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1Laboratoire de parasitologie, Centre Nationale de Référence du Paludisme, World Health Organization Collaborating Center for
surveillance of antimalarial drug resistance, Institut Pasteur de la Guyane, 97306 Cayenne, French Guiana; 2Ecole Doctorale n�587
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Background: The first potential focus for artemisinin resistance in South America was recently confirmed with
the presence of the C580Y mutation in the Plasmodium falciparum kelch 13 gene (pfk13) in Guyana.

Objectives: This study aimed to strengthen pfk13 monitoring in the Amazon basin countries, to compile the
available data and to evaluate the risk of spreading of mutations.

Methods: Sanger sequencing was done on 862 samples collected between 1998 and 2019, and a global map of
pfk13 genotypes available for this region was constructed. Then, the risk of spreading of mutations based on
P. falciparum case importation between 2015 and 2018 within countries of the Amazon basin was evaluated.

Results: No additional pfk13 C580Y foci were identified. Few mutations (0.5%, 95% CI = 0.3%–0.8%) in the pro-
peller domain were observed in the general parasite population of this region despite a high proportion of K189T
mutations (49.1%, 95% CI = 46.2%–52.0%) in the non-propeller domain. Case information revealed two patterns
of intense human migration: Venezuela, Guyana and the Roraima State in Brazil; and French Guiana, Suriname
and the Amapá State in Brazil.

Conclusions: There are few pfk13 mutant foci, but a high risk of dispersion in the Amazon basin, mainly from
the Guiana Shield, proportionate to mining activities. Therefore, access to prompt diagnosis and treatment, and
continuous molecular monitoring is essential in these geographical areas.

Introduction

Drug resistance of Plasmodium falciparum has become a major
concern worldwide. To delay its propagation, artemisinin combin-
ation therapy (ACT) has been recommended since 2001. However,
in 2008, resistance emerged in Cambodia and spread throughout

south-east Asia, favoured by resistance to partner drugs,
piperaquine and mefloquine.1,2 Studies from this region led to the
identification of the P. falciparum kelch 13 gene (pfk13) as a mo-
lecular marker of artemisinin partial resistance.3 Currently, more
than 100 mutations located in the propeller domain of pfk13 have
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been identified worldwide, but only 9 of them have been validated
as responsible for partial artemisinin resistance.4 Currently, one
mutation has quickly spread and has overcome the others in
the eastern part of the Greater Mekong subregion, pfk13 C580Y.5

In the Amazon basin countries, where most of the malaria cases
occur, the first-line treatment against P. falciparum is artemether/
lumefantrine, except in Peru where artesunate/mefloquine is
used.6 However, 6 years after its deployment, pfk13 C580Y mutant
parasites were reported (5.1%, n = 5/98) in Guyana and have in
time reached up to 25.0% prevalence in 2016–17, in Region 1.7,8

The selection of resistance occurred in parasites of South American
genetic background and this mutation confers artemisinin resist-
ance in vitro. Without threatening ACT efficacy if the partner drug is
still efficient, the presence of this mutation exposes the partner
drug to a quicker selection for resistant parasites. These findings
also raise concerns about the risk of spread throughout the
Amazon basin countries. In fact, mining, one of the main economic
activities in the Guiana Shield, favours P. falciparum transmission
and generates cross-border human migration, which could pro-
mote spreading of resistance in the subregion. Additionally, malaria
transmission has increased in several countries of this continent,
including Venezuela, Brazil, Colombia, Ecuador and Guyana.6

As WHO recommends pfk13 genotyping to monitor artemisinin
resistance, this study aimed to strengthen it in the Amazon basin
and to construct a global map of pfk13 genotypes by reviewing
actual data available in published literature. It also assessed
the risk of spreading of mutations within Guyana and between the
different countries and subregions based on P. falciparum case
migration patterns.

