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A B S T R A C T

BACKGROUND AND PURPOSE: Brain asymmetries are reported in posttraumatic stress disorder, but many aspects of
laterality and traumatic stress remain underexplored. This study explores lateralization changes in resting state brain network
functional connectivity in a cohort with symptoms of military-related traumatic stress, associated with use of a closed-loop
neurotechnology, HIRREM.
METHODS: Eighteen participants (17 males, mean age 41 years [SD = 7]) received 19.5 (1.1) HIRREM sessions over 12
days. Whole brain resting magnetic resonance imaging was done pre- and post-HIRREM. Laterality of functional connectivity was
assessed on a whole brain basis, and in six predefined networks or regions. Laterality of connectivity within networks or regions
was assessed separately from laterality of connections between networks or regions.
RESULTS: Before HIRREM, significant laterality effects of connection type (ipsilateral for either side, or contralateral in either
direction) were observed for the whole brain, within networks or regions, and between networks or regions. Post-HIRREM, there
were significant changes for within-network or within-region analysis in the motor network, and changes for between-network or
between-region analyses for the salience network and the motor cortex.
CONCLUSIONS: Among military service members and Veterans with symptoms of traumatic stress, asymmetries of network
and brain region connectivity patterns were identified prior to usage of HIRREM. A variety of changes in lateralized patterns of
brain connectivity were identified postintervention. These laterality findings may inform future studies of brain connectivity in
traumatic stress disorders, with potential to point to mechanisms of action for successful intervention.
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Introduction
Numerous studies have reported relative brain asymmetries in
populations with posttraumatic stress disorder (PTSD), com-
pared to controls with or without a history of trauma. Structural
neuroimaging has shown asymmetrical volumes of the hip-
pocampus, amygdala, and other limbic regions,1–5 as well as in
the cerebellum.6 Researchers have demonstrated asymmetrical
patterns of activity, in frontal regions7–11 and also temporopari-
etal regions.7,8,12–15 Some of these investigations have been mo-
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tivated by a model positing that the left and right prefrontal cor-
tices mediate approach and withdrawal behavioral tendencies,
respectively,16 and more recent studies have examined asym-
metry with a focus on specific symptom clusters within PTSD10

or on the basis of trait versus state physiology.11 Another im-
petus for such studies is provided by the bihemispheric auto-
nomic model (BHAM) that suggests that traumatic stress may
produce dominant and maladaptive asymmetries in the activity
of homologous brain regions responsible for efferent autonomic
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signaling.17 BHAM posits that arousal producing stressors may
be associated with rightward dominance in brain regions re-
lated to autonomic management, whereas chronic stress may
produce parasympathetic immobilization mediated by leftward
dominance in those same regions, and therefore predicts that
facilitation of adaptive symmetry across critical brain regions
could be an important target for clinical interventions.

The current investigation extended the study of brain asym-
metries associated with chronic stress by focusing on the lateral-
ization of functional connectivity rather than structural or brain
activation asymmetries per se. This reflects what Menon18 has
characterized as a paradigm shift in the understanding of psychi-
atric and neural disorders based on the analysis of alterations in
functional connectivity within and between large scale intrinsic
(resting state) brain networks. Studies of functional connectivity
emphasize correlations in activity over time between different
brain regions or nodes. Application of the tools of graph theory
and network science to these data has identified relatively sta-
ble and consistent patterns of connectivity that have been used
to define the large scale intrinsic brain networks Menon refers
to (see Bullmore and Sporns19 for a review of network science
applications to brain imaging).

