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Background: Early and accurate diagnosis of invasive fungal infection (IFI) is pivotal for the initiation of 
effective antifungal therapy for patients with hematologic malignancies. 
Methods: This retrospective study involved 235 patients with hematologic malignancies and pulmonary 
infections diagnosed as IFIs (n=118) or bacterial pneumonia (n=117). Patients were randomly divided into 
training (n=188) and validation (n=47) datasets. Four feature selection methods with nine classifiers were 
implemented to select the optimal machine learning (ML) model using five-fold cross-validation. A radiomic 
signature was constructed using a linear ML algorithm, and a radiomic score (Radscore) was calculated. 
The combined model was developed with the Radscore, the significant clinical and radiologic factors 
were selected using multivariable logistic regression, and the results were presented as a clinical radiomic 
nomogram. A prospective pilot study was also conducted to compare the classification performance of the 
combined nomogram with practicing radiologists.
Results: Significant differences were found in the Radscore between IFI and bacterial pneumonia patients in 
the training (0.683 vs. −0.724, P<0.001) and validation set (0.353 vs. −0.717, P=0.002). The combined model 
showed good discrimination performance in the validation cohort [area under the curve (AUC) =0.844] and 
outperformed the clinical (AUC =0.696) and radiomics (AUC =0.767) model alone (both P<0.05). 
Conclusions: The clinical radiomic nomogram can serve as a promising predictive tool for IFI in patients 
with hematologic malignancies.
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Introduction

Invasive fungal infection (IFI) in the lung is a common 
complication in severely immunocompromised patients, such 
as those with hematologic malignancies who have undergone 
hematopoietic stem cell transplantation or those receiving 
high-dose chemotherapy (1). IFI is associated with substantial 
morbidity, having a mortality rate of 50% to 85% (2); given 
this, early and accurate diagnosis of IFI is vital to enable 
optimized treatment and improved patient outcomes. 
Clinicians now have various commercially available tools 
for IFI diagnosis, and each tool has its inherent advantages 
and disadvantages (3). Serum galactomannan testing may 
help with the diagnosis, but it has limited sensitivity, which 
ranges from 30% to 46%, and it frequently yields false-
positive results (4,5). Recently, a consensus group of the 
European Organization for Research and Treatment of 
Cancer (EORTC) and the Mycoses Study Group (MSG) 
established diagnostic criteria for IFI (6). These updated 
guidelines are based on host factors, clinical information, 
and microbiological criteria, which allow classification of 
IFIs into various levels of probability as proven, probable, 
or possible IFIs. However, only a minority of cases are 
proven using invasive procedures because of the risk of fatal 
bleeding due to thrombocytopenia. 

Computed tomography (CT) is an important imaging 
modality in the diagnosis and management of high-risk 
patients with pneumonia. Several studies have focused 
on describing early predictive CT features of pulmonary 
IFIs (7-9). Characteristic CT signs of invasive fungal 
pneumonia consist of multiple nodules with a surrounding 
“halo sign” and/or wedge-shaped areas of consolidation (8). 
However, these CT findings of IFIs are usually nonspecific 
and indistinguishable from other respiratory infections. 
In particular, when consolidation is present early during 
pneumonia, differential diagnosis is often difficult and only 
presumptive. 

Radiomics, an emerging quantitative imaging method 
we proposed in 2012 (10), can extract mineable high-
dimensional data from medical images at the voxel or 
pixel level. It serves as the bridge between imaging 
biomarkers and personalized medicine to reflect underlying 
structural and pathophysiologic information (11). A recent 
radiomics study indicated potential in the discrimination 
of progressive pulmonary tuberculosis from community-
acquired pneumonia (12). More recently, the combination 
of radiomics and machine learning (ML) models has been 
demonstrated to potentially offer improved diagnostic, 

prognostic, and predictive accuracy (13). The correlation of 
imaging findings with clinical information is fundamental 
for rapid, accurate diagnosis (14). However, to the best of 
our knowledge, an ML-based approach for incorporating 
imaging biomarkers with clinical characteristics in the 
prediction of IFIs for clinical decision support has not been 
developed.

Therefore, the purpose of this study was to investigate 
whether an ML-based clinical radiomic nomogram 
integrating CT radiomic features and clinical factors can 
distinguish IFI from bacterial pneumonia in patients with 
hematologic malignancies. In addition, the benefit provided 
by 3-dimensional (3D) radiomic features compared 
with 2-dimensional (2D) texture analysis was explored. 
We present the following article in accordance with the 
TRIPOD reporting checklist (available at https://atm.
amegroups.com/article/view/10.21037/atm-21-4980/rc).

