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Abstract
Transcriptional activation domains (ADs) are generally thought to be intrinsically unstruc-

tured, but capable of adopting limited secondary structure upon interaction with a coactiva-

tor surface. The indeterminate nature of this interface made it hitherto difficult to study

structure/function relationships of such contacts. Here we used atomistic accelerated

molecular dynamics (aMD) simulations to study the conformational changes of the GCN4

AD and variants thereof, either free in solution, or bound to the GAL11 coactivator surface.

We show that the AD-coactivator interactions are highly dynamic while obeying distinct

rules. The data provide insights into the constant and variable aspects of orientation of ADs

relative to the coactivator, changes in secondary structure and energetic contributions stabi-

lizing the various conformers at different time points. We also demonstrate that a prediction

of α-helical propensity correlates directly with the experimentally measured transactivation

potential of a large set of mutagenized ADs. The link between α-helical propensity and the

stimulatory activity of ADs has fundamental practical and theoretical implications concern-

ing the recruitment of ADs to coactivators.

Author Summary

The regulated transcription of eukaryotic genes is governed by gene-specific transcription
factors that contain activation domains to stimulate the expression of nearby genes. Acti-
vation domains are unable to take up a defined three-dimensional conformation. Never-
theless, as we demonstrate in our study, molecular dynamics simulations reveal that the
key docking point of such domains (centered around several large hydrophobic amino
acid sidechains) folds into fluctuating α-helical conformations. Analysis of published data
shows that this tendency of adopting such local structures correlates directly with stimula-
tion activity. We also investigate the interaction of these structurally unstable domains
with a coactivator interaction partner. Computational simulations are ideally suited for
analysing the rapidly changing, "fuzzy" interactions occurring between these protein part-
ners. We gained new insights into the competitive nature of the key hydrophobic
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sidechains in binding to a pocket on the coactivator surface and documented for the first
time the rapidly changing movements of an activation domain during these interactions.

Introduction
Control of gene expression plays a crucial role throughout all three evolutionary domains of
life, allowing cells to establish cellular identity, adapt to environmental challenges and prevent
diseases caused by misregulation of transcription [1]. The expression of the genome is con-
trolled predominantly by a network of gene-specific transcription factors (GSTFs) that, after
binding to target sites on DNA, regulate the rate of expression of nearby genes. GSTFs per-
forming as transcriptional activators usually contain one or multiple activation domains (ADs;
[2]) that orchestrate localized remodelling of the chromatin structure, enhanced recruitment of
components of the basal transcriptional machinery on the core promoter and/or stimulate pro-
moter escape and subsequent elongation events [3–6]. These activities typically require binding
of the ADs to coactivators that integrate and convey activation signals to other components of
the transcriptional machinery [6,7]. The Mediator complex surrounding the basal transcrip-
tional machinery during transcription initiation [8–11] contains coactivators that have been
shown experimentally to interact with ADs to regulate gene-specific transcription (Fig 1; [11–
13]).

While more than 50 common structural motifs have been described for the DNA-binding
domains, the available knowledge concerning the structure and function of ADs is compara-
tively limited [14]. The first ADs described almost three decades ago were shown to be both
necessary and sufficient to confer the transcriptional stimulatory properties [2,15]. From a
structural perspective, ADs are often characterized by their unusual primary amino acid
sequence abundant in acidic amino acids, glutamine or proline residues [14–17]. The enrich-
ment for such amino acids is thought to discourage the formation of higher order structures
and thus results in an intrinsically disordered structure ("acid blobs and negative noodles" or
"polypeptide lasso" structures [18–20]). In turn, the intrinsic disorder allows ADs to interact in
a highly adaptable manner with a range of coactivators, culminating in a synergistic regulation
of the basal transcriptional machinery by one or multiple activators (Fig 1; [21,22]). The affin-
ity of AD-coactivator binding is reasonably high (low micro- to high nanomolar range
[12,21,23]) and results in interactions lasting for several milliseconds. NMR-studies provided
structural insights into a various aspects of AD-coactivator complexes (TFIID/Taf40-VP16
[24]; TFIIH/Tfb1-VP16 (PDB#2K2U [23]); NcoA1-STAT6 (PDB#1OJ5 [25]); MDM2-p53
(PDB#1YCQ [26]); CBP-CREB (PDB#1KDX [27]; MED25/VP16 (PDB#2XNF [12] and 2KY6
[13]; GAL11-GCN4 (PDB#2LPB [11]). Site-directed mutagenesis and structural studies have
shown that evolutionarily highly conserved bulky hydrophobic residues within ADs play a key
structural role in mediating interactions with coactivators (Fig 2A and S1 Text,
[16,23,24,26,28]). When bound to coactivators, ADs form a "fuzzy" family of stochastically
related structures (Fig 2D, [29–31]).

Many of the yet unanswered questions regarding AD-coactivator interactions are challeng-
ing to address experimentally, especially those concerning the dynamic range of AD conforma-
tions over time, key interaction points on coactivator surfaces, the energetics of such
interactions and the structures of ADs prior to binding coactivators. Computational
approaches are highly effective to model such systems on the atomic level, to study their behav-
ior and gain new mechanistic insights that consolidate present knowledge and guide future
experimental work. Here we describe the results obtained from a series of long, fully atomistic
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molecular dynamics simulations focusing on the experimentally well-characterized
GCN4-GAL11 system from Saccharomyces cerevisiae. Accelerated molecular dynamics (aMD)
methods [33,34] provide powerful tools for investigating the binding of the ADs to their coacti-
vator targets, as well as for studying the structural properties of ADs in isolation. We describe
the structural interplay of AD-coactivator complexes and explore an extensive experimental
data set based on synthetic AD variants to demonstrate a high degree of correlation between
the α-helix propensity, degree of "fuzziness" and the transactivation potential.

Results

Microsecond simulations of the GAL11-GCN4 complex: Structural and
energetic aspects
The yeast transcriptional activator GCN4 contains two tandemly arranged ADs (Fig 2A) that
stimulate the expression of more than 70 "downstream" genes. The GCN4 ADs achieve this
task by targeting a variety of components of the basal transcriptional machinery, including the
coactivator GAL11 (also known as MED15) within the mediator complex [21]). GAL11 con-
tains three structurally independent AD-binding domains ("Activator-Binding Domains"
["ABDs"]; Fig 2A). For one of these, ABD-1, a high-resolution structure shows a stable α-helical
structure that includes a groove for interactions with ADs (PDB#2LPB; Fig 2B–2D; [11]). NOE
and spin-labeling data of GAL11/ABD-1 complexed with the central AD of GCN4
(GCN4-cAD) were used to create several models illustrating the diversity of interaction
between this coactivator and the AD. The bound cAD models contain a short helical stretch

Fig 1. Transcriptional activation via the Mediator complex. The schematic diagram shows the gene-
specific transcription factor GCN4 bound sequence-specifically to a target site ("Upstream Activation Site";
"UAS"). The basal transcriptional machinery (including RNA polymerase II [RNAPII]; basal transcription
factors TFIIB, TFIID, TFIIE, TFIIF and TFIIH; the multi-subunit "Mediator Complex") assembles around the
transcription start site indicated by an arrow. The GAL11 subunit of the Mediator is specifically identified. The
regulatory protein-protein interaction of the GCN4-activation domain (cAD) with GAL11 is represented by a
two-headed arrow.

doi:10.1371/journal.pcbi.1004935.g001
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Fig 2. Transcriptional activation of GCN4 via Mediator GAL11. A. Domain organization of GCN4 (top) and GAL11 (bottom). The positions
of the two tandem activation domains (N-terminal AD, central AD [cAD]) and the DNA-binding domain (DBD) of GCN4 are illustrated. A
sequence logo based on GCN4 orthologs from 29 different species (see S1 Text for sequence alignments) shows the absolute conservation
of three large hydrophobic residues (corresponding to W120, L123 and F124 in Saccharomyces cerevisiaeGCN4). GAL11 contains three
domains,ABD1, ABD2 and ABD3, that each can bind GCN4 independently. B. Structure of GAL11-ABD1. Cartoon presentation of the
uncomplexed structure showing positions of the four separate α-helices (α1 to α4 from N- to C-terminus). C. Surface view showing the
location of three deep pockets that display a capacity for binding hydrophobic side chains of partner proteins. Liquorice representations of
probe clusters of small organic compounds are shown fitted into three distinct pockets (red = "Pocket#1"; blue = "Pocket#2"; magenta =
"Pocket#3") mapped by a computational solvent mapping program [32]. The model shows GAL11-ABD1 residues 164–233.D.Model of the
GCN4-cAD bound to GAL11-ABD1. The GAL11-ABD1 and GCN4 structures are shown in silver and purple, respectively. Five different
positions, reflecting orientations at 200 ns intervals of aMD_no1, are drawn for the GCN4 cAD in cartoon representation.

doi:10.1371/journal.pcbi.1004935.g002
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(encompassing GCN4 residues 116 to 124) that includes three large hydrophobic residues
(W120, L123 and F124) highly conserved during evolution (Fig 2A and S1 Text). The coactiva-
tor GAL11/ABD-1 interaction surface displays three computationally detectable "hot spots"
("Pocket #1", "Pocket #2" and "Pocket #3") [32] that are distinguished by their concave topology
and potentially become occupied by these particular GCN4 hydrophobic residues (Fig 2C).

