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COVID-19 is the worst pandemic that has hit the globe in recent history, causing an increase in deaths. As a result of this
pandemic, a number of research interests emerged in several fields such as medicine, health informatics, medical imaging,
artificial intelligence and social sciences. Lung infection or pneumonia is the regular complication of COVID-19, and Reverse
Transcription Polymerase Chain Reaction (RT-PCR) and computed tomography (CT) have played important roles to diagnose
the disease. This research proposes an image enhancement method employing fuzzy expected value to improve the quality of
the image for the detection of COVID-19 pneumonia. The principal objective of this research is to detect COVID-19 in
patients using CT scan images collected from different sources, which include patients suffering from pneumonia and healthy
people. The method is based on fuzzy histogram equalization and is organized with the improvement of the image contrast
using fuzzy normalized histogram of the image. The effectiveness of the algorithm has been justified over several experiments
on different features of CT images of lung for COVID-19 patients, like Ground-Glass Opacity (GGO), crazy paving, and
consolidation. Experimental investigations indicate that among the 254 patients, 81.89% had features on both lungs; 9.5% on
the left lung; and 10.24% on the right lung. The predominantly affected lobe was the right lower lobe (79.53%).

1. Introduction

On December 31, 2019, the World Health Organization
(WHO) released a statement that numerous cases of viral
pneumonia with an unidentified cause had emerged in
Wuhan, Hubei Province, China. On January 7, 2020, scien-
tific research institutions in China confirmed that the viral
pneumonia was caused by a novel coronavirus [1]. On
February 11, 2020, the novel coronavirus was designated as
severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) by the International Committee on Taxonomy of
Viruses [2], and the disease caused by SARS-CoV-2 was
termed “coronavirus disease 2019 (COVID-19)” by the
WHO [3, 4]. The disease rapidly spread globally and became
a pandemic. The scope of this ongoing pandemic was
increasing exponentially while the world was struggling with
a third wave of transmissions and many countries were try-
ing to control the situation by intermittent lockdowns. Since
then, the pandemic has had devastating effects on daily lives,

public health, education, and economies. As of May 27,
2021, the number of confirmed cases was 167,492,769,
including 3,482,907 deaths, with a mortality rate as men-
tioned on the WHO website [5]. The rapid spread of the dis-
ease has strained health-care systems worldwide because of
shortages of essential protective equipment and health-care
professionals along with unavailability of diagnostic kits
and facilities. Therefore, quick identification of patients with
COVID-19 is important for immediate management of
patients and rapid isolation of patients to standstill the con-
sequence of contamination [6].

Since COVID-19 is a highly communicable disease that
causes inflammation in the respiratory system, the only
effective way to control this spreading of infection is by rapid
investigation of the population and isolation of the infected
individuals. At present, the standard method for diagnosing
COVID-19 is a positive outcome in nucleic acid testing
(NAT) using reverse- transcription polymerase-chain-
reaction (RT-PCR). This investigation provides high
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specificity, but low sensitivity [7]. Therefore, chest CT has
turned into a precarious diagnostic procedure for COVID-19
manifestations since the affected lungs features can be detected
by investigating radiological images of patients, even though
negative results are obtained in RT-PCR test. Chest CT scans
enable radiologists to understand the disease by providing a
visual indicator of coronavirus infection and to determine
the extent of the lesions, which supports accurate observations
of changes. This motivated to the enhancement of CT imag-
ing; and the investigation results have demonstrated that
COVID-19 infected patients are detected more precisely using
chest radiography images than other diagnostic techniques.
The accurate and quick detection of COVID-19 assumed cases
play a vital role in well-timed quarantine and remedial action.