Methods

The clinical trial was registered on https://www.chictr.
org.cn (registration number: ChiCTR2000038557). The 
study was conducted in accordance with the Declaration 
of Helsinki (as revised in 2013). The study was approved 
by institutional review board of Nanfang Hospital 
(No. NFEC-2017-087), and individual consent for this 
retrospective analysis was waived. 

Patient selection

Patients from the Department of Hematology who 
underwent chest CT between June 2017 and March 
2021 were identified using our institution’s database. The 
inclusion criteria were as follows: (I) age 18 years and over 
and with host factors according to the EORTC and/or MSG 
criteria (6); (II) suspected of having a pulmonary infection 
and clinical symptoms and signs of persistent cough, pleural 
pain, or hemoptysis; (III) CT scan with thin section (slice 
thickness less than 1.5 mm); and (IV) CT findings of a 
consolidation measuring greater than 5 mm in diameter. 
The exclusion criteria were as follows: (I) patients who 
underwent CT scan within more than 5 days after initiation 
of symptoms (n=16); (II) patients with incomplete clinic and 
etiological data including basic information, comorbidities, 
symptoms, and laboratory findings (Table S1) available 
for re-evaluation (n=47); and (III) patients who received 
antibiotic therapy (n=23). 

All patients with proven or probable pulmonary IFI were 

https://atm.amegroups.com/article/view/10.21037/atm-21-4980/rc
https://atm.amegroups.com/article/view/10.21037/atm-21-4980/rc
https://www.chictr.org.cn
https://www.chictr.org.cn
https://cdn.amegroups.cn/static/public/ATM-21-4980-Supplementary.pdf
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diagnosed according to the consensus EORTC and/or MSG 
criteria. Proven IFI was defined based on histopathologic 
evidence following percutaneous needle aspiration biopsy. 
Probable IFI was defined based on the presence of host 
factors, an area of consolidation on CT, and mycological 
evidence of fungal infection from culture analysis of 
bronchoalveolar lavage fluid or serum or microbiologic 
evidence of galactomannan positivity (8). Diagnosis of 
bacterial pneumonia was based on a positive culture of 
respiratory tract specimen for a bacterial organism, such as 
sputum or bronchoalveolar lavage fluid and CT evidence 
of pulmonary consolidation >5 mm in diameter (8). The 
pathway of patient enrollment is shown in Figure 1.

CT image acquisition

All patients were examined with the following CT scanners: 
Brilliance iCT (Philips Healthcare, Best, Netherlands), GE 
Discovery CT 750 HD (GE Medical Systems, Chicago, IL, 
USA), and Somatom Definition and Somatom Emotion 

(Siemens Medical Solutions, Erlangen, Germany). The 
CT scanning parameters included a tube voltage of 100 
to 130 kV, automatic tube current modulation, a detector 
collimation of 192 × 0.6 mm or 128 × 0.625 mm, and a slice 
thickness of 1 to 1.5 mm. All images were reconstructed 
with a high kernel (b60) and a matrix of 512×512.

Lesion segmentation

The CT images were independently interpreted by 2 
thoracic radiologists (G.W and C.Y, with 6 and 12 years of 
chest CT experience, respectively) who were blinded to the 
clinical information. The following semantic radiological 
features were assessed according to published definitions (8) 
by consensus: single/multiple lesions, consolidation (patchy, 
segmental, or wedge-shaped), halo sign, cavitation, nodule, 
and ground-glass opacity (GGO).

The volumes of interest (VOIs) were manually drawn on 
CT axial slices by 1 thoracic radiologist (C.Y) using ITK-
SNAP (version 3.6.0, www.itksnap.org) and encompassed 

Patients from the department of hematology 
between June 2017 and March 2021

Inclusion criteria
• Age ≥18 years and host factors;
• Suspected of pulmonary infections;
• Slice thickness of CT scan <1.5 mm;
• CT findings of consolidation >5 mm;
• Positive respiratory tract specimen

Data following eligibility inclusion criteria (n=321)

Exclusion criteria
• CT scan >5 days after symptoms 

(n=16);
• incomplete clinic-etiology data (n=47);
• patients received antibiotic therapy 

(n=23)

Eligible patients included in this study (n=235)

Ratio 8:2

Training cohort (n=188) Validation cohort (n=47)

IFI (n=94)

Bacterial 
pneumonia (n=94)

IFI (n=24)

Bacterial 
pneumonia (n=23)

Prospective study (n=29)

IFI (n=15)

Bacterial 
pneumonia (n=14)

Figure 1 The flowchart of patient recruitment. CT, computed tomography; IFI, invasive fungal infection.
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the entire lesion. The 2D-labeling regions of interest (ROIs) 
were manually delineated based on the single-axial image 
with the largest lesion area. If multiple lesions were present, 
only the largest cross-sectional lesion was segmented. 