Menon’s triple network model of pathology18 highlights al-
terations in functional connectivity and interactions between
the default mode (DMN), salience (SN), and central executive
(CEN) networks as key to understanding disturbed psycholog-
ical and cognitive functioning. The default mode network in-
cludes medial prefrontal cortex, the precuneus and posterior
cingulate, lateral temporoparietal cortex, and the medial tem-
poral lobe. It is implicated in self-referential thought and in-
teroreceptive processing.20 The salience network includes the
insula, amygdala, dorsal anterior cingulate, and the frontal
poles. SN detects and processes autonomic and emotional in-
formation and directs behavior toward relevant events.21 The
central executive network includes dorsolateral prefrontal and
posterior parietal cortex and is implicated in attention and
executive functioning.21,22 In general, the model assumes co-
activation of the SN and CEN, and deactivation of the DMN,
when attention is directed outward, and the opposite pattern
during inwardly focused thoughts. Consistent with this model,
alterations in connectivity and interactions between the default
mode network, the salience network, and the central execu-
tive network have been observed in depression,23 Alzheimer’s
disease,24 and schizophrenia.25

Also consistent with Menon’s model, multiple studies have
reported altered functional connectivity patterns within and be-
tween these networks during resting states and while viewing
emotionally salient stimuli in PTSD samples.26–30 Among rele-
vant findings are disturbances in the connectivity of the DMN,
disturbances in switching between DMN and CEN while view-
ing salient stimuli, and altered SN and CEN connectivity. How-
ever, research specifically looking at the lateralization of func-
tional connectivity in this population is lacking. The present
study offers a first step toward filling this void by examining
the lateralization of brain functional connectivity during a rest-
ing state observed in a cohort with symptoms of military-related
traumatic stress, before and after use of a neurotechnological
clinical intervention designed to support symmetry in brain ac-
tivation patterns.

The intervention used for this study, High-resolution,
relational, resonance-based electroencephalic mirroring

(HIRREM®, Brain State Technologies, Scottsdale, AZ), is
a noninvasive, closed-loop feedback, acoustic stimulation
neurotechnology.31 Two-channel scalp recordings monitor
brain electrical activity at high spectral resolutions. Specific
frequencies are translated in real time into auditory tones of
varying pitch and timing, and are echoed back via ear buds
with as little as 4-8 milliseconds delay. The intention is to sup-
port autocalibration, self-adjustment, and relaxation of neural
oscillatory dynamics, and shifts are observed toward improved
hemispheric balance, as well as reduced hyperarousal.32 The
theoretical basis for HIRREM is supported by the paradigm
of allostasis.33

The use of HIRREM has been associated with significant
reduction of self-report symptoms of insomnia,34 persisting
symptoms following athletic concussion,35 and perimenopausal
symptoms,36 as well as improved objective measurements of
autonomic cardiovascular regulation (heart rate variability and
baroreflex sensitivity).37 Clinical outcomes associated with ap-
plication of HIRREM for participants enrolled in the present
study included significant improvements in multiple measures
of autonomic cardiovascular regulation (SDNN, rMSSD, high
frequency, low frequency, and total power, HF Alpha, sequence
all, and systolic, diastolic, and mean arterial pressure) and sig-
nificant reductions in self-reported symptom inventory scores
to 6 months following intervention completion (PTSD, insom-
nia, depression, and anxiety).

The PTSD Checklist—Military inventory (PCL-M)38,39 was
used to evaluate symptoms of traumatic stress, which was of
primary interest for this cohort. A drop of 10 points is consid-
ered as a clinically meaningful difference.40 Through the follow-
up data collection 1 month following intervention comple-
tion, 83% of subjects reported PCL-M scores that were at least
10 points lower than their baseline score. Significant reductions
were durable through 6 months postintervention. There were
also changes in network connectivity on whole brain, rest func-
tional magnetic resonance imaging (fMRI).41

Based on the observed clinical changes, a theoretical orienta-
tion such as BHAM might predict a corresponding shift toward
a more symmetric laterality profile. That prediction would be
based on activity per se. Because the present study instead as-
sessed the laterality of functional connectivity, the predictions
are more tenuous. Previous assessments of the lateralization of
brain networks assessed using functional connectivity analyses
in a normal population have found differences both between
networks and within networks. In one comprehensive study of
normal, functional connectivity of the default mode, network
was left lateralized, whereas the visual network was strongly
right lateralized. Different components of the attention network
and the frontal networks were left and right lateralized. Com-
ponents of the sensorimotor network were left and right later-
alized, although the degree of left lateralization was more pro-
nounced. Finally, a basal ganglia network was symmetrical.42

Given the exploratory nature of the present study, the strongest
a priori predictions would be that there would be an imbalance
in networks specifically associated with alterations in PTSD
such as the salience network prior to treatment, and that such
imbalance would be decreased posttreatment.