A fair amount of research work has already been pub-
lished in the literature on clinical manifestations and epide-
miological evidences for COVID-19. Fang et al. [8] found
that the sensitivity of CT (98%) was significantly higher than
that of RT-PCR (71%) in diagnosing COVID-19 infected
patients. Hani et al. [9] deliberated the clinical characteristic
features of lung CT images for COVID-19 pneumonia and
highlighted the chief diagnosis. They analysed the chrono-
logical CT images for their alterations during follow-up
and tried to determine the clues for their detection.
Bernheim et al. [10] presented a surveying study on chest
CT images from indicative patients infected by coronavirus
disease COVID-19 from different hospitals of China during
January and February 2020. They studied for typical CT out-
comes in association with the time between symptom incep-
tion and the first CT scan. The trademarks of COVID-19
contamination on images were bilateral and peripheral
GGO and consolidative pulmonary opacities. At a longer
interval from the commencement of COVID-19 indications,
CT symptoms had been more persistent, besides consolida-
tion, crazy paving, air bronchogram, pleural effusion, lung
immersion, mediastinal lymphadenopathy, and reverse halo
sign. Li et al. [11] made a surveying study with patients
infected by coronavirus COVID-19 from different regions
of Wuhan, China. They investigated the patients’ usual clin-
ical manifestations, disease symptoms, and evolvement fea-
tures of chest CT images. They identified lesions in the
peripheral lung, patchy GGOs, and consolidation. Wang
et al. [12] presented a retrospective study on patients’ epide-
miological and radiological behaviour of COVID-19 in
Hubei Province in China. They identified lung CT abnor-
malities and analysed the clinical and radiological features
of the patients.

Numerous AI applications such as machine learning,
pattern recognition, and image processing tools are effi-
ciently employed to identify and predict COVID-19 infec-
tions and recommend a suitable response to shrink the
spread and impact of the virus [13–16]. Wang et al. [17] pro-
posed a supervised deep learning method employing 3D CT
for COVID-19 detection and lesion segmentation. They
localized the lung area employing a pre-trained deep neural
network for the prediction of the probability of COVID-19
contamination. Kang et al. [18] presented a computer aided
identification for COVID-19 through multi-view representa-
tion machine learning algorithm. They made multi-feature

extraction from multiple views of CT images and trained a
unified latent illustration for diagnosis. With the aim of rep-
resenting the multi-features of lung CT images at different
viewing conditions, they expressed the latent representations
for training multiple aspects of COVID-19 lung CT image
features. Waheed et al. [19] proposed a method to develop
synthetic chest X-ray images by designing an Auxilary Clas-
sifier Generative Adversarial network (AGGAN) based
model named CovidGAN. They enhanced the convolutional
network model and arranged a deep learning strategy on the
chest X-ray images for corona virus detection. They
improved the performance of traditional convolutional neu-
ral network by employing synthetic images generated from
CovidGAN.

Shorfuzzaman and Hossain [20] have developed a deep
meta-learning based AI algorithm to augment the recogni-
tion of COVID-19 over chest X-ray (CXR) imaging. They
addressed a synergistic method to incorporate a contrastive
learning strategy with an adjusted trained ConvNet coder.
To influence the unbiased feature representations and con-
trol a Siamese network for the final classification of
COVID-19 features, they employed the Convnet architec-
ture. The effectiveness of their approach has been endorsed
employing two widely available datasets containing images
from ordinary COVID-19 and those with COVID-19 com-
plicated by pneumonia. Zhou et al. [21] proposed a UNet
model for detecting coronavirus employing chest CT scan
imaging. They investigated lung images over 106 patients
as model training and evaluated their classification model.
They claimed that the performance of their experiments
was quite reasonable considering the time constraint,
although they did not illustrate any time complexity analy-
sis. He et al. [22] addressed a multi-task multi-instance syn-
ergistic deep learning strategy, named M2UNet for
evaluation of the severity of corona features. They employed
U-Net to segment the lung regions and lung lesions from the
CT scan lung images. They achieved better performance in
severity assessment for patients diseased by COVID-19.
Chen et al. [23] presented some novel few-shot deep learn-
ing approaches for self-supervised analysis of COVID-19.
They employed a contrastive learning strategy to train an
encoder that can explore the animated feature representa-
tions on big pulmonary datasets and adjust the exemplary
network for classification purpose. They also used stochastic
data augmentation to render randomly example images into
multiple views. Commencing with the justification of the
instance discrimination to differentiate whether the two
given images are similar illustrations or not, they generated
multiple poses for the same images to supplement the original
dataset. Then they employed self-supervised approach high-
lighted with a momentum contrastive learning strategy to fur-
ther enhance the performance. They also put on the
momentum mechanism to alleviate the local optima problem.