We subjected PDB#2LPB-model 1 to extensive aMD simulations to gain deeper insight into
various structural aspects, such as variation in AD secondary structure, orientation relative to
the coactivator surface and energetic changes underpinning the conformational changes. Simu-
lations were carried out as four independent replica runs with different initial Boltzmann dis-
tributions of particle velocities. Each simulation lasted for one microsecond, but the results
reflect a period around two or three orders of magnitude longer due to the acceleration proto-
col used (that is, hundreds of microsecond- to millisecond-range; Table 1).

We were initially curious to see whether the aMD simulations would recreate the different
binding states previously proposed by Brzovic et al. [11]. We used distance measurements
between GCN4-W120 or GCN4-F124 relative to GAL11/ABD1-A126 (which forms the floor
of Pocket #1; Fig 2B) to monitor pocket occupancy. The measurements show that the two key
hydrophobic residues, in full agreement with the NMR-based models [11], behave in a switch-
like manner and bind to GAL11/ABD1 in the three major binding states via a series of interme-
diate conformations (Fig 3). At various stages, the GAL11-ABD1 pocket is occupied by the
sidechains of either GCN-4/W120 (Fig 3A) or F124 (Fig 3C), respectively. On several occa-
sions, we observe a double occupancy (Fig 3B). A molecular movie illustrates a full time course
of the dynamic change, including the changeover betweenW120 and F124 (S1 Movie). In addi-
tion to pocket occupancy state, the NMR-based models also postulate that the GCN4-cAD
helical portion takes up several different orientations relative to GAL11-ABD1. Angular mea-
surements of vectors characterizing the GCN4-cAD helix relative to GAL11-ABD1 α-helix 4
(Fig 4) correspond to orientations directly comparable to the previously described ones, but
also suggest the presence of additional states representing transitional conformations. Because
W120 and F124 act as pivot points in a comparable manner, the various pocket occupancy
states and helix orientations observed do not appear to show any significant correlation.

Because we started the aMD simulations from just one of the 13 different models proposed
previously, we wondered to what extent he observed motions of the GCN4-cAD on
GAL11-ABD1 reflected the conformational space defined by the twelve remaining models. In
principle, any extensive simulation of a single member of a family of structural conformers
should reveal conformations that encompass the conformations of the majority of the other
family members, as these structures are expected to interconvert freely during simulation. Plots
of the phase space of the combined trajectories along three coordinates (helical angle; distances
of the two key hydrophobic residues (W120 and F124) relative to Pocket#1) demonstrate that
approximately 87% of the model coordinates are within highly populated regions (Fig 5). We
conclude that the choice of 2LPB-model#1 as the starting structure for all four aMD simula-
tions did not result in an unusually biased sampling of conformational space.

Flexibility and structural adaptability of the cAD thus enables a highly dynamic interplay
that accommodates several different combinations of pocket occupancy and helical orientation.
This raises intriguing questions regarding the energetics of such a variable interaction. We cal-
culated the molecular mechanics per-residue decomposition of free binding energy (ΔGBinding)
measurements along the trajectories in one-nanosecond intervals using the Molecular Mechan-
ics Generalized Bourne Surface Area (MM-GBSA) method [35]. The van der Waals decompo-
sition data of the GCN4-cAD confirms the dominating contribution of GCN4-W120 and F124
in binding to GAL11-ABD1 (Fig 6A; electrostatic interactions play a mostly invariant role in
the GAL11-ABD1/GCN4 cAD interaction: S1 Fig). Despite the major conformational changes
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of the GCN4 cAD relative to the coactivator surface, the energetic contributions of
GCN4-W120 and F124 interactions remain relatively steady throughout all four independent
simulations. A more detailed study of these interactions reveal the varying role of at least five
residues within the GAL11-ABD1 Pocket #1 in mediating these contacts (Fig 7). Two hydro-
phobic residues, GAL11-M173 or Y220, interact with GCN4-F124 alternatively, depending on
whether the F124 sidechain is located within Pocket #1 (Figs 3A and 7A), or has moved out of
it and is replaced by GCN4-W120 (Figs 3C, 7B and 7C). While GCN4-F124 occupies Pocket
#1, W120 makes favorable hydrophobic contacts with the sidechains of GAL11-K217 and
K221 (Fig 7A–7C). The formation of alternative—but energetically equivalent—contacts thus
underpins several alternative modes of binding that are conformationally quite different from
each other. Another conserved residue, GAL4-L123 (Fig 2A), provides notable van der Waals
contributions, mostly in conjunction with F124, and occasionally substitutes for F124 in a
reversible manner (particularly obvious in simulation GAL11-ABD1/GCN4-cAD _aMD_no1;
Fig 6A).

This analysis also identifies several additional residues (GCN4-M107, F108, Y110, L113,
I128, and V130) as making significant additions to ΔGBinding, but in a distinctly non-systematic
manner. The residues are nodes in a structurally highly flexible network that facilitates short-
lived interactions, but do not a follow recurrent pattern due to substantial and unstable confor-
mational changes in the GCN4-cAD. To exemplify the role of these residues, we investigated
the structural interactions of GCN4-M107 in more detail. In simulation GAL11-ABD1/
GCN4-cAD _aMD_no2, this residue is seen as providing a substantial van der Waals contribu-
tion lasting throughout most of the second half of the simulation (timeframe 1,400–2000 ns
aMD; Fig 6A). During this time, GCN4-M107 interacts predominantly with two leucine resi-
dues, L169 and L227, which are located on two different α-helices of GAL11 (helix 1 and 4,
respectively), but are spatially close to each other and interact with each other via hydrophobic

Table 1. Summary of MD simulations.

Simulated Structure Simulation Name Duration #atoms

GAL11-ABD1/GCN4-cAD GAL11-ABD1/GCN4-cAD _aMD_no1 1 μs 45,489

(PDB#2LPB-model 1) GAL11-ABD1/GCN4-cAD _aMD_no2 1 μs 45,489

GAL11-ABD1/GCN4-cAD _aMD_no3 1 μs 45,489

GAL11-ABD1/GCN4-cAD _aMD_no4 1 μs 45,489

GCN4-cAD GCN4_aMD_no1 1 μs 32,551

(de novo starting structure) GCN4_aMD_no2 1 μs 32,551

GCN4_aMD_no3 1 μs 32,551

GCN4_aMD_no4 1 μs 32,551

GAL11-ABD1 GAL11-ABD1 _aMD_no1 1 μs 42,355

(PDB#2LPB; without GCN4) GAL11-ABD1 _aMD_no2 1 μs 42,355

GAL11-ABD1 _aMD_no3 1 μs 42,355

GAL11-ABD1 _aMD_no4 1 μs 42,355

cAD-like07 cAD-like07_aMD_no1 1 μs 28,131

(de novo starting structure)

cAD-like96 cAD-like96_aMD_no1 1 μs 28,424

(de novo starting structure)

GAL11-ABD1/GCN4-cADlike96 GAL11-ABD1/cAD-like96_aMD_no1 1 μs 46,862

(PDB#2LPB; in silico GAL11-ABD1/cAD-like96_aMD_no2 1 μs 46,862

mutagenized GCN4) GAL11-ABD1/cAD-like96_aMD_no3 1 μs 46,862

GAL11-ABD1/cAD-like96_aMD_no4 1 μs 46,862

doi:10.1371/journal.pcbi.1004935.t001
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interactions in the folded GAL11 structure. GCN4-M107 interacts with either residue on its
own, or even with both leucines by bridging them (Fig 6B and S2 Movie).