Image preprocessing and feature extraction 

Image resampling and gray-level normalization were 
performed before feature extraction. All image data were 
resampled to a 1×1×1 mm3 voxel size, and the gray level was 
normalized to 64 levels. Images were filtered and radiomic 
features were extracted from VOIs and ROIs using 
Pyradiomics 2.1.2 (https://pyradiomics.readthedocs.io/en/
latest/index.html) (15). The 3D (n=835) and 2D (n=815) 
radiomic features included (I) first-order statistic features; 
(II) shape-based features; (III) texture features; and (IV) 
wavelet-based features. 

Dimension reduction with reproducibility and collinearity 
analysis

A high-dimensional feature reduction process was then 
performed to select the most relevant features for differential 
diagnosis. To verify the robustness of the radiomic 
features, CT images of 30 cases were randomly chosen 
and independently delineated by 2 radiologists (C.Y and 
S.W). To assess the intraobserver reproducibility, the same 
procedure was performed twice by 1 radiologist (C.Y) within 
2 weeks of the first delineation. The intra- and interclass 
correlation coefficient (ICC) was calculated to evaluate the 
reproducibility of radiomic features. Features with good 
agreement (both ICCs >0.8) were selected for further 
analyses. Collinearity analysis with Pearson correlation 
coefficients was performed to evaluate the relevance and 
redundancy of the features. Features indicated by a Pearson 
correlation coefficient (r) >0.9 were eliminated.

Feature selection and model building

The ML models were built with different combinations of 
4 common feature selection methods [analysis of variance 
(ANOVA), recursive feature elimination (RFE), Relief, and 
Kruskal-Wallis rank-sum test (KW)] and 9 classification 
methods (logistic regression (LR), least absolute shrinkage 
and selection operator (LASSO), support vector machine 
(SVM), linear discriminant analysis (LDA), decision tree, 
random forest, Adaboost, Gaussian process, and naïve 
Bayes). Patients were randomly divided into the training 

and validation group at a ratio of 8:2. All the classifiers were 
trained with a 5-fold cross-validation. The area under the 
receiver operator characteristic (ROC) curve (AUC) was 
used to evaluate the discriminative performance of different 
models. The model with the highest AUC value in the 
cross-validation cohort was considered the radiomic model. 
The radiomic signature (Radscore) was then calculated 
using a multivariable logistic regression model by linearly 
combining the most predictive features, which were 
weighted by their respective coefficients.

Clinical and radiological model building and evaluation

Considering the potential additional value of clinical 
characteristics, CT features, and laboratory results (Table S1) 
to improve the predictive performance, we first identified 
independent variables (P<0.1) using univariate analysis. In 
the training cohort, a clinical radiomic model incorporating 
the radiomic signature and clinical predictors was developed 
using multivariable logistic regression analysis. A collinearity 
diagnosis with a variance inflation factor was performed 
before the multivariate analysis. Backward stepwise 
selection was employed using the likelihood ratio test with 
Akaike’s information criterion (AIC) as the stopping rule. 
The model with the lowest AIC value was selected as the 
final model. A clinical model was also constructed separately 
using multivariable logistic regression analysis based on 
statistically significant clinical factors. The ROC curve and 
AUC were applied to evaluate the predictive accuracy of 
established models in the validation cohort. Differences in 
AUC between various prediction models were compared 
using the DeLong test.