However, these existing approaches are trained with the
fixed number of samples obtainable from a limited number
of patients and sometimes are not capable of generalizing
to new patients as deep learning strategies usually require a
large amount of data for precise learning. A substantial
number of research articles have been published on
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improving these issues. The convolutional neural networks
(CNNs) like AlexNet [24], GoogleNet [25], MobileNetV2
[26], DenseNet [27], ResNet [28] and NasNetMobile [29]
provide a classification task for COVID-19 features employ-
ing patients’ CT scan images and they exhibit significantly
high accuracy provided appropriate image enhancements
are performed [30]. Abdulkareem et al. [31] trained three
significant machine learning techniques like Navie Bayes,
Random Forest, and support vector machine and applied
Internet of Things (IoT) to diagnose patients with COVID-19
in smart hospitals. Based on laboratory dataset, they evaluated
and recommended the most optimal diagnosis results among
the selected ML models. Kumar et al. [32] employed a histo-
gram based fast fuzzy C means clustering ROI extraction to
detect lesion in COVID-19 CT images. They reduced the com-
putational complexity compared to traditional fuzzy C means
algorithm and produced auspicious outcome for 2D DICOM
images. Dansana et al. [33] developed a convolutional network
to diagnose COVID-19 infected patients earlier. They
employed deep learning strategies like VGG-19, Inception_
V2 and decision tree model instead of X-ray and CT scan
image datasets.

This research addresses an image enhancement tech-
nique by shadowing pulmonary fibrosis, and crazy-paving
pattern, air bronchogram, and halo sign using fuzzy
expected value (FEV) for quality enhancement of the CT
scan image captured for suspected coronavirus (COVID-
19) patients. The approach is based on fuzzy histogram
equalization, and it improves image contrast using the fuzzy
normalized histogram of the input image. Experimental
results indicate that this research improves the quality of
the CT scan lung images using fuzzy expected value assess-
ment and investigates the common imaging characteristics
of lung in COVID-19 including lesions with GGO, lung con-
solidation, bilateral patch signs. These imaging interpreta-
tions provide not only for the detection and treatment of
COVID-19 but also for the monitoring of disease progres-
sion and the assessment of therapeutic efficacy.

2. Materials and Methods

2.1. Image Enhancement over Fuzzy Expected Value
Assessment. Image enhancement is performed with the
idea of mapping the grayscale image into a fuzzy expected
value plane, employing the membership functions. The
membership function [34, 35] describes the characteristics
of an image. The method is known as image fuzzification.
The membership values are then modified in some man-
ner to augment the contrast. The modified membership
values are then inversely transformed through the proce-
dure of defuzzification to generate an enhanced image.
The fundamental steps involving in fuzzy enhancement
algorithm are illustrated in Figure 1. The fuzzy expected
value computation is accomplished with respect to the dis-
tance of each grey level from the corresponding fuzzy
expected value.