Altogether, we interpret these findings the following way: GCN4-W120 /GCN4-F124
anchor GCN4-cAD to the GAL 11 surface, but provide no preferential stabilization of

Fig 3. Differential GAL11-ABD1 pocket occupancy by GCN4-W120 and F124. Panels A—C show the GAL11-ABD1 in grey
surface representation and the GCN4-cAD as a purple ribbon. The key hydrophobic residues GCN4-W120 and F124 are shown as
liquorice models in light blue and green, respectively. The time-frame shown in the right corner of each panel corresponds to the 4 x
1000 ns aggregate trajectory shown in Panel D. A.GCN4-F124 located in the ABD1 pocket near the beginning of aMD_no2. B. Co-
occupancy of GCN4-W120 and F124 inside the ABD1 pocket. Note that the cAD α-helix is additionally rotated by 90° in comparison
to (A) and (C). C.GCN4-W120 located within the ABD1 pocket towards the end of aMD_no4. Note that this simulation, just like the
other three started out with GCN4-F124 in the pocket.D. Distance measurement [Å] between residue GAL11-A216, which forms the
floor of the ABD1 pocket, and GCN4-W120 (blue trace) or F124 (green trace). For this analysis the four aMD simulations trajectories
were concatenated to a single trajectory before processing to allow cross-comparison of the data under identical conditions.

doi:10.1371/journal.pcbi.1004935.g003
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Fig 4. Changes in helical orientation of the GCN4-cAD relative to GAL11-ABD1. A. The three panels show the
GAL11-ABD1 in silver surface representation and the GCN4-cAD as a purple ribbon. The key hydrophobic residues
GCN4-W120 and F124 are shown as liquorice models in light blue and green, respectively. The time-frame shown in the right
corner of each panel corresponds to the 4 x 1000 ns aggregate trajectory shown in Panel D. All representations are aligned to
the long α-helix 4 of ABD1 (see Fig 2B for annotation of helices; residues GAL11-Q211 and L232 were chosen as vector
endpoints for α-helix 4). The helical axis of GCN4 is marked by a white arrow.B.Measurements of the angle of α-helix 4 of
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conformation and/or orientation of the cAD relative to the coactivator surface. Additional
hydrophobic residues located on GCN4 contribute notable, but temporary contacts (estimated
by molecular mechanics measurements to contribute only between -3 to -6 kcal.mol-1 each
towards ΔGBinding). The fuzzy interaction thus results from a variable combination between
two relatively strong contributors (-8 to -10 kcal.mol-1 each) that are regularly supported by a
host of additional minor contributors subjected to continuous change. This molecular interac-
tion pattern predicts that the binding free energy of the GCN4 cAD to GAL11-ABD1 is far
from constant and subject to constant fluctuations. The MM-GBSA estimates support the idea
of substantial variation in binding affinity (over a three-fold range on the micro/millisecond
time scale [S2 Fig]). The half-life of the GCN4-GAL11 interaction is estimated to be in the low
millisecond range [11], which supports this interpretation. Although the constant change in
affinity may result in a reasonable average affinity (and may include very high affinity states), it
will also drop in affinity with statistical regularity to levels that facilitate immediate dissocia-
tion. The aMD simulations, by allowing coactivator-AD domains to be monitored over longer
timer frames, convey this message much clearer than the limited number of currently existing
static snap-shots of models demonstrating alternative conformations [11].

Secondary structures of ADs in presence and absence of coactivator
Having examined the molecular dynamics of the GAL11-ABD1/GCN4-cAD fuzzy complex,
we turned our attention to the intrinsic structural properties of these two interaction partners.
Specifically, we wanted to investigate to what extent binding of GCN4 affects the structure of
GAL11 and, more importantly, how extensively the GCN4-cAD is structured on its own. We
started by monitoring the formation/maintenance of secondary structure of the
GAL11-ABD1/GCN4-cAD complex simulations described above. The analysis showed forma-
tion of a stable helical structure ("Helix #1") typically encompassing GCN4 residues S117 to
D125 (Fig 8A). Simulation GAL11-ABD1/GCN4-cAD _aMD_no1 exceptionally shows a mix-
ture of 310-helix and α-helix during the first 750 ns of simulation before settling into a α-helical
pattern, whereas all other three simulations (including the final stages of GAL11-ABD1/
GCN4-cAD _aMD_no1) display extensive and stable α-helices throughout the entire time
course. These results are essentially in agreement with the 13 different models presented in
PDB#2LPB [11], although the simulations suggest that the C-terminal border of Helix#1 rou-
tinely extends one residue further than previously proposed to include position D125. In addi-
tion to Helix #1, the occasional presence of another N-terminally located structure ("Helix #2")
is evident. Helix #2 is less stable in GAL11-ABD1/GCN4-cAD _aMD_no1, no2 and no3 and
either takes up a partial 310-helix conformation (GAL11-ABD1/GCN4-cAD _aMD_no1 and
no3), or disappears eventually. In GAL11-ABD1/GCN4-cAD _aMD_no4, Helix #1 and #2 fuse
into a single contiguous α-helix (spanning fromM107 to N126 at its borders) that remains
intact until the end of the simulation. Helix #2 includes the hydrophobic residues
(GCN4-M107, F108, Y110, L113, I128, and V130) identified above as making occasional ener-
getically favorable contributions to ΔGBinding.

ABD1 in relation to the GCN4-cAD α-helix during simulations GAL11-ABD1/GCN4-cAD _aMD_no1, no 2, no3 and no4. For
the cAD α-helix, residues GCN4-S117 and F124 were selected.C. Time-dependent representation of the 90° rotation
performed by cAD (cartoon representation, red to blue) in GAL11-ABD1/GCN4-cAD _aMD_no3. The different helical
orientations (shown in cartoon representation) at different time points throughout the one microsecond simulation are
superimposed on each other. The color of the helix indicates the time point according to the color gradient scale shown on the
right. The GCN4 helix undergoes a number of different orientations (~100°, ~150°, ~50° and ~0° according to the criteria
defined in B).

doi:10.1371/journal.pcbi.1004935.g004
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Fig 5. Distribution of the 13 experimentally-basedmodels within aMD simulation phase space. Each of
the blue dots defines the position in phase space of a snapshot from the four combined aMDs (GCN4-cAD/
GAL11-ABD1_aMD_no 1 to 4) sampled at 1 ns intervals. The red dots define the coordinates of the 13
models calculated using identical parameters (the numbers in grey identify the model numbers as used in
PDB#2LPB). The distances and angles were calculated according to the criteria described in the legends of
Figs 3 and 4. A. Plot of the distance of F124 relative to Pocket#1 (horizontal axis; distance in Å) versus the
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We next asked to what extent the observed α-helical propensity of the GCN4-cAD was
encoded within its primary structure. ADs are intrinsically disordered and are often thought to
only adopt significant secondary structure upon binding to a coactivator target [11,29]. This
model is, however, controversial. Whereas some NMR and circular dichroism studies of several
isolated ADs claim an absence of significant secondary structure elements [11,36], other investi-
gations suggest the presence of a significant fraction of transient α-helices [37–39] or β-sheets
[40] in the unbound state of various ADs. In order to eliminate any structural "memory" from
the starting structure, we constructed a model of the GCN4-cAD as a completely unfolded poly-
peptide from its primary amino acid sequence. After aMD simulation, any conformational
changes—including the formation of secondary structure elements -will therefore solely be
determined by the intrinsic properties of the polypeptide sequence itself. After a short implicit
solvation minimization step to fold up the structure in a more compact random coil, we set up
four independent microsecond aMD simulations under identical conditions as used previously
for the aMD simulations of the GAL11-GCN4 complex (Table 1). Such simulations sample fold-
ing pathways and, especially relevant for disordered structures, reveal shifts in equilibria between
short-lived conformations. The formation of α-helices occurs on the nanosecond-microsecond
time scale [41] and is therefore well within the scope of the chosen simulation parameters.