In the present report, the lateralization of functional connec-
tivity was assessed using the networks in Menon’s triple model
(DMN, SN, and CEN) as possible loci, along with the basal
ganglia because of previous research linking it to PTSD,43 as
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well as motor cortex and visual cortex areas included in order
to provide more complete coverage of the brain. Each of these
areas was composed of multiple nodes in the network analy-
sis. Lateralization of functional connectivity was determined by
counting the number of links from all nodes in a given network
or region to other nodes in the same network or region, to the
homologous network or region on the contralateral side of the
brain, or to other nodes outside of the network or region on the
ipsilateral or contralateral side of the brain. These analyses were
performed before and after the HIRREM clinical intervention
in order to determine whether that intervention affected the lat-
eralization of functional connectivity.

Methods
Participants

Eighteen participants (17 male; mean age = 41 years, SD = 6.9)
were enrolled in an IRB-approved open label pilot study con-
ducted in the Department of Neurology at Wake Forest School
of Medicine (Clinicaltrials.gov registration NCT03230890).
Participants were either active duty members of the military
(15) or recent Veterans (3). All participants were over the age of
18, and all had been either formally diagnosed with PTSD, had
received medical treatment for traumatic stress symptoms, or
had current symptoms indicative of PTSD based on a PCL-M
score of 50 or greater. Participants reported a mean of 20.5 years
in service (8-33), with eight deployments (2-19), and reported
having had symptoms of PTS lasting from 1 to 25 years. Of
the 11 individuals who reported previous use of a psychoactive
or sleep-related medication, 10 had made recent adjustments
to their regimen (withholding or discontinuing a medication
that would entail exclusion) under the guidance of their medical
provider. Eight participants had previously received cognitive
behavioral therapy or psychotherapy. The most prevalent self-
reported co-morbid health conditions included prior traumatic
brain injury or concussion (15), insomnia (11), impaired mem-
ory or cognitive ability (10), depression (9), stress or anxiety
(9), and tinnitus (9). Participants were recruited from a variety
of sources: The Care Coalition, which serves the needs of the
Special Operations community, physician referral from military
facilities, physician referral from the community, referral from
prior participants, or response to posted advertisement. Exclu-
sion factors included severe hearing impairment, known seizure
disorders, or the need for ongoing use of benzodiazepines, an-
tipsychotics, antidepressants, opiates, sleep medications, stimu-
lants, or thyroid hormones. Participants were instructed to re-
frain from recreational alcohol or drug use during the course
of the study. There were no dropouts or serious adverse events
reported.

HIRREM Sessions

Following informed consent, and as part of the enrollment data
collection, baseline recordings were initially obtained for each
participant in an assessment session of 45 minutes using two-
channel, three-minute recordings from at least six paired lo-
cations on the scalp (F3/F4, C3/C4, P3/P4, T3/T4, FZ/OZ,
O1/O2, FP1/FP2, and CB1/CB2). Recording for each location
entailed 1 minute with eyes closed, 1 minute with eyes partially
closed, and 1 minute with eyes open and performing cogni-
tive tasks such as recalling numerical stimuli or reading from a
passage.

Brainwave data from the baseline recordings were used to
create individualized protocols for the initial HIRREM ses-
sions, whereas review of data from the prior session was used for
subsequent sessions. Duration of sessions was approximately
1.5-2 hours. Typically, two sessions were completed daily, with
a short break (20-60 minutes) between them. Each session con-
sisted of between four and 10 HIRREM protocols lasting be-
tween 5 and 40 minutes each. In these protocols, specific brain
frequencies are translated into audible tones in real time that
are echoed back to the participant through headphones in as
little as 4 microseconds. Protocols were received with the partic-
ipant sitting or reclining in a chair (Human Touch PC-6). Some
protocols were received with eyes open and others with eyes
close, depending mostly upon the function of the lobe being ob-
served based on scalp location during that particular protocol.
The majority of the protocols received were with eyes closed to
support the brain’s internal regulation and reset. Specific proto-
cols (varying scalp locations, design, and duration) were chosen
by trained Technologists with an aim of supporting increasing
hemispheric symmetry and optimal proportions of oscillation
in specified frequency ranges, while keeping session duration
to about 1.5-2 hours. The mean number of sessions was 19.5
(SD = 1.1) administered over a period of 12 days.