Methods
P. falciparum samples (n = 862) were collected in French Guiana (n = 475,
1998–2018), Brazil (Amazonas State, Manaus, n = 64, 2012–13), Guyana
(n = 199, 2014–19) and Venezuela (Amazonas and Bolivar States, n = 124,
2016–18) from symptomatic patients infected by P. falciparum from only
those who sought diagnosis and care.

The samples were collected as part of the malaria routine surveillance
system implemented in French Guiana, Guyana and Venezuela. Healthcare
facilities were in charge of collecting samples from anonymized
P. falciparum-positive cases. Identification of individuals cannot be estab-
lished. In accordance with WHO guidelines on ethical issues in public health
surveillance, the sample collections were exempt from an ethical review
since these interventions were part of routine monitoring of public health
by the National Malaria Control Program of the Ministry of Public Health
of each country (https://www.who.int/publications/i/item/who-guidelines-
on-ethical-issues-in-public-health-surveillance). The analysis of the sam-
ples was also approved by the Environmental Protection Agency in the
framework of the Nagoya Protocol on Access to Genetic Resources and the
Fair and Equitable Sharing of Benefits Arising from their Utilization. Samples
were registered by the French Ministry for Research (declaration number
DC-2010–1223). Regarding Brazilian samples, this study was approved by
the Brazilian National Committee of Ethics (CONEP) (349.211/2013).

DNA extraction was performed from patient blood samples (filter paper
or EDTA tube) using the QIAmpVR DNA mini kit (Qiagen, Germany) and fol-
lowing the manufacturer’s protocol. The pfk13 gene was amplified using
nested PCR methods with primers previously described.3 Double-strand
sequencing of PCR-amplified products was performed by Eurofins (Paris,
France) with the same primers used in nested PCR. Sequences were aligned
with GeneiousVR v8.1.7 using the 3D7 pfk13 sequence as a reference.

The pfk13 analysed sequences from this study are available in the GenBank
repository (accession numbers MW037842–MW038738).

Some isolates were phenotyped using the ring-stage survival assay as
previously described.9 The ring-stage survival assay was interpretable if the
initial parasitaemia was greater than 0.25% and if the growth rate was
greater than 2-fold per 48 h. Statistical significance between survival rates
was calculated using Student’s t-test.

We performed a literature review on the PubMed database to identify
studies reporting pfk13 genotyping in countries of the Amazon basin.
Different searches with word combinations were used, including ‘k13’,
‘kelch 13’, ‘Plasmodium falciparum’, ‘artemisinin resistance’, ‘South
America’, ‘Ecuador’, ‘Colombia’, ‘Peru’, ‘Bolivia’, ‘Brazil’, ‘Guyana’, ‘French
Guiana’, ‘Suriname’ and ‘Venezuela’. When necessary, additional informa-
tion (data collection, location etc.) were requested from the corresponding
authors to properly localize the samples. A total of 3150 pfk13 genotyping
results were found in 16 publications and were used to construct a general
distribution map of pfk13 mutations in the Amazon basin (Table S1, avail-
able as Supplementary data at JAC Online).7,8,10–23

Cumulative numbers of P. falciparum mono or mixed infections from
2015 to 2018 reported by member states of PAHO/WHO were used to con-
struct the malaria case migration maps. Countries report on the aggregate
number of confirmed cases by species type, imported from other countries
during a calendar year. Data were not available from Peru for 2015–17,
Colombia for 2017, Ecuador for 2017 and 2018, and French Guiana for
2018. Data for cases imported from country A to country B were summed
with those being imported from country B to country A, i.e. bidirectional
movement of cases was calculated (Table S2). Aggregate data on the
country from which cases were imported, reported at state level from
Brazil, were sourced from a public database for the years 2015–18.24 Data
here correspond to unidirectional movement of cases from other countries
to Brazilian states. To construct the map of migration of P. falciparum cases
within Guyana, information from the Malaria Surveillance System of
Guyana Ministry of Public Health was used for the years 2015–18. Data on
place of diagnosis of confirmed cases were cross-tabulated with the place
the person was 2 weeks before the date of diagnosis, used as a proxy for
the putative place of infection. Data were aggregated to bidirectional
movement between a set of localities, i.e. both those that were imported
from locality A to locality B, as well as those that were putatively infected in
locality B and were diagnosed in locality A.