Construction and validation of the radiomic nomogram

The radiomic nomogram was built based on proportionally 
converting regression coefficients of each predictor in the 
combined model to a 0- to 100-point scale. Calibration 
of the clinical radiomic nomogram was plotted using the 
calibration curve, which measures the consistency between 
the nomogram-predicted probability and the actual 
rate. The Hosmer-Lemeshow test was used to assess the 
goodness of fit of the nomogram. In addition, decision 
curve analysis (DCA) was conducted to estimate the clinical 
utility of the radiomic signature, clinical risk factors, and 
nomogram by quantifying net benefits at different threshold 
probabilities in the validation dataset. The decision curves 
of the treat-all strategy and the treat-none strategy were 

https://cdn.amegroups.cn/static/public/ATM-21-4980-Supplementary.pdf
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used as references in the DCA. The workflow of this study 
is shown in Figure 2.

Comparison of the combined nomogram against practicing 
radiologists

A prospective pilot study was also conducted at our 
institution from April 2021 to August 2021. The inclusion 
and exclusion criteria and the definitions for bacterial 
pneumonia and pulmonary IFI mentioned above were used 
in the pilot study cohort. A total of 15 patients with IFI 
and 14 patients with bacterial pneumonia were enrolled 
to compare the performance of the combined nomogram 
with practicing radiologists in terms of classification. One 
junior and one senior radiologist (with 6 and 12 years of 
experience, respectively) were employed to participate 
in the study. Ground truth was established based on the 
enrollment criteria mentioned above.

Statistical analysis

All statistical analyses were performed using R software 
(version 3.5.2; The R Foundation for Statistical Computing, 
Vienna, Austria) and SPSS software (version 22.0, IBM 
Corp., Armonk, NY, USA). Continuous and categorical data 

were compared using independent t- (or Mann-Whitney U) 
tests and chi-square (or Fisher’s exact) statistics, respectively, 
as appropriate. The ML algorithms were programmed with 
Python scikit-learn environment (version 0.19.1). A 2-sided 
P value <0.05 was considered to be significant.

The “glmnet” package was used to perform LASSO 
logistic regression, the ROC was plotted using the “pROC” 
package, nomogram construction and calibration plotting 
were performed using the “rms” package, the Hosmer-
Lemeshow test was performed using the “generalhoslem” 
package, and the “rmda” package was used to construct the 
DCA curve.

Results

Clinical and CT imaging characteristics

A total of 235 patients consisting of 118 individuals with 
IFI and 117 with bacterial pneumonia were enrolled in 
the study. Clinical characteristics including CT semantic 
features, clinical variables, and laboratory parameters of 
patients with IFI and bacterial pneumonia in both the 
training and validation datasets are shown in Tables 1,2. 
There were no differences in sex, age, or most clinical 
and CT features between the 2 groups. The halo sign 

Figure 2 The workflow of data analysis. ROC, receiver operator characteristic; AUC, area under the ROC curve; GGO, ground-glass 
opacity; IFI, invasive fungal infection; DCA, decision curve analysis; CT, computed tomography.
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and nodule were more common in patients with IFI 
than in those with bacterial pneumonia, while patchy 
consolidation and GGO were more frequent in those with 
bacterial pneumonia (each P<0.05) in the training set. 
Significant differences between the 2 groups were observed 
in the incidence of sputum, neutrophil percentage, and 
lymphocyte percentage.

Model assessment

A total of 36 predictive radiomic models were built through 
the combination of 4 selection methods and 9 classifiers. 
The heatmaps of mean AUC values from various ML 
models in the training, cross-validation, and validation 
cohorts are shown in Figure 3 and Figure S1. Generally, 
the 3D-based models represented better performance 
than did the 2D-based models. Moreover, LR classifiers 

outperformed other classification methods in terms of 
discrimination. Among models using parameters from 3D 
and 2D images, the selection method KW with LR classifier 
yielded the highest AUC of 0.644 and 0.641, respectively in 
the cross-validation group. 

The selected radiomic features to discriminate IFI and 
bacterial pneumonia in the training cohort are summarized 
in Table 3, including 1 shape feature, 2 texture features, and 
9 wavelet features. A radiomic signature (Radscore) was 
then constructed using the features and their respective 
coefficients. There was a significant difference in Radscore 
between the IFI and bacterial pneumonia patients in the 
training cohort (0.683 vs. −0.724; P<0.001), which was 
confirmed in the validation cohort (0.353 vs. −0.717, 
P=0.002). The AUC of the radiomic signature performance 
was 0.803 (95% CI: 0.739–0.866) in the training cohort and 
0.767 (95% CI: 0.624–0.910) in the validation cohort.