MRI Data Acquisition

Brain imaging was done using MRI two times: once before and
once just prior to departure, after completion of the HIRREM
intervention. Due to scheduling needs, one participant’s second
scan was performed just prior to the final HIRREM session,
but after completion of 18 of his 19 sessions. MRI data were
acquired in a 3T Siemens Magnetom Skyra using a 32 channel
head coil. Anatomical images were collected using a Magneti-
zation Prepared Rapid Acquisition Gradient Echo (MPRAGE)
sequence. fMRI images based on the blood oxygenation level-
dependent signal were acquired using echo planar imaging.
Data used in the present report were acquired while the par-
ticipants were in an eyes open resting state while focusing on a
fixation point. Data were also collected in an eyes-closed rest-
ing state, but these were not explored further because previous
analyses of the present population found no difference between
the eyes open and eyes closed conditions.44 The MPRAGE was
acquired in a sagittal plane using TR = 2,300 ms; voxel dimen-
sions = .98 × .98 × 1.22 mm; 256 × 256 voxels; slice thick-
ness = 1 mm. fMRI data were acquired in the axial plane using
187 images with TR = 2,000 ms and voxel dimensions of 4 ×
4 × 4 mm with a resulting total scan time of 6 minutes and
14 seconds.

Brain Network Generation

Image processing used SPM8 software (http://www.fil.ion.uel.
ac.uk/spm/) and MATLAB scripts previously developed in
house. The MPRAGE was transformed into the axial plane and
warped to fit Montreal Neurological Institute (MNI) space us-
ing SPM8. The initial 8 volumes were removed from the fMRI
data. Images were subsequently realigned to the first image in
the series and coregistered with the structural image. The fMRI
images were then normalized into MNI space using the trans-
formation that was applied during warping of the structural im-
age. Only voxels that overlapped with gray matter in the Au-
tomated Anatomical Labeling (AAL) atlas were retained in or-
der to limit the analyses to gray matter. Physiological noise and
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low-frequency drift were removed using a band-pass filter of
.009-.08 Hz.45 The six rigid-body transformation parameters
created during the realignment process and global mean time
course for whole brain, whiter matter, and cerebrospinal fluid
were regressed out of the functional data,45 and image volumes
with excessive motion were removed.46

Network analyses used MATLAB scripts. Gray matter vox-
els obtained from the preprocessed functional data were used to
create voxel-based networks for each participant. The Pearson
correlations between the time series for each voxel and every
other voxel were calculated. The resulting correlation matrices
were thresholded to remove weak links based on formula N =
KS where N = number of nodes in the network, K = average
degree or number of connections per node in the network, and
S = 2.5. Analyses in the present paper focused on the networks
created using the threshold of 2.5 based on previous research
showing that that value yields networks with size to density ra-
tios comparable to other naturally occurring networks.47 This
yielded networks that were undirected and unweighted with ap-
proximately equal densities across participants.48

The regions of interest (ROIs) selected for individual net-
work and region analyses were selected as follows: The atten-
tion network (analogous to the Central Executive Network per
Menon), default mode network, and salience networks were de-
rived from Menon’s triple network model17 and defined using
the coordinates in Shirer and colleagues.49 These consisted of
large-scale and overlapping brain regions. The basal ganglia,
visual, and motor networks were defined using the scaled in-
clusivity from Moussa et al.50 These maps identify functional
communities across a population of 194 people and a minimum
scaled inclusivity of 25 was used to threshold the networks. All
left-right assignments for these regions were based on the AAL
atlas. The ROIs are shown in Figure 1.