An investigation of secondary structure elements formed in the GCN4-cAD aMD simula-
tions reveals an unexpectedly high degree of spontaneously formed α-helices (Fig 8B). The for-
mation of α-helices is especially favored in the central portion of the GCN4-cAD that contains
the bulky hydrophobic residues that have been experimentally identified as critically important
for the transactivation function, as well as making significant contributions to the free energy
of binding to coactivators (Fig 6A). Although traces of β-sheet can be seen in GCN4_aMD_no4
(Fig 8B), these structures appear short-lived and do not support the conclusions reached by a
previous study [40]. We conclude that the GCN4-cAD has intrinsic potential to form α-helical
elements, even in absence of a coactivator, making it likely that these spontaneously preformed
secondary structure elements represent key structural features required for coactivator interac-
tion and binding specificity. The absence of substantial random coil elements in the region sur-
rounding GCN4-W120, L123 and F124 allows us to postulate further that the cAD engages
most likely with the coactivator with the necessary α-helices already locally preformed prior to
first contact.

Although expected to have a less substantial effect, we also attempted to quantitate the effect
of AD binding on the conformation of a coactivator. Consequently, we set up four independent
one-microsecond aMD simulations of the GAL11-ABD1 in the absence of the GCN4-cAD
(Table 1). A comparison of root mean square fluctuation (RMSF) measurements in simulations
GAL11-ABD1 _aMD_no1 to no3 in the bound and unbound state shows that ABD1 becomes
structurally more restricted upon cAD binding. Especially ABD1 residues involved in either
pocket formation or binding of the cAD helix become less mobile (S3 Fig). GAL11-ABD1

angle of the α-helical part of GCN4-cAD relative to GAL11-Abd1 α-helix 4 (vertical axis; angle in degrees).B.
Plot of the distance of W120 (horizontal axis) versus the distance of F124 relative to Pocket#1 (vertical axis;
both distances in Å). C. Plot of the distance of W120 relative to Pocket#1 (horizontal axis; distance in Å)
versus the angle of the α-helical part of GCN4-cAD relative to GAL11-Abd1 α-helix 4 (vertical axis; angle in
degrees). There are five PDB#2LPB model structures (#6, 7, 8, 12 and 13) that are located at the periphery of
the phase space simulated by the aMD simulations using this particular parameter set. These outliers are
characterized by a relatively large distance of W120 from Pocket#1 (~10–15 Å) and by narrow angle (~40–
80°) of the GCN4-cAD α-helical portion relative to GAL11-Abd1 α-helix 4. This set of conformations may
either require more extensive sampling to be reached from 2LPB-model#1 as a starting structure, or
represent conformations that are not energetically favorable under the forcefield conditions used in the
simulations.

doi:10.1371/journal.pcbi.1004935.g005
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Fig 6. Molecular mechanics analysis of the GAL11-ABD1/GCN4-cAD interaction. A. The decomposition
of the van der Waals contribution is shown as a contour plot. The horizontal axis represents the amino acid
sequence of the GCN4 activation that was represented in the simulations and in the models in PDB#2LPB.
The vertical axis represents snapshots at 1 ns intervals from the four aMD simulations. The ΔG value of the
van der Waals contribution of each residue at each time point is color-coded according to the scale shown
(substantial contributions to ΔG are green and dark blue). The data derived from independent simulations
(indicated on the left; aMD_no1 is represented by frames 1–1000, aMD_no2 by frames 1001–2000 etc.) are
shown on the same plot to facilitate the detection of constant and variable features. Residues making
significant energetic contributions are highlighted by a red-dotted line aligned to the amino acid sequence.B.
Snapshot of GAL11_GCN4_aMD_no2 (frame 935) demonstrating the hydrophobic interaction between
GAL4-M107 (magenta liquorice representation) with the leucine pair GAL11-L169 and L227 (light blue
liquorice representation). A movie showing the dynamics of this interaction is available (S2 Movie).

doi:10.1371/journal.pcbi.1004935.g006
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Fig 7. Structural basis of pocket #1 occupancy by GCN4-cAD residuesW120 and F124.GCN4-cAD
residuesW120 and F124 are displayed in liquorice representation in light blue and green, respectively, on a
portion of the GCN4 α-helix shown as a purple ribbon. Key residues participating in the formation of Pocket
#1 on the GAL11-ABD1 surface are drawn as van der Waals structures and labelled according to amino acid
identiy (V170 white; M173 pink; Y220 red; K217 and K 221 in light blue). V170 and M173 are part of
GAL11-ABD1 α-helix 1 (see Fig 2B for helix nomenclature) marked in dark grey. K217, K221 and Y220 are on
GAL11-ABD1 α-helix 4 shown in light grey. The changing orientation of the GCN4 α-helical axis is marked by
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_aMD_no4 undergoes a more substantial conformational change that includes a concerted
movement of helices 1 and 2 and alters the ABD1 interaction surface. The original pocket for
binding GCN4-W120 or F124 is no longer present, suggesting that this conformation of ABD1
may not be able to bind GCN4. The altered surface, however, develops new pockets, that may
potentially offer alternative binding sites for other activators.

Construction principles of a highly potent AD
Up to now, we have focused our attention on a naturally occurring AD/coactivator complex
that has been shown to be physiologically relevant [11,21]. Extensive mutagenesis experiments

a purple arrow. A. Structure near beginning of simulation (30 ns of GAL11-ABD1/GCN4-cAD _aMD_no1).
GCN4-F124 occupies Pocket #1 formed by GAL11-Y220 and -K217 (among other residues not shown here),
while GCN4-W120 engages in hydrophobic interactions with the non-polar section of the GAL11-K221 side-
chain.B. Structure after 120 ns simulation (GAL11-ABD1/GCN4-cAD _aMD_no1). GCN4-F124 has moved
towards GAL11-M173, freeing up Pocket #1 for GCN4-W120 to move in while maintaining hydrophobic
engagements with GAL11-K217 and -K221. C. Structure after 220 ns simulation (GAL11-ABD1/GCN4-cAD
_aMD_no1). GCN4-F124 binds now to GAL11-M173 and -V170, and Pocket #1 is now fully occupied by
GCN4-W120.

doi:10.1371/journal.pcbi.1004935.g007

Fig 8. α-helicity of coactivator-bound and free GCN4-cAD. The trajectories of four aMD simulations (GCN4_aMD_no1 to no4) were combined to
allow comparisons across the entire range. The secondary structure is color-coded (pink: α-helix; dark blue: 310 helix; turquoise: turn; white: coil;
yellow: β-sheet). The amino acid sequence is on the vertical scale (N-terminus at top; the position of key residues is marked by red dotted lines) and
time in nanoseconds of aMD on the horizontal scale.A. Secondary structure analysis of the GCN4-cAD bound to GAL11-ABD1. Except for aMD_no1
(GCN4_aMD_no1), which shows the presence of 310 helices at the beginning of the simulation, all other aMDs are almost exclusively α-helical in the
region including the bulky hydrophobic residuesW120, L123 and F124. There is evidence for relatively stable N- and C-terminal borders (indicated by
dotted dark blue lines at residues S117 and D125, respectively), especially in aMD_no2 and 3 for the central helix ("Helix #1") that encompassW120,
L123 and F124. In addition, there is evidence for the presence of an additional transient α-helix ("Helix #2") surrounding residues M107, F108, Y110
and L113.B. Secondary structure analysis of de novo folded GCN4-cAD. There is a widespread formation of short-lived α-helices at different positions
and lengths that include residuesW120, L123 and F124.

doi:10.1371/journal.pcbi.1004935.g008
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have revealed the existence of a cryptic AD within the primary amino acid sequence of GCN4.
This "cAD-like" activation domain, encompassing GCN4 residues 81–100, partially matches
the structural criteria for an AD, but does not display a detectable transactivation potential
(Table 2; [42]).

Substitutions of hydrophobic residues within the cAD-like motif improve its activity and
make it as potent as the GCN4-cAD. This modified cAD-like domain has proven an excellent
testing ground for studying the transactivation potential of an array of directly comparable
structures created by high-throughput site-directed mutagenesis [42]. We included two exam-
ples in our analyses and will refer from here onwards to the members of this collection as
"cAD-like xx" (where xx stands for the transactivation potential that the sequence confers). For
example, cAD-like07 refers to a 'weak' cAD-like variant that is capable of stimulating ARG3
induction ~7-fold (which is equivalent to the activation potential of the GCN4-cAD). On the
other hand, cAD-like96 identifies a strong transactivator motif capable of stimulating ARG3
induction ~96-fold [42]. The system thus offers ideal conditions for further elucidation of the
functional necessities of an exceptionally potent AD and its interactions with coactivators.