Results

Limited genetic diversity of the pfk13 gene in the
Amazon basin countries

No mutation (non-synonymous or synonymous) was identified in
the pfk13 propeller domain (codons 441–704) of the 862 newly
analysed samples (Table 1).

A map representing the distribution of pfk13 mutations in the
Amazon basin was constructed using the genotyping of these
862 samples and 3150 from previously published data (Figure 1
and Table S1). Regarding the pfk13 propeller domain, a general
mutant proportion of 0.5% (95% CI = 0.3%–0.8%) was observed in
the Amazon basin countries. The mutation C580Y (TGT!TAT)
was observed in 2010 and 2016–17 in Guyana (1.6%, 95%
CI = 0.9%–2.3%), the mutation A481V (GCT!GTT) was observed in
2013 in Brazil (0.1%, 95% CI = 0.0%–0.3%) and the mutation
A504D (GCT!GAT) was observed in 2018 in Colombia (0.1%, 95%
CI = 0.0%–0.4%).

Among the 1171 pfk13 non-propeller genotypes available from
this study (n = 648; Table 1) and the literature (n = 523), a mutant
proportion of 49.3% (95% CI = 46.4%–52.1%) was found in this
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domain (codons 50–440; Table S1). K189T (AAA!ACA) was the
most prevalent. This non-synonymous mutation has been fixed in
the Amazonas State of Brazil since 2012 (Figure 1 and Table S1).
Its minimal proportion was observed in the Amapá and Pará
States of Brazil (22.2%, 95% CI = 3.0%–41.4%). No difference in
the survival rates of parasites carrying (n = 24) or not carrying
(n = 115) this mutation has been observed; 0.90% ± 0.26% versus
0.71%±0.09% (P = 0.43) (Figure 2). The K189N (AAA!AAT) muta-
tion was found in 0.4% (95% CI = 0.0%–1.1%) of samples (n = 1)
from French Guiana and R255K (AGA!AAA) as a mixed genotype
was also found, both without impact on the survival rate
(0.25%±0.25% and 0.40%±0.4%, respectively).

Two major routes at risk of spreading pfk13 mutations

To assess the risk of spreading mutant parasites, we chose as a
proxy the number of P. falciparum mono and mixed infections
imported between the different Amazon basin countries at the time
of observation of pfk13 C580Y in Guyana, i.e. the 2015–18 period.

Two important migration patterns of malaria cases in South
America were identified, both linked to the Guiana Shield, the area
recording the highest P. falciparum transmission in South America
(Figure 3). The Guiana Shield encompasses Amazon forest areas of
Guyana, Suriname, French Guiana and parts of Brazil, Colombia
and Venezuela.

The major migration pattern includes Venezuela, Guyana and
the Roraima State of Brazil. Over the 2015–18 period, 3417
P. falciparum cases were imported between Venezuela and Guyana
in a bidirectional manner (54.9%, 95% CI = 53.2%–56.6%, imported
from Guyana to Venezuela; Table S2). Near these hotspots for mal-
aria transmission, the Roraima State of Brazil recorded 3305 cases
imported from Venezuela overwhelmingly in miners (2477; i.e.
75.0%, 95% CI = 73.5%–76.4%) (Table 2 and Figure 3). These move-
ments were mainly unidirectional, from Venezuela to Brazil (97.4%,
95% CI = 96.9%–97.9%; Table S2). Moreover, the migration pattern
into Brazil has been changing from being mostly in Brazilian miners
diagnosed in Boa Vista municipality, which is far from the inter-
national border, in 2015 (59.6%, 95% CI = 54.7%–64.6%; n = 226/
379 cases imported in that year in Brazil) to increasing in
Venezuelan nationals working as miners being diagnosed in