Table 1 CT sematic features of patients with pulmonary infections

CT features
Training set (n=188), n (%) Validation set (n=47), n (%)

IFI (n=94) Bacterial pneumonia (n=94) P value IFI (n=24) Bacterial pneumonia (n=23) P value

Number of lesions 0.631 0.238

Single 29 (30.9) 26 (27.7) 9 (37.5) 5 (21.7)

Multiple 65 (69.1) 68 (72.3) 15 (62.5) 18 (78.3)

Consolidation

Patchy 71 (75.5) 82 (87.2) 0.039* 16 (66.7) 19 (82.6) 0.210

Segmental 46 (48.9) 34 (36.2) 0.077 10 (41.7) 9 (39.1) 0.859

Wedge-shaped 10 (10.6) 12 (12.8) 0.650 2 (8.3) 3 (13.0) 0.601

Halo sign 0.013* 0.172

Absence 33 (35.1) 50 (53.2) 12 (50.0) 16 (69.6)

Presence 61 (64.9) 44 (46.8) 12 (50.0) 7 (30.4)

Cavitation 0.470 0.157

Absence 89 (94.7) 91 (96.8) 22 (91.7) 23 (100.0)

Presence 5 (5.3) 3 (3.2) 2 (8.3) 0 (0.0)

Nodule 0.011* 0.298

Absence 72 (76.6) 85 (90.4) 18 (75.0) 20 (87.0)

Presence 22 (23.4) 9 (9.6) 6 (25.0) 3 (13.0)

GGO 0.005* 0.955

Absence 91 (96.8) 80 (85.1) 21 (87.5) 20 (87.0)

Presence 3 (3.2) 14 (14.9) 3 (12.5) 3 (13.0)

*, P<0.05. CT, computed tomography; IFI, invasive fungal infection; GGO, ground-glass opacity.

https://cdn.amegroups.cn/static/public/ATM-21-4980-Supplementary.pdf
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Table 2 Demographic and clinical characteristics of patients with pulmonary infections

Clinical factors
Training set (n=188) Validation set (n=47)

IFI (n=94) Bacterial pneumonia (n=94) P value IFI (n=24) Bacterial pneumonia (n=23) P value

Age (years) 43.3±15.6 40.5±13.7 0.188 39.3±11.9 43.7±16.2 0.293

Sex 0.766 0.671

Male 57 (60.6) 55 (58.5) 14 (58.3) 12 (52.2)

Female 37 (39.4) 39 (41.5) 10 (41.7) 11 (47.8)

Hematologic malignancy 0.379 0.859

AML 55 (58.5) 49 (52.1) 14 (58.3) 14 (60.9)

Non-AML 39 (41.5) 45 (47.9) 10 (41.7) 9 (39.1)