We set up in silico folding aMD simulations for the cAD-like07 and cAD-like96 motifs
under identical conditions used earlier for the GCN4-cAD (Table 1). Taking into account that
we previously observed significant α-helical propensity in the isolated and de novo folded
GCN4-cAD (Fig 8B), one of the first questions we asked was whether such a propensity could
also be detected in the cAD-like variants (while embedded within the same primary sequence
context as used in the experimental work). The only ordered secondary structures formed
under these conditions are α-helices, albeit with a noticeable difference in effectiveness. In the
case of cAD-like07, contiguous α-helical regions are present fleetingly throughout most of the
simulation period, but these fluctuate considerably in length and position relative to the under-
lying primary amino acid sequence (Fig 9A). In some instances all α-helical structures were
lost, but restored in a fully reversible manner shortly afterwards. We conclude that cAD-like07
displays a notable tendency towards α-helical conformations, but these structures undergo a
constant equilibrium between conformations of different α-helical content and are conse-
quently unable to adopt a higher-order structure with a degree of stability exceeding the nano-
second range. In contrast, within the first 200 ns of aMD simulation the cAD-like96 variant
adopts an extensive α-helical conformation that stably propagates afterwards and encompasses
the three key hydrophobic residues (W94, L97 and F98) that mediate coactivator contact. The
substitutions distinguishing cAD-like96 from cAD-like07 are four tryptophan residues
(Table 2; W93, 95, 96 and 99; Fig 9B). Tryptophan is the strongest known helix conformer in
short helices [43] and therefore the extensive helicity in cAD-like96 observed in the aMD simu-
lations is in excellent agreement with expectations.

The detected differences in secondary structure content and stability between cAD-like07
and cAD-like96 strongly suggest that pronounced α-helical propensity constitutes a key factor
in determining the transactivation potential of an AD, even in absence of additional conforma-
tional changes induced by binding to the coactivator surface. We tested this concept further by
investigating whether there was a correlation between α-helical propensity predicted by stan-
dard bioinformatics tools and the observed effectiveness in mediating transactivation in vivo. A
plot of predicted α-helical propensity [44] of 24 different cAD-like variants [42] against experi-
mentally measured transcriptional simulation provides previously undocumented evidence for
a strong correlation between these two variables (Fig 9C). The results show that this approach
allows a direct prediction of transactivation potentials of cAD-like variants with 95% confi-
dence using only primary amino acid sequence information.

The extensive, stable α-helicity, combined with the presence of additional bulky hydropho-
bic residues next and between residues W94, L97 and F98 raises some intriguing questions
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regarding the interaction of cAD-like96 with the GAL11-ABD1 coactivator module. As there is
no structural data available for this system, we created a starting structure by in silico substitu-
tions of the orthologous cAD residues in the GAL11-ABD1/GCN4-cAD NMRmodel
(PDB#2LPB-model 1). Subsequently, four independent aMD simulations were carried out
using the conditions described earlier. Just as expected from the results of the simulations of
cAD-like96 on its own (Fig 9B), the cAD-like96 adopts a continuously stable α-helical confor-
mation that includes positions W94, L97 and F98 throughout all four aMD simulations (Fig
9D).

Because the cAD motif is surrounded by several additional tryptophan residues, Warfield
et al. suggested that these tryptophans might be able to occupy the pocket in a similar manner
to the original cAD motif key residues and contribute to increased binding efficiency [42]. A
molecular mechanics decomposition of the van der Waals forces of the aMD trajectories of
GAL11-ABD1/cAD-like96 (Fig 10) reveals interesting similarities and differences to the previ-
ously shown GAL11-ABD1/GCN4-cAD results (Fig 6A). First, the main ΔGBinding contribu-
tions are once again centered on two regions (W94 and L97/F98), in addition to N-terminal
contacts (L84, P87, L89) that provide fleeting contributions reminiscent of the pattern found
for the GCN4-cAD (Fig 6A and 6B; note that these additional contacts, compared to
GCN4-cAD [Fig 8A], are not in an α-helical conformation [Fig 9D]). It is noticeable, however,
that the main contributors in cAD-like96 play a less distinct, broader role; in GAL11-ABD1/
cAD-like96_aMD_no1 and no4, L97 makes a major contribution, but is distinctly supported
by the flanking residues W96 and F98. Such a more diffuse energetic contribution is also
observable near the W94 position. In GAL11-ABD1/cAD-like96_aMD_no3, W95 makes the
dominant van der Waals contribution instead of W94 (a state that is briefly and reversibly
explored in aMD2 at ~1,900 nanoseconds; Fig 10). A situation where W94 and W95 simulta-
neously occupy the ABD-1 pocket is not observed. As the helix would have to be distorted for
these two residues to gain access to the pocket, it is unlikely for this confirmation to occur. In
GAL11-ABD1/cAD-like96_aMD_no4, both W93 and W94 contribute apparently equally and
create a stable configuration that remains essentially unchanged throughout one microsecond
of aMD simulation conditions.

After identification of the possible binding states, angular measurements of the helical
domain of cAD-like 96 and ABD1 α-helix 4 were performed to analyse the relative orientations
of these structures relative to each other. The measurements show that the main orientations
observed for the cAD-like 96 helix range typically between ~60° and ~120° (Fig 11). In compar-
ison, the GCN4-cAD helix adopts a significantly wider range of orientations (Fig 4). Conse-
quently, even though rotations are observable for both GAL11-ABD1/GCN4-cAD and
GAL11-ABD1/cAD-like96 simulations, the maximal rotation performed by the helical cAD-
like 96 domain is only 60° compared to ~180° observed for the GCN4-cAD helix. The orienta-
tions also last significantly longer and do not follow the frequent and abrupt changes observed
for GCN4-cAD. We conclude that overall the binding of cAD-like96 to GAL11-ABD1 is

Table 2. Sequences of cAD-like motifs used in MD simulations.

GCN481–100 (original sequence) MKTVLPIPELDDAVVESFFSSGSGSGS

cAD-like07 aceMKTVLPIPELDDAVWESLFSSGSGSGSnme

cAD-like96 aceMKTVLPIPELDDAWWWWLFWSGSGSGSnme

The sequences correspond to the motifs tested experimentally under in vivo conditions [42]. The key hydrophobic residues required for AD function are

shown in bold, and the linker sequence used to link the AD to the GCN4 DNA-binding domain in italics. For MD simulations, these structures were created

as unfolded polypeptide chains with charge-neutralized termini (ace and nme for N- and C-termini, respectively).

doi:10.1371/journal.pcbi.1004935.t002
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Fig 9. Secondary structures of cAD-like07 and cAD-like96. The complete sequence of the simulated polypeptide chain is displayed vertically on the
left of each graph (Panels A, B and D). The horizontal axis represents time of aMD simulation in nanoseconds. Horizontal red dotted bars mark the
positions of the conserved hydrophobic residues. A color code for secondary structure is shown beneath Panel D. A. Formation of α-helical structures
during aMD simulation of cADlike07, displaying poor transactivation potential. B. Formation of α-helical structures during aMD simulation of cADlike96,
with the highest observed transactivation potential. Note the more extensive formation of stable α-helices and their long-term stability in cADlike96 in
comparison to cADlike07. Also, while the N-terminal boundary of the helical structures in cADlike96 is relatively sharply defined (encompassing two
aspartic acid residues), the boundary in cADlike07 is much less stable and extends further N-terminal (proline residues). A comparison of the two graphs
shows that there are major differences between the two cADlike domains in the extent of α-helical content and stability, as well as the position and stability
of the boundaries of these helices. C. Post hoc correlation of α-helicity with transactivation potential. The α-helical propensity (vertical axis) of the cADlike
sequences described in Warfield et al. (Table S2 in [42]) was predicted with the Agadir algorithm (http://agadir.crg.es [44]) and plotted against their
corresponding transactivation potential (-fold induction of ARG3mRNA; black dots). The red-dotted line marks the first-order linear regression (r² = 0.89)
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conformationally significantly more restricted and therefore reduced in "fuzziness". The
increased degree of α-helicity, redundancy of hydrophobic contacts and reduced conforma-
tional freedom documented in the aMD simulations provide a quantitative base for under-
standing the high transactivation potential displayed by cAD-like96.