Analyses

The laterality of functional connectivity was assessed first on a
whole brain basis, and then in the six different specific networks
or regions previously noted. For those networks or regions, the
laterality of within-network or region connectivity was analyzed
separately from the lateral connections between networks or
regions. Because of previous findings that gender may affect the
lateralization of functional connectivity,44 the analyses reported
below were performed both with and without the one female
participant. The exclusion of this participant did not change any
of the statistical conclusions and therefore the analyses reported
include the data from all participants.

Results
Whole Brain Connectivity Pre- and Post-HIRREM

Connections across the whole brain were characterized in terms
of whether they were between two left hemisphere nodes, two
right hemisphere nodes, or between a left and a right hemi-
sphere node. The mean number of connections of each type
is shown in Figure 2. Because the networks constructed were
undirected, the contralateral connections do not differentiate
between left to right and right to left connections.

A 3 (type of connection: ipsilateral LL, ipsilateral RR, or
contralateral LR or RL) × 2 (time of testing, pre- vs. post-
HIRREM) repeated measures analysis of variance was used
to analyze lateralized differences in connectivity at the whole

brain level. This analysis yielded a significant main effect of
connection type (F(2,34) = 4.41, P < .05), but no effect of time
and no interaction of type of connection with time. Subsequent
paired t-tests averaging across time showed that there were sig-
nificantly more contralateral connections than L-L connections
in the whole brain data (t(17) = −3.55, P < .01). In addition,
there were marginally more R-R connections than L-L connec-
tions (t(17) = −1.94, P < .10).

Laterality of Within Region and Within Network Connectivity
Pre- and Post-HIRREM

For each of the three specific networks and three ROIs in this
study, the pattern of laterality of connectivity within that net-
work or region was assessed. Node edges or connections were
characterized as ipsilateral within network or region left hemi-
sphere (LL), ipsilateral within region or network right hemi-
sphere (RR), or within region or network across hemispheres
(LR or RL). As was the case for the whole brain analyses, LR
and RL connections were equivalent because the networks are
undirected. The mean number of connections of each type for
each region at each time is shown in Figure 3.

Laterality effects were statistically evaluated using 3 (type of
connection) × 2 (time, pre- and post-HIRREM) repeated mea-
sures analyses of variance. Separate ANOVAs were conducted
for each brain network or region. Main effects or interactions
not specifically noted below were not significant.

Within the networks associated with Menon’s triple network
model, there were differences in lateralization of functional con-
nectivity consistent with previous reports based on activation,
but no changes in that pattern over time. The attention network
was strongly connected to itself ipsilaterally but not contralat-
erally, the default mode network showed a tendency toward
left lateralization, and the salience network showed a tendency
toward right lateralization. In the attention network, a main ef-
fect of type of connection (F(2, 34) = 42.56, P < .0001) reflected
fewer contralateral connections than connections within the left
hemisphere (t(17) = 8.29, P < .001) or connections within the
right hemisphere (t(17) = 7.38, P < .001). The default mode net-
work analysis yielded a main effect of type of connection (F(2,
34) = 14.98, P < .001) reflecting fewer within right hemisphere
default mode connections compared to within left hemisphere
default mode connections (t(17) = 5.15, P < .001) and between
hemisphere default mode connections (t(17) = 4.47, P < .001).
The analysis of the salience network showed a main effect of
type of connection (F(2, 34) = 23.87, P < .001) reflecting more
ipsilateral right hemisphere connections, followed by more bi-
lateral connections, and then ipsilateral left hemisphere connec-
tions. The differences in the number of connections were signif-
icantly different between each type (t(17) ≥ 2.77, P ≤ .02).

For the other three regions analyzed, there were differences
in the types of connections, but the only effect of time (pre-
HIRREM vs. post-HIRREM) occurred in the motor cortex.
Connection type varied significantly within the basal ganglia
(F(2,34) = 25.64, P < .001), reflecting more contralateral con-
nections than ipsilateral connections within the left hemisphere
(t(17) = 6.08, P < .001) or ipsilateral connections within the
right hemisphere (t(17) = 3.21, P < .01). There also were more
ipsilateral right hemisphere than left hemisphere connections
(t(17) = 4.78, P < .001). A somewhat similar pattern occurred
within the visual region: A significant main effect of connection
type (F(2, 34) = 10.65, P < .001) reflected more contralateral
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Fig 1. Maps showing location and extent of the regions of interest used in this study. Montreal Neurological Institute coordinates are listed
below each slice.

connections than ipsilateral left hemisphere connections (t(17)
= 4.31, P < .001). There were also more ipsilateral right hemi-
sphere connections than left hemisphere connections (t(17) =
2.70, P < .02).