2.2. Fuzzy Image Representation. A digital image I=i ðx, yÞ,
consisting of P ×Q pixels, is usually represented by a grid

of pixels carrying light intensity or color information and
stored in the matrix form. The traditional matrix notation
is used to denote a digital image, where each matrix element
is an ordered pair, ðiðx, yÞ, μxyÞ, where iðx, yÞ is the intensity
of ðx, yÞ positioned pixel and μxy is the membership degree
of iðx, yÞ. Thus the P ×Q digital image is written in the fol-
lowing matrix form:

I =

i 0, 0ð Þ, μ00ð Þ i 0, 1ð Þ, μ01ð Þ ⋯ i 0, Y − 1ð Þ, μ0X−1ð Þ
i 1, 0ð Þ, μ10ð Þ i 1, 1ð Þ, μ11ð Þ ⋯ i 1, Y − 1ð Þ, μ1Y−1ð Þ

:

:

:

:

:

:

⋯

:

:

:

i X − 1, 0ð Þ, μP−10ð Þ i X − 1, 1ð Þ, μP−11ð Þ ⋯ i X − 1, Y − 1ð Þ, μP−1Q−1
� �

2
666666666664

3
777777777775

ð1Þ

where P is the number of rows and Q is the number of col-
umns. The range of gray levels is ½0, G − 1�: The membership
degree of each intensity ranging [0, G-1] for each pixel of a
classical image is either 0 or 1; i.e., μxy in equation (1) is
either 0 or 1.

Fuzzy image is constructed based on fuzzy set theory,
where each element of this set has some membership degree
in the interval [0, 1]. The fuzzification of the gray levels is
accomplished by the transformation function I as follows:

μmn =I i x, yð Þð½ � = 1 + Imax − Imin
δ

� �−ε
ð2Þ

where Imin and Imax are the minimum and maximum gray
levels, δ ∈ ½0, 1� and ε ∈ f1, 2g are the denominational and
exponential fuzzifiers which are chosen empirically depend-
ing on the degree of grayness.

The recursive modification of the membership is deter-
mined by using some characteristic function, which is called
fuzzy membership function. Most of the prevailing

Input
CT image 

Image
fuzzification 

Membership
modification 

Image
defuzzification 

Output
enhanced image 

Figure 1: Fundamental steps involved in fuzzy image enhancement
process.
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membership functions are triangular function, trapezoidal
function, s-shaped function, z-shaped function, Π − shaped
function etc. This research uses s-shaped function, given by
the following expression [36, 37]:

μxy =

0, i x, yð Þ < α

2 I x, yð Þ − α

γ − α

� �2
, α ≤ i x, yð Þ ≤ β

1 − 2 I x, yð Þ − γ

γ − α

� �2
, β ≤ i x, yð Þ ≤ γ

1, i x, yð Þ ≥ γ

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

ð3Þ

where β is the crossover point, α and γ are the left and right
breakpoints, respectively, γ is the point where the height of
the s-shaped curve is 1 and α = 2β − γ: The membership
function is illustrated in Figure 2.

The membership function for the classical images is dis-
crete. However, in fuzzy set, the membership function over
[0,255] is gradually changing. For this reason, the fuzzy
image based on fuzzy set theory is more suitable than the
classical image based on classical set theory.

The fuzzy expectation of a discrete random variable
r, ðr ∈ r1, r2, r3,⋯, rnÞ with respective fuzzy probabilities
Fðr1Þ, Fðr2Þ, Fðr3Þ,⋯FðrnÞ is defined by:

FE rð Þ = 〠
n

i=0
riF rið Þ, where〠

n

i=0
F rið Þ = 1: ð4Þ

The fuzzy histogram of a fuzzy image with gray
levels in the range [0, G-1] is f hðsrÞ = jsrj, where sr is
the r-th gray level. Again, the normalized fuzzy histo-
gram is given by:

f h srð Þ = rthgray level
�� ��
gray levelj j ð5Þ

which is also similar to fuzzy probability.
The fuzzy histogram equalization technique is based

on the fuzzy normalized histogram of the image that is
defined by:

f he srð Þ = 〠
r

i=0
f hs sið Þ = 〠

r

i=0

ithgray level
�� ��
gray levelj j , where r = 0, 1, 2,⋯G − 1:

ð6Þ

2.3. Contrast Improvement Using Fuzzy Expected Value.
The contrast improvement technique is based on the fuzzy
expected value, which is described in the previous section.
The algorithm is shown below:

2.4. FEV (Image I(x,Y)). This algorithm increases the con-
trast of given image i using the fuzzy expected value. Let
the maximum gray level be G and gpq is the gray level of
(p,q)-th pixel.