Discussion
Synthetic Biology aims at a quantitative knowledge of molecular structure/function relation-
ships in order to provide the tools required for reshaping the properties of living organisms in
a preconceived manner. A high-level of understanding of the processes underlying gene
expression mechanisms will, without doubt, be required to achieve such a goal [45]. While
decades of laboratory-based investigations have identified the key players of the transcriptional
machinery and revealed how they network with each other, our insights are still mostly limited
to a qualitative understanding at this stage.

and the black lines demarcate the 95% prediction interval (including all data points).D. Secondary structure analysis of cAD-like96 bound to GAL11-ABD-
1. The trajectories from four independent one microsecond aMD simulations (GAL11-ABD1/cAD-like96_aMD_no1 to no4; Table 1) were combined. The
cAD-like96 displays stable α-helicity and helical boundaries. The conserved bulky hydrophobic residues (W94, L97, and F98; highlighted with red
horizontal dotted lines) are more than 99% embedded with an α-helical context.

doi:10.1371/journal.pcbi.1004935.g009

Fig 10. Molecular mechanics analysis of the GAL11-ABD1/cAD-like96 interaction. The decomposition
of the van der Waals contribution is shown as a contour plot. The horizontal axis represents the amino acid
sequence of the cAD-like96 activation. The vertical axis represents snapshots at 1 ns intervals from the four
aMD simulations. The ΔG value of the van der Waals contribution of each residue at each time point is color-
coded according to the scale shown (substantial contributions to ΔG are green and dark blue). The data
derived from independent simulations (indicated on the left; aMD_no1 is represented by frames 1–1000,
aMD_no2 by frames 1001–2000 etc.) are shown on the same plot to facilitate the detection of constant and
variable features. Residues making significant energetic contributions are highlighted by a red-dotted line
aligned to the amino acid sequence.

doi:10.1371/journal.pcbi.1004935.g010
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Molecular dynamics simulations offer the ability to model accurately the dynamic interplay
of proteins with high precision. While complex systems consisting of tens- to hundreds of
thousands of atoms can be studied effectively with currently available high-performance com-
puting hardware, simulations lasting for microseconds and beyond are still challenging.
Enhanced sampling methods, such as accelerated molecular dynamics (aMD) effectively
extend the range by two- or three orders of magnitude into the millisecond range [33,34]. This
state-of-the art technology opens the door towards a better understanding of functional inter-
actions involving the formation of "fuzzy" complex involving intrinsically disordered molecular
partners. Computational approaches are of particular relevance in an area that defies conven-
tional experimental approaches due to the high degree of structural flexibility, the rich diversity
and the short duration (half-lives typically in the millisecond range) of such interactions.
Enhanced sampling method MD simulations are ideally suited for such situations and offer

Fig 11. Conformational analysis of the GAL11-ABD1/cADlike96 complex. The same quantitation criteria as
described in the legend for Fig 4 were applied. A. Examples of different helical orientations of cADlike96 relative to the
GAL11-ABD1 interaction surface.B.Quantitation of the helical orientation.

doi:10.1371/journal.pcbi.1004935.g011
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genuine opportunities for gaining quantitative insights into this highly relevant, but still poorly
understood field.

Activation domains (ADs) are intrinsically disordered structures that have mostly defied a
detailed understanding of structure/function relationships. In this study, we employed molecu-
lar dynamics simulations to model an extensively studied experimental system, the interaction
between the activator GCN4 with the coactivator GAL11. The experimental identification of in
vivo coactivator targets [21], availability of high-quality structural models [11], combined with
an extensive collection of functionally characterized mutants and artificial AD variants [11,42],
makes GCN4 an ideal model system for a more thorough understanding of the fundamental
aspects of transcriptional activation in eukaryotic systems. The GAL11-ABD1/GCN4-cAD
complex was simulated stably in multiple aMD simulations. The molecular behavior observed
likely represents motions lasting hundreds of microseconds due to the acceleration parameters
employed [34]. None of these simulations has yet resulted in dissociation of GCN4-cAD from
GAL11-ABD1. Estimates of ΔGBinding revealed, however, substantial fluctuations, that high-
light the intrinsic instability of the complex and support the idea that the half-life of this com-
plex is only in the millisecond range [11]. Longer aMD simulations under the conditions
described, possibly employing reduced affinity mutants (such as GCN4-W120A or F124A;
[11]), may eventually include a complete dissociation event. Similarly, long aMD simulations
may reveal a real-time association of a free AD to a coactivator at a level of detail comparable
to the binding of drugs to protein target sites [46].

Simulations of complexes between GAL11-ABD1 and GCN4-cAD or cADlike96 allowed us
to observe a rich pattern of conformational changes that have thus far not been documented
through any other experimental or theoretical approach. Using a single model as a starting
structure (model 1) we confirmed essentially all aspects of the 13 different models included in
the PDB structure (PDB#2LPB) and obtained an representative selection of intermediate struc-
tures (Fig 5) that can be viewed as a molecular movie (S1 Movie). The extensive collection of
structures enabled us to gain insights into the constant and variable aspects of orientation of
ADs relative to the GAL11-ABD1 (Figs 3, 4 and 11), changes in secondary structures (Figs 8
and 9), and key energetic contributions stabilizing the various conformers at different time
points (Figs 6 and 11). Mutagenesis studies identified the cAD motif as W, L and F with spac-
ing of i, i+3 and i+4. MM-GBSA calculations reinforced this result by demonstrating that the
W and F residues are in both the cAD and cAD-like96 two major contributing residues
towards binding ΔGBinding.

We also observed that the GCN4-cAD adopts α-helicity during aMD simulation in the
complete absence of any interaction partner. The aMD simulations, starting from a polypeptide
chain devoid of any secondary structure, demonstrate the formation of extensive α-helical con-
formations surrounding and including the conserved hydrophobic residues in a highly repro-
ducible manner (Figs 8B, 9A and 9B). Although the presence and extent of these helices
fluctuate on the hundreds of nanoseconds or microsecond time scale, the key hydrophobic resi-
dues are frequently (~65% for cAD-like07), often (~80% for GCN4-cAD) or essentially con-
stantly (cAD-like96) arranged within an α-helical conformation, which could facilitate
interactions with the coactivator surface, especially during the recruitment stage. The currently
most widely—although not universally—accepted model ([37–39,47]) is based on the concept
that ADs are extensively unstructured and only take up significant proportion of α-helical
structures after interactions with the coactivator surface. These concepts are predominantly
based on NMR-measurements showing only narrowly dispersed resonances in the 1H-N-
dimension of various ADs, suggesting an absence of significant secondary structure elements.
NMR-studies of poorly structured small domains remain, however, challenging. The energy
barrier between disordered state and local α-helix conformations can be as low as 1.0–1.5 kcal/
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mol [48]. Differences between the intracellular environment and experimental conditions (low
pH/low ionic concentrations, absence of divalent ions, effects of terminal flexibility, absence of
local hydrophobic packing [49]) are likely to influence the formation and dynamics of small,
unstable secondary structure elements. Apart from such experimental parameters, overlapping
resonance effects in the spectra of flexible peptides, in conjunction with time-averaging phe-
nomena can result in an underestimation of local structures in NMR experiments [50,51]. In
the present case it is, however, likely that minor inaccuracies in the simulation parameters used
in this study resulted in an overestimation of the stability of local α-helices. Although the
Amber14SB force-field is generally not prone to overstabilize α-helical structures (in contrast
to Amber ff03, CHARMM27 [52,53]), the results obtained here are in conflict with experimen-
tal data that show only 8–10% helical character in the free GCN4-cAD [11]. While the simula-
tions correctly identify the regions displaying high α-helical propensity within the primary
sequence of GCN4-cAD, it is evident that no conclusions should be drawn—as with aMD sim-
ulations in general—regarding the kinetic aspects of the data. Our conclusions regarding a
recently published experimental data set based on the extensive mutagenesis of the cAD-like
domain are, however, based on a different type of analysis and therefore not affected by such
kinetic considerations [42]. Although not pointed out by the authors of this study, we observed
a distinct correlation (r² = 0.89 for the first linear regression) between the published transacti-
vation potential of 24 cAD-like variants and their theoretically predicted α-helicity (Fig 9C).
This difference in α-helicity also emerges very clearly form the simulations of the three differ-
ent ADs (GCN4-cAD, cAD-like07 and cAD-like-96) described here, both as free structures
folded de novo, as well as complexed with GAL11-ABD1 (Figs 8 and 9). The α-helicity of a
cAD-like variant can be determined using a quantitative helix-coil transition model [44], so
that it should be relatively straightforward to design new cAD-like variants with predictable
transactivation potentials.