Pacaraima municipality right on the border with Venezuela in 2018
(44.4%, 95% CI = 41.9%–47.0%; n = 660/1485). Between Guyana
and Brazil, 934 P. falciparum malaria cases were exchanged, 83.1%
(95% CI = 80.7%–85.5%) being imported to Brazil (Table S2), mainly
to the Roraima State (82.0%, 95% CI = 79.6%–84.5%; Table 2).
These cases mainly occurred in Brazilian miners returning to Boa
Vista municipality in Roraima (506 P. falciparum malaria cases).

Within Guyana, intense movement of people exists. In fact,
40.8% of the P. falciparum cases were diagnosed in a region different
from where the patient was possibly infected (Table S3). Additionally,
31.0% of the cases were diagnosed and associated with a putative
place of infection within the same region, but in two different local-
ities. These movements were mainly from the hinterlands of Regions
1, 7 and 8 to the capital Georgetown on the coast (Figure 4).

The second major migration pattern, but proportionally much
less important, involved Suriname, French Guiana and the north-
ern states of Brazil (Figure 3). P. falciparum malaria case move-
ments within this hotspot are generally unidirectional with Brazil
and Suriname reporting imported cases from French Guiana. Over
the 2015–18 period, 398 cases from French Guiana were reported
imported in Brazil, mainly in Amapá (57.0%, 95% CI = 52.2%–
61.9%), Maranh~ao (30.2%, 95% CI = 25.6%–34.7%) and Pará
(7.5%, 95% CI = 4.9%–10.1%) States (Table 2 and Figure 3) with
70.9% (95% CI = 66.4%–75.3%) being in Brazilian miners (n = 282
cases). The last two states are farther removed geographically
from French Guiana, but miners from these states work in the
Guiana Shield area. In Suriname, cases from French Guiana repre-
sent 95.0% (95% CI = 92.9%–97.1%) (Table S2) of the parasite
movements between those countries.

In the west of the Amazon basin, 510 cases from Venezuela
(Table S2) have been reported imported in Colombia during this
period, most likely in Colombian states bordering Venezuela, and
743 cases from Peru to the Amazonas State of Brazil (Figure 3 and
Table 2). These later were mostly limited to municipalities sharing
a border with the Loreto State of Peru and related to economic
activities like agriculture and fishing in adjoining areas (51.5%,
95% CI = 48.0%–55.1%; n = 383 cases). Data from Peru were only
available for 1 of the 4 years analysed, making it difficult to ascer-
tain the level of migration, but migration of malaria cases was
in both directions, as indicated by the fact that over 32.6%

Table 1. pfk13 polymorphism of parasites from the Amazon basin

French Guiana 1998–2018 Brazil 2012–13 Guyana 2014–19 Venezuela 2016–18 Total

Total number of analysed isolates for

non-propeller domain codons 50–440

274 63 199 112 648

WT 185 0 79 25 289

K189T 87 63 118 87 355

K/T 189a 0 0 2 0 2

K189N 1 0 0 0 1

R/K 255a 1 0 0 0 1

number of mutants (%) 88 (32.1)a 63 (100.0) 120 (60.3)a 87 (77.7) 359 (55.4)a

Total number of analysed isolates for

propeller domain codons 441–704

475 64 199 124 862

WT 475 64 199 124 862

aMixed genotype, included for the calculation of mutants.
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(95% CI = 29.2%–35.9%) (n = 242/743) of the infections imported
in Brazil were in Brazilian nationals who had travelled to Peruvian
territory. Of note, no cases were reported imported in Brazil from
Ecuador within the same period.

In the same period, eight P. falciparum cases were reported
imported in the Amazon basin countries from countries in south
and south-east Asia. Six cases in Brazil were imported from the

Philippines (n = 2), India (n = 2), Malaysia (n = 1) and Indonesia
(n = 1), and two cases in Ecuador were imported from India.