Step1. Construct the fuzzy image of the given image i
using the following equation.

μpq =
gpq

G
ð7Þ

where μpq is the degree of membership of pixel (p,q) and gpq
is the grey level of the (p,q)-th pixel.

Step2. Construct the fuzzy histogram of the fuzzy image.
Step3. Compute the fuzzy expected intensity value, FE,

using equation (4).
Step4. Determine the disparity of gray level, dpq from FE

using the following equation.

dpq =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FE

2 − gpq
2

��� ���
r

ð8Þ

Step5. Generate a new gray level applying the following
expression:

gpq′ =
max 0, FE − dpq

� �
if gpq < FE

min G − 1, FE + dpq
� �

if gpq > FE ,
FE otherwise

8>><
>>:

ð9Þ

Figure 3 shows the contrast improvement of a CT scan
image using fuzzy expected value.

3. Results and Discussion

The effectiveness of the algorithm has been justified over
several experiments on different publicly available datasets
of chest CT images of COVID-19 affected patients [30]. A
wide variety of CT image outcomes are observed that differ
depending on the stage and severity of the pneumonia with
associated co-morbidity.

This study was carried out retrospectively to analyze the
chest CT findings on a dataset of 254 patients infected by
COVID-19 during June - November 2020. This research
had no potential risks for patients, and there were no direct
relationships between researchers and patients. Patients with
laboratory-confirmed COVID-19 (confirmed by a reverse
transcription polymerase chain reaction, RTPCR) were
considered as Covid positive case. CT images were autono-
mously studied by two expert radiologists having experience
more than 12 years and blinded to the clinical data. The
insertion criteria were patients who had undergone the first
chest CT less than 5 days from illness onset and had not
received any antiviral treatment. The exclusion criteria were
the unsatisfactory quality of chest CT images for analysis.
The study was accomplished according to the ideologies of
the Helsinki Declaration.

According to the severity of pneumonia, the features of
CT chest images focused the following aspects: (a) lesion dis-
tribution: both lungs, left or right lung; (b) lobes involved:
upper, middle, and lower; (c) lesion location in lung
parenchyma with their radiological findings: Ground Glass
Opacity (GGO), consolidation, craze-paving pattern, stripes,
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air bronchogram, halo sign, and (d) other findings: medias-
tinal lymphadenopathy, pleural effusion, and interlobular
septal thickening.

In general, the lesions in the lung are usually bilateral,
the lower lobes are more commonly affected, and the right
middle lobe is the least involved one. Again, the most com-
mon and the earliest finding are GGO, which is frequently
designated as hazy and patchy opacity with peripheral, bilat-
eral, and subpleural distribution. Consolidations feature typ-
ically exhibit after 10–12 days of appearing of symptoms,
after the GGO findings. It is defined as an area of augmented
attenuation visualize primarily in the subpleural and periph-
eral area that obscures the bronchial and vascular markings.
It affects the lung by filling the alveoli with exudative or
transudative fluid and blood [38]. It has been reported that

there is high mortality in patients with consolidation and
the incidence of this radiological finding is significantly
higher in older patients than younger patients [39]. Further-
more, crazy paving is a sign of progressive disease where
there is thickening of interlobular septa and intralobular
lines superimposed on a background of GGO, resembling
irregularly shaped paving stones. This sign also represents
alveolar oedema and interstitial inflammation, and its
appearance may indicate that the disease is in an advanced
stage [40]. Again, it is the first CT sign to resolve in the
absorptive stage while the consolidation and GGO may per-
sist for up to 26 days [39]. Air bronchogram can be seen in
both GGO and consolidation which is defined as air-filled
bronchi with high density area. Air bronchogram is also a
sign of advanced disease that can be noticed after the second
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Figure 2: s-shaped membership function.