Infection history 43 (45.7) 35 (37.2) 0.236 11 (45.8) 6 (26.1) 0.024*

Chemotherapy 75 (79.8) 65 (69.1) 0.094 20 (83.3) 11 (47.8) 0.010*

Immunosuppressant 5 (5.3) 7 (7.4) 0.551 2 (8.3) 1 (4.3) 0.576

HSCT 30 (31.9) 27 (28.7) 0.634 8 (33.3) 8 (34.8) 0.917

GVHD 13 (13.8) 8 (8.5) 0.247 4 (16.7) 4 (17.4) 0.947

Remission 7 (7.4) 6 (6.4) 0.774 4 (16.7) 0 0.041*

Fever 56 (59.6) 56 (59.6) 1.000 13 (54.2) 18 (78.3) 0.081

Body temperature (℃) 37.4±4.1 37.9±1.3 0.248 37.31.3 38.21.4 0.233

Cough 34 (36.2) 44 (46.8) 0.139 10 (41.7) 14 (60.9) 0.188

Sputum 24 (25.5) 38 (40.4) 0.030* 6 (25.0) 13 (56.5) 0.028*

Chest pain 6 (6.4) 7 (7.4) 0.774 1 (4.2) 2 (8.7) 0.525

Hemoptysis 2 (2.1) 3 (3.2) 0.65 0 0 1.000

Dyspnea 2 (2.1) 4 (4.3) 0.407 0 0 1.000

Chill 10 (10.6) 7 (7.4) 0.446 4 (16.7) 4 (17.4) 0.947

Headache 12 (12.8) 12 (12.8) 1.000 6 (25.0) 6 (26.1) 0.932

WBC (×109/L) 10.0±46.8 8.8±28.2 0.831 7.8±10.4 8.3±15.8 0.893

Neutrophil (×109/L) 3.5±10.9 2.6±5.1 0.505 7.6±15.6 2.5±3.2 0.137

Neutrophil percentage (%) 48.5±29.2 40.1±27.0 0.043* 55.9±26.6 42.1±26.4 0.088

Lymphocyte (×109/L) 5.1±31.1 2.6±7.3 0.449 1.4±1.6 1.7±2.0 0.543

Lymphocyte percentage (%) 36.9±27.9 44.9±27.2 0.049* 31.0±24.4 34.5±23.5 0.635

Monocyte (×109/L) 1.3±5.6 3.5±17.0 0.251 1.3±3.3 4.1±11.3 0.257

Monocyte percentage (%) 10.6±11.3 14.8±17.1 0.052 11.9±14.3 21.3±24.7 0.127

CRP (mg/dL) 72.8±65.5 72.2±70.8 0.954 62.1±67.5 70.4±65.5 0.690

G test (%) 12/31 (38.7) 8/41 (19.5) 0.072 2/9 (22.2) 3/9 (33.3) 0.599

PCT (pg/mL) 1.2±3.9 1.5±5.7 0.746 0.6±1.2 0.3±0.3 0.405

*, P<0.05. IFI, invasive fungal infection; AML, acute myelogenous leukemia; HSCT, hematopoietic stem cell transplant; GVHD,  
graft-versus-host disease; WBC, white blood count; CRP, C-reactive protein; PCT, procalcitonin.
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Effect of combining clinical parameters and radiomics in 
prediction

In multivariable logistic regression analysis, significant risk 
factors for IFI included a higher Radscore, lower monocyte 
percentage, the absence of sputum, and the presence of 
halo sign, nodule, patchy consolidation, or GGO (all 
P<0.05). There was no multicollinearity between the 
significant factors and the Radscore. The list of the selected 
factors and their associated coefficients in the clinical and 
combined model are illustrated in Table 3. Our combined 
model integrating clinical and radiological variables 
with a radiomic signature achieved an AUC of 0.844 in 
the validation set, which indicated improved prediction 
performance compared to the clinical model (AUC =0.696) 
and radiomic model (AUC =0.767) according to the Delong 
test (both P<0.01). The predictive performance results of 

different models are presented in Figure 4 and Table 4.

Nomogram apparent performance and clinical use of DCA

The clinical radiomic nomogram was constructed based on 
the combined model (Figure 5A). The calibration curves 
demonstrated good consistency between the prediction 
and actual observation of IFI and bacterial pneumonia 
in both cohorts (Figure 5B,5C). The Hosmer-Lemeshow 
test yielded nonsignificant statistics in the training cohort 
(P=0.619) and validation cohort (P=0.446), suggesting a 
perfect fit of the nomogram. 

The clinical DCA was used to demonstrate clinical 
decision utility of the combined nomogram (Figure 6). The 
nomogram showed higher net benefit than did that using 
the radiomic signature or clinical features alone, which were 
better than the treat-all or treat-none strategies.
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Table 3 Significant variables selected by multivariate logistic regression analysis

Radiomics model Coefficient Clinical model Coefficient Combined model Coefficient

original_shape_Sphericity 4.327 Halo sign 0.726 Radscore 0.959

original_glcm_Imc1 2.942 Patchy consolidation −1.112 Patchy consolidation −0.763

original_glcm_Imc2 −1.747 GGO −1.748 GGO −1.087

wavelet-LLH_firstorder_Kurtosis 4.45 Nodule 1.035 Nodule 1.087

wavelet-LLL_firstorder_Robust Mean 
Absolute Deviation

2.004 Lymphocyte percentage −0.013 Sputum −0.599

wavelet-LLL_glcm_Correlation 3.919 Monocyte percentage −0.029 Monocyte percentage −0.024

wavelet-LLL_glcm_Joint Energy 0.501 intercept 1.352 intercept 1.096

wavelet-LLL_glcm_Imc1 −0.978

wavelet-LLL_glcm_Imc2 3.403

wavelet-LLL_glcm_Maximum Probability 1.908

wavelet-LLL_glszm_Large Area High Gray 
Level Emphasis

−2.48

wavelet-LLL_gldm_Large Dependence High 
Gray Level Emphasis

0.109

Intercept −0.021

GGO, ground-glass opacity.
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Figure 4 ROC curves of the clinical, radiomics, and combined models in the training (A) and validation (B) dataset. AUC, area under the 
receiver operator characteristic curve; ROC, receiver operator characteristic.