Discussion

The selection of parasites bearing the pfk13 C580Y mutation and
resistant in vitro to artemisinin derivatives in Guyana has recently

Figure 1. Distribution of pfk13 mutations in the Amazon basin between 1983 and 2019. Pie charts represent pfk13 allele frequencies per country. The
total number of analysed samples is shown with the percentage and the 95% CI (in brackets) when a mutation was identified. Results are shown in
the map of the Annual Falciparum Incidence (AFI) in the Americas region in 2017 (Annual Country Reports to PAHO/CDENT/Malaria). For Brazil, results
are regrouped by closely located states. Notably, most Colombian and Ecuadorian samples (mutant included) represented here were collected on
the Pacific coast (99.8% and 93.7%, respectively) and not in the Amazon region of the country. Brazilian states: AC, Acre; AM, Amazonas; AP, Amapá;
MT, Mato Grosso; PA, Pará; RO, Rondônia; and RR, Roraima. Countries: COL, Colombia; ECU, Ecuador; GUF, French Guiana; GUY, Guyana; PER, Peru; SUR,
Suriname; and VEN, Venezuela.
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been confirmed.8 This situation raised serious concerns about the
risk of mutant parasites spreading or their presence in different
unknown foci in the Amazon basin. No propeller mutation was

observed in the analysed samples. A mutant parasite, A481V, was
previously reported in Manaus/Brazil. This mutation was identified
as being associated with delayed parasite clearance in south-east

Figure 2. Ring-stage survival assays for parasites from French Guiana. The survival rate of ring-stage parasites pfk13 WT (n = 115), pfk13 K189T
(n = 24), pfk13 K189N (n = 1) and pfk13 R/K255 (mixed genotype, n = 1) after a 6 h pulse of 700 nM dihydroartemisinin as measured by microscopy
66 h later. Horizontal bars represent mean±SEM percentage survival.

Figure 3. Map of P. falciparum infections imported between countries in the Amazon basin, 2015–18. Number of P. falciparum mono and mixed infec-
tions imported by country/state of diagnosis and putative country of infection. Each country/state is represented by a standardized location not linked
with the putative contamination place. Lines in the map represent the cumulative numbers of infections recorded during the 2015–18 period. Lines
between countries include bidirectional data, while lines from countries to Brazilian states are unidirectional (imported in Brazil). The width and colour
of the lines are proportional to the number of imported cases. The grey P. falciparum transmission layer is based on the Annual Falciparum Incidence
(AFI) reported during the 2015–18 period. Unstable corresponds to AFI <1 for �1 year and endemic (stable) corresponds to AFI >1 for all years.
Countries: BOL, Bolivia; COL, Colombia; ECU, Ecuador; GUF, French Guiana; GUY, Guyana; PER, Peru; SUR, Suriname; and VEN, Venezuela. Brazilian
states: AC, Acre; AM, Amazonas; AP, Amapá; BA, Bahia; CE, Ceará; GO, Goiás; MA, Maranh~ao; MG, Minas Gerais; MT, Mato Grosso; PA, Pará; PI, Piauı́; PE,
Pernambuco; RO, Rondônia; RR, Roraima; and TO, Tocantins.

Mathieu et al.

2858



Asia.25 Unfortunately, no clinical data were associated with this
sample. The A504D mutation observed in a Colombian sample
was described once without associated phenotypic data.20

Globally, K189T was identified at a relatively high proportion in
the Amazon basin (49.1%, 95% CI = 46.2%–52.0%). This mutation

showed a similar prevalence in Africa, but was rarely described in
south-east Asia.25–28 Some pfk13 K189T isolates have been associ-
ated with delayed parasite clearance time, but without clear cor-
relation with artemisinin resistance.25,29,30 Survival rates observed
in isolates carrying this mutation and collected in French Guiana

Table 2. Number of P. falciparum and mixed infections imported in Brazil (per state of diagnosis) by country of origin of infection, 2015–18