The motor region showed a main effect of connection
(F(2,34) = 4.23, P < .05), reflecting significantly more contralat-
eral connections than ipsilateral left hemisphere connections
(t(17) = 2.22, P < .05). In addition, there was a main effect
of time (F(1,17) = 5.15, P < .05) and an interaction between
type and time (F(2,34) = 3.75, P < .05). The overall number of
motor cortex connections decreased significantly at the second
time of testing. Additionally, there were significantly more bi-
lateral connections prior to HIRREM compared to ipsilateral

left hemisphere connections (t(17) = 2.20, P = .05), whereas
there were no significant differences in types of connections
post-HIRREM.

Laterality of Specific Region and Network Connectivity to
Other Areas Pre- and Post-HIRREM

The final set of analyses assessed the laterality of connections
between the networks and specific ROIs to nodes outside of
those networks or regions. Thus, analyses were based on the
number of connections from a hemispheric location of a net-
work or region (eg, left hemisphere salience network), whether
the connections for the nodes from that region or network were
to somewhere else in the same hemisphere, or elsewhere in
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Fig 2. Mean (Standard Error) within and between hemisphere func-
tional connectivity. More contralateral connections than Left-Left con-
nections were observed based on repeated measures ANOVA and
subsequent paired t-tests, but no effects of time or interactions were
significant. * = p < 0.05.

the contralateral hemisphere (ipsilateral vs. contralateral). The
mean number of connections of each type for each network or
ROI is shown in Figure 4.

Statistical evaluation of these effects used 2 (hemisphere of
network or region being evaluated) × 2 (type of connection,
ipsilateral or contralateral) × 2 time (pre- vs. post-HIRREM)
repeated measures ANOVAs. Separate ANOVAs were per-
formed for each network or region. Main effects or interactions
not described below were not statistically significant.

The salience network showed significant main effects of
hemisphere and ipsilateral/contralateral connectivity, and most
importantly, an interaction of hemisphere with time (pre- vs.
post-HIRREM intervention). More connections involved the
right hemisphere salience network (F(1,17) = 25.21, P < .001)
and there were more ipsilateral than contralateral connections
(F(1,17) = 7.51, P < .02). The interaction of hemisphere with
time of testing (F(1,17) = 5.08, P <.05) reflected an increase in
connections involving the left salience network post-HIRREM
compared to pre-HIRREM, whereas the opposite pattern was
true for the right salience network, although more connections
involved the right salience network at both times. More specif-
ically, the salience network in the left hemisphere increased an
average of 2,470 connections, or 6.5%, whereas the salience net-
work in the right hemisphere decreased an average of 2,127 con-
nections, or 4.0%.

The analyses of the attention and the default mode networks
showed no effects of hemisphere being evaluated, but did yield
significant, although contrasting, main effects of the ipsilateral
versus contralateral factor. The attention network had more ip-
silateral connections than contralateral (F (1,17) = 22.94, P <

.001). In contrast, the default mode network had more contralat-
eral than ipsilateral connections (F(1,17) = 17.40, P ≤ .001).

The analyses of the other ROIs showed similar effects for
all three: A main effect of hemisphere occurred for each region
(F(1,17) = 11.35, P < .01 for the basal ganglia; F(1,17) = 15.74,
P < .01 for the motor cortex; and F(1,17) = 15.82, P < .01 for
the visual cortex), with each showing more right than left hemi-
sphere connections. A main effect of type of connection also
occurred for each region (F(1,17) = 72.14, P < .001 for the basal
ganglia; F(1,17) = 12.23, P < .01 for the motor cortex; and F(1,17)
= 47.98, P < .001 for the visual cortex), with each region hav-

ing more contralateral than ipsilateral connections. No main ef-
fect of time was significant. Hemisphere × type of connection
interactions also occurred for the motor (F(1,17) = 17.10, P <

.001) and visual regions (F(1,17) = 9.23, P < .01). In both cases,
this reflected more right than left hemisphere ipsilateral connec-
tions (t ≥ 3.87, P < .001), along with no significant difference
in contralateral connections. Finally, an interaction of time and
type of connection occurred for the motor cortex (F(1,17) = 5.11,
P < .05), reflecting a large decrease in contralateral connections
along with a slight increase in ipsilateral connections.