The concept, that ADs either contain—or have a strong natural conformational bias
towards taking up transient secondary structure elements—is not new. Experimental investiga-
tions of several other ADs has shown that they contain a significant fraction of transient α-heli-
ces in their unbound state (p53 [37]; pKID [38]; ACTR [39]; ERM [47]). We therefore
conclude that eukaryotic ADs of widely different origin and specificity may contain pre-struc-
tured α-helical domains with low energy barriers of folding detectable by aMD de novo folding
methods. Although sequence motifs with a high α-helical propensity can be clearly identified
in unbound ADs in simulations, we note that there are distinct changes to the length and posi-
tions of these helices after binding to the coactivator. In the GCN4-cAD (compare Fig 8A with
8B), as well as in the cAD-like96 (compare Fig 9B and 9D), the boundaries tend to become
more strictly defined (especially at the N-terminus) once bound to GAL11-ABD1, suggesting
that coactivator-binding imposes a quantifiable degree of structural ordering on the AD. In
addition, in the case of GCN4-cAD we detect reproducibly the formation of a previously unrec-
ognized N-terminal secondary helix (Helix#2; Fig 8A) that spatially organizes up to four large
hydrophobic residues (GCN4-M107, F108, Y110, and L113) into a structure that makes ener-
getically significant van der Waals interactions contributions towards coactivator binding (Fig
6A and 6B and S2 Movie).

The degree of structural orderliness affects multiple key parameters [54]. A tight coupling
between folding and binding may enhance equilibrium distinctions for interactions with differ-
ent targets. A high degree of preformed structure may prove kinetically (dis)advantageous for
binding to various target sites [55], so that the α-helical content of an unbound AD is likely to
exert a significant influence on the rate of binding to various available interaction partners,
even before more stable contacts are established through subsequent refolding/realigning
events. The variable presence of α-helical modules (and location relative to the underlying
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primary sequence containing the conserved hydrophobic residues) may therefore encode a
high degree of selectivity regarding to the binding of the various components of the transcrip-
tional machinery [21].

Outlook
The molecular mechanisms that GSTFs employ to regulate the expression of their genes are
still poorly understood. There is some evidence that the binding of activation domains to basal
transcription factors and coactivator complexes induces major conformational changes that
could allosterically transmit signals to other components of the transcriptional machinery [56–
58]. This hypothesis suggests that transient interactions of activation domains with their targets
could trigger the transition between long-lived alternative coactivator conformations. Such
mechanisms are, however, exceedingly difficult to study using biochemical or computational
tools. In the study reported here, we have found no evidence for any significant conformational
change induced in the GAL11-ABD1 structure as a direct consequence of GCN4-AD binding.
Even if such changes were observed, it would still be unclear whether (and how) such an alter-
native conformation could be allosterically transmitted to the remainder of the GAL11 subunit
(and beyond) because currently our structural knowledge of GAL11 is restricted to the ABD1
domain. An alternative—and not necessarily conflicting—view is that ADs exert most of their
functions through stabilizing the assembly or position of other functional components of the
transcriptional machinery, such as the basal transcriptional initiation complex. Eukaryotic pro-
moters are potentially regulated through dozens of GSTFs bound at nearby enhancer modules,
so that a multitude of energetically weak, short-lived interactions between ADs and a variety of
targets could provide a significant stabilization effect through synergistic action. The short
interaction half-lives and multi-target specificity of the structurally disordered ADs may under
such circumstances provide the flexibility to respond to rapidly changing regulatory require-
ments, or provide the possibility of some components, such as RNA polymerases to "break
free" of these complexes after transcription initiation. Our work documents a positive correla-
tion between α-helicity and transactivation potential, suggesting that the overall effectiveness
of AD-binding to their targets can be directly controlled through changes in α-helical propen-
sity during evolution. Such changes may, however, have to be counterbalanced with a need for
a degree of intrinsic structural disorder to sustain the ability of ADs to interact with multiple
target sites. Modelling approaches, including additional AD-coactivator targets, or studying
the effect of AD-interactions with larger complexes, offer great opportunities to gain further
insights into the dynamical processes of coactivator-activator interactions and open numerous
theoretical and applied avenues for the future. Such strategies will most likely be part of syn-
thetic biology approaches that aim at designing artificial transcription factors with a precisely
controlled range of specificity and transactivation potential in eukaryotic systems.

Materials and Methods

System preparation
All structures were prepared to the same specifications to maximize comparability between the
simulations. For the ABD1/cAD complex simulation both polypeptide chains of Model 1 of the
GCN4-GAL11 complex (PDB#2LPB) were capped (acetyl and N-methylamide groups added
to the N- and C-termini, respectively) using Yasara Structure [59]. For the ABD1/cAD-like96
simulation the GCN4-cAD structure (PDB 2LPB-Model 1) was mutagenized in silico with
Yasara Structure [59] to create the cAD-like96 sequence. The coordinates were prepared for
simulation in LEaP (AmberTools 14/15) with the Amber 14SB forcefield [60], neutralized and
solvated in a TIP3P [61] solvent box with a minimum distance of 15 Å between solute and
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border. The final ionic concentration within the water box was adjusted to a final concentration
of 150 mMNaCl. Capped structures of the GCN4-cAD, GCN4 cAD-like07 and cAD-like96
were built de novo from their primary amino acid in LEaP, and prefolded using 10 ns of GB
implicit MD before solvating them under the same conditions described above.

Molecular dynamics simulations
The solvated models were minimized, heated to 300K and relaxed before performing a conven-
tional MD (cMD) production run for 100 ns at a target pressure of one atmosphere to obtain
values for the total potential and dihedral energy values (NPT). Simulations were carried out
using the pmemd.cuda (Amber 14) applying the hybrid single/double/fixed precision model
(SPFP) GPU support [62,63] using 2 fs time steps with a 10 Å cut off under control of a Lange-
vin thermostat [64] and the SHAKE algorithm to restrain hydrogens [65]. Long-range electro-
static interactions were calculated using the Particle Mesh Ewald approximation [66]. The
average total potential energies and the average dihedral energies were obtained from the cMD
simulations and utilised to calculate the thresholds for dual boost aMD using an α-value of 0.2.
All aMD simulations were performed with a target temperature of 300 Kelvin, and a target
pressure of one atmosphere (101.325 kPa). Temperature was controlled by the Andersen tem-
perature-coupling scheme and the pressure was controlled by the isotropic position scaling
protocol applied in AMBER. Four independent 1000 ns aMD simulations were run for each
structure. Details of simulations performed are summarized in Table 1. The structural models
and trajectory data are available as supporting data (S1 and S2 Data Sets)

Structure and trajectory analysis
Mapping of interaction hotspots was performed using the FTMAP algorithm (http://ftmap.bu.
edu [67]). Trajectory visualisation, secondary structure analysis (based on STRIDE; [68], imag-
ing and file conversion was performed with VMD v.1.9.2 [69]. CPPTRAJ from AmberTools 15
was utilised for distance and angle measurement [70]. Bio3D was implemented for RMSD,
RMSF and principal component analysis [71,72]. Visualisation of the analytical data was per-
formed with CRAN [73]. The MM-GBSA estimation of binding free energies was performed
employing the Amber forcefield ff99 [74] using the MMPBSA.py script [75]. Residue-specific
decomposition was based on adding the 1–4 non-bonded interaction energies (1–4 EEL and
1–4 VDW) to the internal potential terms.

α-helical propensity predictions with Agadir
The cAD sequences were acetylated at the N-terminus and amidated at the C-terminus before
predicting their α-helical properties at the residue level at pH 7.0, 150 mMNaCl and 300K
[44].