(a) (b) (c)

Figure 3: Contrast improvement of CT scan image (a) original image (b) enhanced image using fuzzy expected value.
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week of symptom onset. Halo sign is defined as a condition
in which GGO surrounds the central nodule or mass.

The outcome of the fuzzy expected value (FEV) image
enhancement technique has been employed to chest CT
images of COVID-19 pneumonia patients, as shown in
Figure 4. Features are not clear for the first two column
images, like A1-A2, B1-B2, C1-C2, D1-D2, and E1-E2 (δ=
0.5 and δ=0.7, respectively). For the third column images
A3, B3, C3, D3, and E3, the value of δ was chosen as 0.9
and the image features are more distinct. (A1-A3): GGO
with consolidation involved in peripheral distribution was
detected in the left upper lobe. (B1-B3): GGO with consoli-
dation and reticulation were identified in a peripheral distri-
bution in the right lower lobe. (C1-C3): Consolidation with
peripheral distribution in the lower lobes of the lungs. (D1-
D3): GGO with consolidation diffusely distributed in the
bilateral lungs. Air bronchogram and crazy paving pattern
detected on the background of GGO and consolidation.
(E1-E3): GGO with consolidation detected in the bilateral
lower lobes, distributed along the peribronchovascular bun-
dle and subpleural regions.

Among the 254 patients, 81.89% had features on both
lungs; 9.5% on the left lung; and 10.24% on the right lung.
The predominantly affected lobe was the right lower lobe
(79.53%). The distribution of COVID-19 infection in differ-
ent lobes of two lungs and in individual lungs is shown in
Figure 5. The distribution of the CT imaging features
according to the lesion characteristics is shown in Figure 6.
All 254 patients infected by COVID-19 pneumonia showed
GGO, 83.5% showed consolidation, 63.8% showed crazy
paving, 30.7% air bronchogram, 26% stripe, and other fea-
tures were a few in percentage.

To assess the performance of the proposed fuzzy image
enhancement algorithm, the following indices were
considered:

Accuracy: Accuracy represents the degree of closeness to
the true value and is expressed by:

Accuracy = TP + TN
TP + TN + FP + FN

ð10Þ

Sensitivity: Sensitivity indicates the true positive rate and
is expressed by:

Sensitivity = TP
TP + FN

ð11Þ

Specificity: Specificity indicates the true negative rate and
is represented by:

Specif icity = TN
TN + FP

ð12Þ

Precision: Precision identifies the positive prediction
value and is represented by:

Precision = TP
TP + FP

ð13Þ

where TP is true positive, means the ill person is correctly
recognized as ill.

FP is false positive, which means the healthy person is
wrongly recognized as ill.

TN is true negative, which means the healthy person is
correctly recognized healthy.

FN is false negative, which means the ill person is
wrongly recognized as healthy.

The proposed image enhancement method provided
consistent accuracy of 94.6%, specificity of 92.5%, sensitivity
of 84.1%, and precision of 96.7% for the chest CT imaging
features for COVID-19 patients, which are quite reasonable,
as shown in Figure 7.

The performance of the proposed method has been com-
pared to the most influential traditional methods employed
for image enhancement [40] in terms of their histograms,
as shown in Figure 8. Although the histograms of the
gamma corrected image (b2) and the image enhanced by
histogram equalization (c2) exhibit brighter due to the
higher intensity distribution at the brighter grey levels, but
image distortion occurs in brighter regions owing to the
inappropriate setting of gamma parameters for large pixel
intensities. The FEV, on the contrary, surges the global con-
trast of the image by efficiently spreading out the most fre-
quent intensity values depending on the membership value.
That is why COVID-19 features like lesion are more distinct
in the processed output CT images.