Post-HIRREM Brain Lateralization and PTSD Symptoms

In a further check of the relationship between brain lateral-
ization and PTSD symptoms in this sample, we correlated
the symptoms reported on the PCL-M inventory with whole
brain lateralization, and with lateralization in the SN. PCL-M
scores were from baseline and immediately after the HIRREM
sessions.

The whole brain analyses correlated type of connection
(L-L, R-R [or L-R]) as a percent of the total number of connec-
tions (L-L + R-R + L-R) with PCL-M scores. Pre-HIRREM
L-L scores were unrelated to symptoms at any point. How-
ever, pre-HIRREM R-R scores correlated significantly with
symptoms at baseline (r(16) = .53, P = .02) and after the
HIRREM sessions (r(16) = .59, P. = .01). Pre-HIRREM L-R
scores were significantly negatively correlated with symptoms
at baseline (r = –.48, P = .04) and after the HIRREM sessions
(r = –.54, P = .02). There were only trends in the correlations
of post-HIRREM type of connection scores with symptoms:
L-L scores were negatively correlated with symptoms after
HIRREM (r (16) = –.46, P = .053), whereas R-R scores were
positively correlated (r(16) = .44, P = .07).

The relationship between symptoms and lateralization in the
SN was analyzed in analogous manner, but no significant rela-
tionships were observed.

Discussion
Extensive evidence indicates a relationship between traumatic
stress and hemispheric lateralization of brain activity.7–15 To
date, however, there has been little investigation regarding the
presence of laterality patterns in network or brain regional con-
nectivity under such conditions, and whether laterality patterns
may change after a successful therapeutic intervention. The
present study reports preliminary findings with respect to these
questions based on a sample of military service members and
recent Veterans with symptoms of military-related traumatic
stress who undertook usage of HIRREM, a closed-loop, allo-
static, echoing neurotechnology that has previously been shown
to decrease asymmetries in brain activity.32

At baseline, there were numerous main effects of connec-
tion type (ipsilateral for either side, or contralateral in either
direction), for the whole brain as well as within networks or
regions, and between networks or regions. In populations with
no history of trauma, asymmetries of lateralization in functional
networks have been demonstrated for the default mode,51,52

motor regions,53,54 and other networks,55,56 and it may be that
baseline findings shown in this study were within the range
of “healthy variability.” Alternatively, most of the participants
were affiliated with special operations and these changes may
have been a consequence of neuroplastic changes from the
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Fig 3. Mean (Standard Error) within-network or within-region functional connectivity by hemisphere. Repeated measures ANOVAs and sub-
sequent paired t-tests showed (1) Attention Network Left-Left (LL) and Right-Right (RR) > contralateral; (2) DMN LL > RR, LL > contralateral;
(3) Salience Network RR > contralateral, contralateral > LL; (4) Basal Ganglia contralateral > LL and RR, RR > LL; (5) Motor Cortex con-
tralateral > LL; main effect of time and interaction of time and type of connection (not annotated on graph); and (6) Visual Cortex contralateral
> LL, RR > LL. * = p < 0.05, ** = p < 0.01, *** = p < 0.001.

intensive training required to become a special operations of-
ficer. Or, some portion of the baseline findings may have been
related to the subjects’ traumatic stress history. Adjudication
of these interpretations may be possible by comparison of
the presently reported asymmetries with results from future
hypothesis-driven studies.