State

Country

TotalBolivia Colombia Guyana French Guiana Peru Suriname Venezuela

Acre 3 0 0 0 0 0 1 4

Amazonas 0 15 13 9 743 0 94 874

Amapá 0 0 0 227 0 6 0 233

Maranh~ao 0 0 82 120 0 13 100 315

Mato Grosso 0 0 2 2 0 1 2 7

Pará 0 0 37 30 0 7 57 131

Rondônia 3 1 2 3 0 0 1 10

Roraima 1 6 628 6 0 3 3305 3949

Tocantins 0 0 2 1 0 0 1 4

Total 7 22 766 398 743 30 3561 5527

Figure 4. Number of P. falciparum mono and mixed infection cases by place of diagnosis and putative place of infection 2 weeks prior to diagnosis in
Guyana, 2015–18. Lines represent a set of localities wherein one is where a patient’s smear was taken for diagnosis and the second is the place where
the patient self-reported they were 2 weeks prior to diagnosis. The width and colour of the lines represent the number of cases of P. falciparum mono
and mixed infections. GUF, French Guiana.
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suggested a natural polymorphism at this position. R255K, previ-
ously identified in Bangladesh, at the China–Myanmar border and
also in Africa, was not linked to artemisinin resistance.25,30–32

Hosts of parasites disperse them; usually within a limited area
by mosquitoes, especially in forests, but farther away by humans,
who can move between endemic regions. Mobile populations
greatly contribute to malaria dispersion and eventually to the
spread of antimalarial drug resistance. Firstly, we excluded the risk
of imported pfk13 mutated parasites from south-east Asia in our
region, as over the 2015–18 period only eight P. falciparum cases
have been imported and recorded in the Amazon basin countries
and none of those was from the Greater Mekong subregion, the
hotspot for artemisinin resistance. Regionally, based on an analysis
of reported imported cases and identified endemic regions, we
inferred two principal areas at risk of spreading of resistance in the
Amazon basin: one between Venezuela, Guyana and the Roraima
State in Brazil and the second between Suriname, French Guiana
and the Amapá State in Brazil (Figure 3).

The current crisis in Venezuela contributed to a huge displace-
ment of people and increase in malaria cases in the country.6

Several people have migrated to neighbouring countries and have
consequently contributed to an increase in malaria cases there.33–35

Besides this political crisis, Venezuelan miners are involved in
mining activities in Guyana and vice versa. It is likely that most of
this movement has originated in the two major mining regions of
Guyana, Regions 1 and 7 (where the mutation pfk13 C580Y was
observed), and Sifontes municipality in Venezuela, which was the
epicentre of malaria transmission during 2015–18.36 Linked to this
bidirectional malaria case exchange, the Roraima State was
the epicentre for malaria case importation and recorded 71.4%
of the imported cases in Brazil, with specific routes of migration
coming from Venezuela or Guyana.37,38

In the Amazon basin, the high prevalence of P. falciparum cases
observed in mining areas is a concern.39,40 Miners represent a high-
ly mobile population, as mines are generally located far from living
areas and people move according to the quantity and the value of
the gold they can find with limited trouble with police. During their
life, miners generally move within two to three countries or differ-
ent places within their own country.38,41 They move between
Suriname, French Guiana and the Amapá State.41–43 However, the
number of P. falciparum malaria cases moving within this area is
lower (n = 651 for the analysed period) compared with the
Venezuela–Guyana–Roraima triangle (n = 7350), as both malaria
transmission and human migration intensity are lower.44,45

However, 12.3% of Brazilian imported cases occurred in Maranh~ao
(n = 315), Amapá (n = 233) and Pará (n = 131). Those cases in the
Amapá State (n = 227) and in the Maranh~ao State (n = 120) were
mainly from French Guiana, because of the vicinity and the geo-
graphical origins of the miners, respectively.41 Maranh~ao is consid-
ered as a non-endemic region except for sporadic transmission or
in small areas bordering Pará with 0.4% of the Brazilian Amazon
P. falciparum cases (n = 72/16 987 malaria cases in 201946).
Therefore, mutation spread is unlikely throughout this state.