The objective performance of the algorithm has been
evaluated employing three parameters: (i) entropy computa-
tion, (ii) Peak Signal -to-Noise Ratio (PSNR) measurement,
and (iii) calculating the contrast index. Entropy was com-
puted employing Shannon’s law, given by:

Entropy = − 〠
Imax

x=1
hxLog2hx ð14Þ

where Imax is the maximum intensity of the enhanced
image.

The PSNR was calculated as the ratio of the peak
enhanced to the original signal, expressed by:

PSNR = 10Log10
I2max
MSD

� �
ð15Þ

MSD = 1
PQ

〠
P

x=1
〠
Q

y=1
Ie − I0ð Þ2 ð16Þ

where Ie and I0 are the enhanced and original images,
respectively.

The contrast index was measured as ratio of the con-
trast of the enhanced image and the original image,
expressed as [41]:

σ fð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
PQ − 1〠

P

x=1
〠
Q

y=1
i x, yð Þ − PQð Þ

vuut ð17Þ
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(A3)(A2)(A1)

(a)

(B3)(B2)(B1)

(b)

(C3)(C2)(C1)

(c)

(D3)(D2)(D1)

(d)

(E3)(E2)(E1)

(e)

Figure 4: Image enhancement over FEV for chest CT images of COVID-19 pneumonia patients.
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IC =
σ Ieð Þ
σ I0ð Þ ð18Þ

The objective performance of this image enhancement
algorithm has been compared with Pal-King [41], Modified
Pal-King [42], Reshmalakshmi [43], and Patel [36]
approaches, as shown in Table 1.

The major contributions of this research are:

(i) Address an image enhancement technique employ-
ing fuzzy expected value (FEV)

(ii) Detect the COVID-19 pneumonia patients using
CT scan images collected from different sources
which include patients suffering from pneumonia
and healthy people
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(iii) Identify different features of CT images of lung for
COVID-19 patients like Ground-Glass Opacity
(GGO), crazy paving, and consolidation

(iv) Provide an image interpretation scheme for the
monitoring of COVID-19 disease progression and
the assessment of therapeutic efficacy
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Figure 8: CT images and their respective histograms.
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The main shortcoming associated with this research is
data size. The data used for this investigation embrace CT
scan images of 254 patients. The execution of this approach
can be improved with a larger dataset. Additional experi-
ments and investigations should be accompanied with labo-
ratory findings from other areas to confirm these outcomes.

4. Conclusions

This paper outlines the imaging features of lung CT scans
for patients with COVID-19 infection. Through this study,
we introduced a fuzzy image enhancement approach for
the accurate and precise diagnosis of infected lung paren-
chyma of COVID-19 patients and visualized different clini-
cal features extracted from scan CT images. These features
have been investigated and observed that they are comple-
mentary to each other. Compared to existing approaches,
the proposed fuzzy image enhancement method provides
significant improvements to optimize the performance
depending on the parameters of membership functions.
The traditional contrast enhancement methods are over-
enhanced or under-enhanced due to mapping functions
and that is why the lesions are not accurately identified even
in high contrast CT images. The proposed method, on the
contrary, offers fuzzily upgraded contrast images where all
regions of the lung field are distinct, prominent, and well
visualised to go for final diagnosis in radiological perspec-
tive. Moreover, the performance of this image enhancement
algorithm in chest CT imaging features for COVID-19
patients are justified visually over histogram analysis and
quantitatively over entropy, PSNR, and contrast index mea-
sures. Again, the objective performance of the algorithm was
evaluated with three parameters like entropy, PSNR, and
contrast index. Though CT imaging plays a vibrant role to
calculate the volume of the lesions and diagnose the disease,
this procedure will facilitate clear visualization of the
infected organs. This fuzzy image enhancement approach
will assist the clinicians to provide precise observation and
monitor the disease progression as a selection tool for
infected patients of COVID-19 pneumonia.
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