Comparison of the combined nomogram with practicing 
radiologists

The performances on differentiating IFI from bacterial 
pneumonia of the developed nomogram and radiologists 
were then compared. The diagnostic system achieved an 
accuracy of 79.3%, a sensitivity of 80.0%, and a specificity 
of 84.6%, which was overall superior to the values of the 
junior and senior radiologist (Figure 7). Representative cases 
are shown in Figure 8.

Discussion

In the current study, we developed and validated an 
ML-based nomogram that incorporates the radiomic 
signature and clinical characteristics of noninvasive, 
individualized diagnoses of IFI in patients with hematologic 
malignancies. The highest performance was achieved 
with the combination of the selection method KW with 
LR classifier. The proposed clinical radiomic nomogram 
demonstrated favorable discrimination in the validation 
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Table 4 Diagnostic performance of each model in the training and validation cohorts

Model
Training cohort Validation cohort

Clinical model Radiomics model Combined model Clinical model Radiomics model Combined model

AUC (95% CI) 0.730 (0.658, 0.802) 0.803 (0.739, 0.866) 0.822 (0.762, 0.881) 0.696 (0.542, 0.850) 0.767 (0.624, 0.910) 0.844 (0.723, 0.965)

Accuracy 0.681 0.748 0.755 0.689 0.734 0.822

Sensitivity 0.556 0.656 0.756 0.565 0.609 0.913

Specificity 0.806 0.839 0.753 0.818 0.864 0.727

Positive predictive value 0.557 0.657 0.756 0.592 0.638 0.952

Negative predictive value 0.804 0.837 0.753 0.781 0.825 0.697

AUC, area under the receiver operator characteristic curve; CI, confidence interval.
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Figure 5 Nomogram developed with the clinical radiomic model and calibration curves. (A) The developed clinical radiomic nomogram 
for predicting the probability of IFIs. (B,C) Calibration curves for predicting IFIs in the training and validation cohorts. Calibration curves 
indicate the goodness of fit of the constructed nomogram. The predictive performance of the nomogram (red line) closer to the ideal 
prediction line (45° gray line) represents a higher predictive accuracy of the nomogram. GGO, ground-glass opacity; IFI, invasive fungal 
infection. 

cohort (AUC =0.844), outperforming the radiomic-only 
and clinical prediction model. The diagnostic performance 
of the combined model was demonstrated to be superior 
to that of practicing radiologists in a prospective fashion. 
ML-based radiomic analysis could potentially serve as a 
quantitative imaging biomarker to aid discrimination of IFI 
from bacterial pneumonia.

Pulmonary IFI is life-threatening condition with a 
considerable rate of mortality in immunocompromised 
patients (16). Patients with hematologic malignancies have 
an elevated risk of fungal infection due to hypofunction of 
the immune system and frequent use of immunosuppressive 
agents in clinical treatment, and symptoms of pulmonary 
IFI are often nonspecific (17). In clinical practice, the 
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most challenging task is to distinguish IFI from bacterial 
pneumonia. Similarly, the more conventional bacterial 
pathogens are present in opportunistic infections in 
immunocompetent individuals, with fever, chest pain, 
hemoptysis, focal consolidation, and rapid increases in 
inflammatory markers (18). As outlined by the EORTC 
and MSG in 2002 and updated in 2008, the classification 
of proven, probable, or possible IFIs is a helpful tool for 
diagnostic purposes (6). However, the number of proven 
cases is quite low because fine-needle aspiration is invasive 
and limited to thrombocytopenia patients.

CT plays a crucial role in clinical practice for the 
noninvasive diagnosis and management of pulmonary 
infections (7). The updated guidelines have enlarged the 
diagnostic role of CT scans, but imaging signs such as 
macronodules or patchy consolidation with or without 
the halo sign are still not specific, particularly in the early 
stages of pulmonary infections. Thus, in most cases, 
differentiation of fungal and other pneumonias using CT 
with the traditional practice of visual interpretation remains 
challenging. Consolidation is the most common CT finding 
in both diseases. Chen et al. (8) reported that multifocal 
nonsegmental consolidation was found significantly more 
often in patients with IFI (48.0%) than in those with 
bacterial pneumonia (22.6%). By contrast, we found a 
significantly higher frequency of focal patchy consolidation 
in patients with bacterial pneumonia than in those with IFI 
(87.2% vs. 75.5%; P<0.05), although similar definitions were 
used for bacterial pneumonia and pulmonary IFI. This can be 
attributed to the distribution bias relating to different patient 
populations. Moreover, the presence of nodules has been 
proven to be a significant risk predictor, which has long been 
considered to increase the risk of IFI (19). 