In Guyana, the malaria surveillance system is effective and
allows detailed tracing of patients and putative infection places
within the country. Mining abounds on both a medium and a
large scale, as well as on an artisanal scale, in Regions 1, 7 and 8.
However, miners mostly live in the coastal area, which is non-
endemic. They access health centres on the coast upon their

return from 2–3 month stints in the mines. Therefore, they are fre-
quently diagnosed in the Malaria Clinic in Georgetown or at other
diagnostic posts en route in other regions. The situation is similar in
Suriname and French Guiana, where miners work in remote areas
and are generally diagnosed upon their return to Paramaribo or
Cayenne, respectively. In French Guiana, miners could also be
diagnosed at the closest health centre or cross the international
borders into Suriname and Brazil, depending on the presence of
the police in the area.

This analysis of the risk of spreading of mutations within the
Amazon basin is based on malaria cases imported between coun-
tries/areas as a proxy of parasite movements. This approach is the
result of the malaria risk encountered by the people exposed to
the disease who have contracted and taken it with them to an-
other country/areas. But it has limitations. First, the risk of spread
and/or emergence of resistance is related to the number of people
exposed to malaria, but also to their use of antimalarial drugs, as
well as other variables, including drug quality, adherence, drug ab-
sorption etc. Second, the suggested maps represent the patterns
but not precisely the path taken by people during their journey.
These paths could include additional stops during the journey,
in transmission areas, with a risk of mutant dispersal. Third, our ap-
proach is based on cases captured by surveillance systems, but in
some areas access to malaria diagnosis is low and self-treatment
rates are high. Therefore, cases are not identified and even less
reported in this context, but selection for resistance and the risk
of resistance spreading could be high.

With these additional pfk13 genotype results and this evalu-
ation of the malaria case movements within the Amazon basin
countries, we conclude that the pfk13 mutation associated
with artemisinin resistance in vitro in South America appears to be
limited to Guyana.

Between 2010 and 2016, pfk13 C580Y did not really increase in
prevalence in Guyana and it was not observed in samples collected
in 2018 and 2019, despite the fact that it confers in vitro artemisi-
nin resistance.8 In western Cambodia it has displaced other muta-
tions because of the KEL1/PLA1 lineage, which is resistant to
artemisinins, but also piperaquine.30,47,48 The high level of efficacy
of lumefantrine in the Guiana Shield associated with the negative
impact on parasite growth could explain this low level of
spread.8,20,21 However, as soon as resistance to the partner drug
appears, the risk of artemisinin resistance spreading will be high,
first within the country itself and then among the neighbouring
countries or the areas linked by human migration, i.e. Venezuela
and Roraima. This risk of spread will also be proportionate to the in-
tensity of mining activities and inversely proportionate to the level
of care offered to miners. With this in mind, countries will benefit
by reinforcing malaria diagnosis and treatment availability within
the mining sites deep in the forest. Practical deployment must be
adapted according to the legal status of the mines and the miners
and the regulation constraints of each country. When it exists, the
private sector is an important partner and in the case of small-
scale mining, which is often illegal, community health workers
could be deployed, as is the case in Suriname, or a self-diagnosis
and treatment approach could be considered, as in French
Guiana.49,50 Moreover, regulation of sale of antimalarial drugs and
use is key in these settings, as erratic use exists and commercial-
ization of monotherapies of artemisinin is not strictly regulated in
all countries of the region.8,51 Finally, molecular surveillance is
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crucial, particularly in Venezuela, which is experiencing a malaria
outbreak with deficient control and because the analysed sample
size in this study was limited [n = 124, i.e. 0.1% (95% CI = 0.1%–
0.1%) of the 196 166 P. falciparum cases reported in 2016–186].
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