Supporting Information
S1 Text. Evolutionary conservation of the hydrophobic residues in the GCN4-cAD. The
sequences of the central activation domain of GCN4 orthologs are shown for 28 different yeast
and fungal species within the sensu strictu and sensu lato group of Saccharomyces cerevisiae.
The near absolutely conserved residues (tryptophan [W], leucine [L] and phenylalanine [F])
are highlighted in red. Species abbreviations: Saccharomyces cerevisiae (S.cerevisiae); Saccharo-
myces kudriavzevii (S.kudriavzevii); Tetrapisispora phaffii (T.phaffii); Vanderwaltozyma poly-
spora (V.polyspora); Kazachstania naganishii (K.naganishii); Lachancea thermotolerans (L.
thermotolerans); Naumovozyma castellii (N.castellii); Naumovozyma dairenensis (N.
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dairenensis); Kloeckera africana (K.africana); Candida glabrata (C.glabrata); Kluyveromyces
lactis (K.lactis); Kluyveromyces marxianus (K.marxianus); Tetrapisispora blattae (T.blattae);
Ashbya gossypii (A.gossypii); Ashbya aceri (A.aceri); Eremothecium cymbalariae (E.cymbalar-
iae);Wickerhamomyces ciferrii (W.ciferrii); Cyberlindnera fabianii (C.fabianii); Komagataella
pastoris (K.pastoris); Zygosaccharomyces bailii (Z.bailii); Torulaspora delbrueckii (T.del-
brueckii);Millerozyma farinosa (M.farinosa); Candida lusitaniae (C.lusitaniae);Meyerozyma
guilliermondii (M.guilliermondii); Debaryomyces hansenii (D.hansenii); Scheffersomyces stipitis
(S.stipitis); Candida tenuis (C.tenuis); Kuraishia capsulata (K.capsulata); Ogataea parapoly-
morpha (O.parapolymorpha).
(PDF)

S1 Movie. Differential occupation of GAL11-ABD1 pockets #1 and #2. The GAL11-ABD1
structure is shown as a surface representation in silver. The GCN4 cAD is drawn as a purple
ribbon. The GCN4 key hydrophobic residues are displayed as liquorice models (W120: cyan;
F124: neon green). At the start of the movie (seconds 0–8), pocket #1 is exclusively occupied by
F124. Later (seconds 9–28), F124 occupies pocket #1 exclusively. Towards the end (seconds
29–32), both W120 and F124 bind to a pocket merged from the originally separate pockets #1
and #2 (see also Fig 1C). The trajectory is from GAL11-ABD1/GCN4-cAD_aMD_no1 and rep-
resents one microsecond of accelerated aMD.
(MPG)

S2 Movie. Contacts between GCN4 M107 with leucines in GAL11-ABD1. The
GAL11-ABD1 structure is shown as a cartoon representation in silver. The GCN4 cAD is
drawn as a purple ribbon. The GCN4 hydrophobic residues W120, F124 and M107 are dis-
played as liquorice models in cyan, neon green and magenta, respectively. Two leucine residues
in GAL11-ABD1, L169 and L227 are shown as light blue liquorice models. At the start of the
movie (0–18 seconds), M107 takes up a number of different positions on the coactivator sur-
face. M107 then establishes contact with L227 (seconds 19 to 23) and also contacting L169 (sec-
onds 22 to 33) at irregular intervals. The trajectory is from GAL11-ABD1/
GCN4-cAD_aMD_no2 and represents one microsecond of accelerated aMD.
(MPG)

S1 Fig. Electrostatic aspects of the GCN4-cAD. The decomposition of the electrostatic contri-
bution of the GCN4-cAD to binding to GAL11-ABD1 is shown as a contour plot. The horizon-
tal axis represents the amino acid sequence of the GCN4 cAD that was represented in the
simulations and in the models in PDB#2LPB. The vertical axis represents snapshots at 1 ns
intervals from the four aMD simulations. The ΔG value of electrostatic contribution of each
residue at each time point (calculated by MM-GBSA) is color-coded according to the scale
shown. The data derived from independent simulations (indicated on the left; aMD_no1 is rep-
resented by frames 1–1000, aMD_no2 by frames 1001–2000 etc.) are shown on the same plot
to facilitate the detection of constant and variable features. The contributions of most residues
are essentially constant throughout the simulations.
(TIF)

S2 Fig. Estimation of binding free energy of GAL11-ABD1 with GCN4-cAD. The binding
free energy (ΔG) of the complex, as calculated by MM-GBSA, is shown in kcal.mol-1 across all
four aMD simulations with data points spaced at one nanosecond aMD intervals. The bound-
aries between the different simulations are marked. The kcal.mol-1 values should be viewed as a
comparative series, rather than as absolute/predicted values for the actual binding free energy
because entropy effects (ΔS) are neglected. Note the large variation and irregularities in ΔG
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caused by the rapidly changing van der Waals contacts.
(TIF)

S3 Fig. Local backbone fluctuations of GAL11-ABD1 in presence and absence of
GCN4-cAD. Comparison of average root mean square fluctuations (RMSF) of the Cα atoms of
GAL11-ABD1 _aMD_no1, no 2 and no3 unbound (blue line) and bound to GCN4-cAD (black
line). Local RMSF maxima are labelled with their residue number. The diagram below shows
the position of key residues involved in pocket #1 formation (red) and in contact with the
GCN4-cAD Residues 120–124 (green). The mobility of the positions of GAL11 residues ~196
to ~220 becomes noticeably restricted after binding to the GCN4-cAD.
(TIF)

S1 Data Set. aMD trajectories based on PDB#2LPB-model#1. The data set contains a.pdb
file ('2LPB-model_no1.pdb') based on the PDB#2LPB atomic coordinates used as the starting
structure for the aMD simulations. Residues numbered 1, 84, 85 and 119 are the N- and C-ter-
minal capping residues of GAL11-ABD1 and GCN4-cAD, respectively. The GAL11-ABD1
domain is represented by residues 2 to 82, and the GCN4-cAD by residues 85 to 119. The key
hydrophobic residues GCN4-W120, -L123 and -F124 are denoted by residues number 104, 107
and 108, respectively. The solvent and ion atoms present throughout the aMD simulations
were removed to minimize the size of the data set. The.dcd file ('2LPB-model1_aMD_no1-4.
dcd') contains 400 concatenated frames of simulation data (frames 1–100 represent 1,000 ns
from GAL11-ABD1/GCN4-cAD _aMD_no1; frames 101–200 represent 1,000 ns from
GAL11-ABD1/GCN4-cAD _aMD_no2; frames 201–300 represent 1,000 ns from
GAL11-ABD1/GCN4-cAD _aMD_no3; frames 301–400 represent 1,000 ns from
GAL11-ABD1/GCN4-cAD _aMD_no4; all frames are spaced at 10 ns intervals; Table 1). The
solvent and ion atoms present throughout the aMD simulations were removed to minimize the
size of the data set. The.pdb and.dcd files contain all the information required for the visualiza-
tion of the trajectories using the Visual Molecular Dynamics viewer [69].
(ZIP)

S2 Data Set. aMD trajectories based on PDB#2LPB-model#1, with an ADmutated in silico
to mimic cADlike96. The data set contains a.pdb file ('ABD1-cADlike96.pdb') based on the
PDB#2LPB atomic coordinates used as the starting structure for the aMD simulations. The
cAD portion of was mutated in silico to the sequence 'cAD96' shown in Table 2. Residues num-
bered 1, 84, 85 and 112 are the N- and C-terminal capping residues of GAL11-ABD1 and cAD-
like96, respectively. The GAL11-ABD1 domain is represented by residues 2 to 82, and
cADlike96 by residues 85 to 111. The key hydrophobic residues corresponding to wildtype
GCN4-W120, -L123 and -F124 are denoted by residues number 99, 102 and 103, respectively.
The newly mutated tryptophan residues are at position number 98, 100, 101 and 104. The alter-
nating glycine-serine linker spans residues 106 to 111. The solvent and ion atoms present
throughout the aMD simulations were removed to minimize the size of the data set. The.dcd
file ('ABD1-cADlike96_aMD_no1-4.dcd') contains 400 concatenated frames of simulation
data (frames 1–100 represent 1,000 ns from GAL11-ABD1/cADlike96 _aMD_no1; frames
101–200 represent 1,000 ns from GAL11-ABD1/cADlike96 _aMD_no2; frames 201–300 repre-
sent 1,000 ns from GAL11-ABD1/cADlike96 _aMD_no3; frames 301–400 represent 1,000 ns
from GAL11-ABD1/cADlike96 _aMD_no4; all frames are spaced at 10 ns intervals; Table 1).
The solvent and ion atoms present throughout the aMD simulations were removed to mini-
mize the size of the data set. The.pdb and.dcd files contain all the information required for the
visualization of the trajectories using the Visual Molecular Dynamics viewer [69].
(ZIP)
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