Radiomics is a relatively new technique and has received 
much attention in cancer research (20). This approach 
allows high-throughput quantitative extraction of numerous 
invisible features (21). Radiomic signatures have succeeded 
in a variety of tumor-related analyses (22-26) but have rarely 
been used to investigate infectious diseases. It is known that 
IFI and bacterial pneumonia are completely different in 
terms of angiogenesis and inflammation. The heterogeneity, 
therefore, can be revealed by radiomic features. In this 
study, we found that the radiomic features of pulmonary 
lesions could be used to facilitate IFI diagnosis, with an 
accuracy of 0.767 in the validation set. Similar to our 
results, a recent study used texture analysis from 970 CT 
imaging features and demonstrated that radiomic features 
could be used as noninvasive biomarkers for the differential 

diagnosis of primary progressive pulmonary tuberculosis 
from community-acquired pneumonia in children (12). This 
study also demonstrated that 3D radiomic features showed 
better reproducibility and discrimination efficacy than 
did the 2D features, although 3D features are more time-
consuming and require heavy-load computation. This is 
probably because the VOIs derived from 3D segmentation 
can provide the entire volumetric information of the lesions 
and be less vulnerable to hand-related artifacts (27). 

Recent research has suggested that radiomics combined 
with ML algorithms showed promising potential in various 
fields, such as the differential diagnosis of pulmonary 
lesions (28) as well as the prediction of hospital stays in 
patients with SARS-CoV-2 infection (29) and disease-
specific survival outcomes (30). Compared with previous 
studies, more selection methods and classifiers were assessed 
in this work to identify the optimal model with the best 
diagnostic performance. Among the classifiers showing 
feasible discriminative ability, LR is a representative of 
the linear classifiers, which enables the combination of 
selected radiomic features into a radiomic signature (31). By 
contrast, SVM is a nonlinear classifier, which uses support 
vectors to develop a polynomic hyperplane to separate 
classes. In this study, LR-based models achieved satisfactory 
performance with the highest AUC in the cross-validation 
group. Nonetheless, the suitable ML methods may vary in 
different clinical applications. For example, Zhang et al. (32) 
reported that RFE with SVM showed the best performance 
in molecular subtype stratification of lower-grade glioma.

According to multiple logistic regression analysis, 
this study identified lower monocyte percentage as an 
independent clinical variable associated with IFI. In particular, 
patients with impaired cellular function of phagocytes are 
susceptible to fungal infection, with an incidence of up 
to 25% being reported in the literature (33). The clinical 
radiomic model achieved better predictive efficacy than 
did the radiomic signature or clinical features alone, with a 
higher AUC and net benefit in DCA. Based on our results in 
this prospective pilot study, the combined model performed 
equally well (12/15, 80.0%) in the diagnosis of pulmonary 
IFI to the senior radiologist and outperformed a junior 
radiologist in discriminating IFI and bacterial pneumonia. 
The constructed nomogram in our study was conveniently 
used to predict the individualized probability of IFI. 

This study has several limitations. First, the patients were 
assessed retrospectively in the training and validation phase, 
and thus selection bias was inevitable. Second, the sample 
size was relatively small, which partly led to the similar 
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diagnostic performance across most of the tested models. 
More samples from different independent centers are 
needed to validate the robustness and generalization of the 
prediction model. Third, the boundary delineation of the 
3D lesions is time-consuming and complicated. Potential 
subjectivity during the process of manual segmentation 
may hamper reproducibility of the results. Fourth, 
although multifold cross-validation was performed when 
constructing the ML classifiers, overfitting still occurred. 
This computational approach requires improvement in 
further studies. Finally, the gold standard for investigating 
IFI was based on the respiratory tract specimen and not on 
the histologic examination undertaken in this study.

Conclusions

A noninvasive ML-based radiomic nomogram was 
developed through integrating CT radiomic signatures 
and clinical risk factors, which exhibited favorable accuracy 
for the differentiation of IFI and bacterial pneumonia in 
patients with hematologic malignancies. This quantitative 
radiomic diagnostic model may be useful for precision 
medicine and improving medical decision support. 
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