Regarding the outcomes that could be related to the in-
tervention, a finding of particular interest was in between
the network analysis: After HIRREM, there was a reduction
in connections between the right hemispheric nodes of the
salience network, and other regions. The salience network
serves to detect and attend to goal relevant stimuli in the
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Fig 4. Mean (Standard Error) between-network or between-region functional connectivity by hemisphere. Repeated measures ANOVAS and
subsequent paired t-tests showed: (1) Attention Network ipsilateral > contralateral; (2) DMN contralateral > ipsilateral; (3) Salience Network
ipsilateral > contralateral, right > left, and hemisphere × time interaction (not annotated on graph); (4) Basal Ganglia contralateral > ipsilateral,
right > left; (5) Motor contralateral > ipsilateral, right > left, type of connection interactions with time and hemisphere (not annotated); and (6)
Visual contralateral > ipsilateral, right > left, hemisphere x type of connection interaction (not annotated). * = p < 0.05, ** = p < 0.01, *** = p
< 0.001.

environment,57 and it appears to show hyperconnectivity in
PTSD.58 Postinterventional decrease in connectivity between
the right side of the salience network and other regions may
have reflected decreased triggering of the sympathetic nervous
system, potentially consistent with previously reported trends
for decrease in rightward dominant temporal lobe electrical
asymmetry, or improved HRV.32,37,59 However, the correlations

between symptoms reported on the PCL-M and lateralization
of the SN were not significant and thus suggest caution in this
interpretation. The correlations between whole brain lateraliza-
tion scores and the PCL-M scores were significant in a manner
consistent with the BHAM framework.17 The percentage of
R-R connections was positively correlated with symptoms,
which fits with the postulate of linkage between sympathetic
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hyperarousal and many high arousal state symptoms associ-
ated with PTSD. The percentage of bilateral L-R connections
showed a negative correlation with symptoms. This, along with
the trend for negative correlation of L-L connections with symp-
toms post-HIRREM, also supports the BHAM postulate that
better balance and improved parasympathetic influence is asso-
ciated with reduced symptoms and the observed improvement
in autonomic cardiovascular regulation (heart rate variability).

Alternatively, yet not mutually exclusively, the significance
of these changes may rest in their indication of a change in dy-
namics at larger scales. It may be that, consistent with the al-
lostasis model for “whole-brain” therapeutic strategy41 as well as
other data from the study of EEG-based intervention,60,61 suc-
cessful remediation of traumatic stress effects should be demon-
strated as an array of changes across circuits or subsystems. As
noted previously, numerous studies now characterize PTSD as
a disorder of connectivity rather than abnormality of a specific
neural area, and they point to the need for treatments that im-
pact connectivity patterns,60 and assessment of effects that take
such changes into account.

These preliminary findings must be qualified by the limita-
tions of the present study. The principal limitation of this study
lay in its single-arm design. A comparison arm was impracti-
cal because of the nature and timing of the training regimen
of special operations officers as well as the reality that there is
significant underreporting of symptomatology in military ser-
vice members.62 This was a small sample with associated issues
such as limited power. We did not apply statistical techniques to
adjust for multiple comparisons in that such an approach may
have been excessively conservative for our exploratory objec-
tives, and could obscure changes that might arise as correlated
biological effects. It should also be noted that the method of
counting the number of connections between nodes is relatively
coarse, and moreover many of the ROIs used were relatively
large such that other changes in connectivity may not have been
detected. Because a majority of the participants reported prior
traumatic brain injury or concussion as comorbid medical con-
ditions, it is possible that this may have been the etiology of
some of the baseline laterality findings. Finally, this study as-
sesses changes in connectivity before and after the HIRREM
intervention at the group level rather than at the individual
level.

In conclusion, this study showed numerous asymmetries
of network and brain region connectivity patterns at baseline
in a group with symptoms of military-related traumatic stress,
mostly from special operations, prior to usage of HIRREM. Af-
ter intervention, there were several changes compared to their
baseline patterns, including a reduction in connections between
the right hemispheric nodes of the salience network and other
networks and regions. These findings provide further evidence
for the value of using network connectivity analysis, including
laterality, to understand traumatic stress effects, and may point
to mechanisms of action for successful clinical intervention.
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