contains 13 predicted Nod factor-associated genes (nodA [NCBI
accession number WP_017958626.1], nodJ [WP_017958630.1], nodN [WP_138333862.1],
nodM [WP_138333863.1], nodL [WP_138333865.1], nodE [WP_138333867.1], nodF
[WP_138333869.1], nodD1 [WP_138333871.1], nodB [WP_138333873.1], nodC [WP_
138333874.1], nodl [WP_138333928.1], nodT [WP_165586599.1], and nodX [WP_
138333876.1]), as described previously (3). Additionally, 5 nodulation genes were
found on the chromosome (nodT [WP_018068951.1], nodG [WP_018070560.1], nodT
[WP_130672970.1], nodN [WP_130673101.1], and nodL [WP_130673413.1]), 1 on pRL10
(nodT [WP_018071823.1]), and 1 on pRLa12 (tolC family protein [WP_165586630.1]). The
gene present in four distinct copies was nodT, which was previously reported to be
involved in the secretion of small molecules and, presumably, nodulation factors (20).
Multiple clusters of genes annotated as vir genes belonging to type IV secretion
systems were found on the pRLa11 and pRLa12 plasmids.

The large number of nod genes found in the genome is probably responsible for the
previously observed high variability of the LCOs produced (3). Multiple genes encoding
secretion systems, including the four copies of the nodT gene, may be the cause of the
increased Nod factor excretion by the strain described previously (3). The full-genome
sequence of this strain will be useful for further investigation of the symbiotic prop-
erties of this strain.

Data availability. The assemblies and sequence data have been deposited in the
NCBI database. The BioProject number is PRINA609819, the BioSample number is
SAMN14260269, and the assembly accession numbers are CP049730 to CP049735. The
raw lllumina data can be found under number SRR11216745, and the demultiplexed
fastq file, with barcodes removed, from the MinlON runs can be found under number
SRR11216744. This announcement describes the first version of the genome assembly.
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