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Abstract
There are over a 100 driver gene mutations in patients with diffuse large B-cell 
lymphoma (DLBCL), but their clinical significance remains unclear. Here, we 
first analyzed the DLBCL dataset from the UK-based Haematological Malignancy 
Research Network. Patients were divided into high- and low-risk groups based on 
whether lymphoma progressed within 24 months. Genes showing significantly 
different frequencies between groups were selected. Survival data for patients 
with the selected mutant genes were analyzed. The results were validated using 
two other large databases to evaluate the relationship between the selected mu-
tant genes and prognosis. The mutation frequencies of 11 genes (MYD88[L265P], 
SGK1, MPEG1, TP53, SPEN, NOTCH1, ETV6, TNFRSF14, MGA, CIITA, and 
PIM1) significantly differed between the high- and low-risk groups. The relation-
ships between these mutant genes and patient survival were analyzed. Patients 
who harbored SGK1 (serum and glucocorticoid-inducible kinase 1) mutations ex-
hibited the best prognosis. Most patients with SGK1 mutation are germinal center 
B-cell (GCB) subtype. Among patients with GCB DLBCL, those harboring SGK1 
mutations exhibited better prognosis than those without SGK1 mutations. Most 
SGK1 mutations were single-base substitutions, primarily scattered throughout 
the catalytic domain-encoding region. Multiple SGK1 mutations were identified 
in a single patient. Thus, SGK1 mutations are a marker of good prognosis for 
DLBCL and occur predominantly in the GCB subtype of DLBCL. SGK1 muta-
tion status can further stratify patients with GCB DLBCL into different prognostic 
subgroups.
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1   |   INTRODUCTION

Diffuse large B-cell lymphoma (DLBCL) is the most com-
mon type of lymphoma. The most frequently used clin-
ical indicators for the prognosis of DLBCL include the 
International Prognostic Index, which predicts prognosis 
based on patient clinical characteristics, and indicators 
that predict prognosis based on the cell of origin (COO) 
(namely the germinal center B-cell [GCB] and activated 
B-cell [ABC] subtypes of DLBCL). Widespread clinical 
use of next-generation sequencing has led to the dis-
covery of more than 100 cancer driver genes associated 
with lymphoma. Several recent studies have sought to in-
troduce the use of cancer driver gene mutations for the 
molecular classification of DLBCL.1–3 However, these 
studies were retrospective and used complicated classi-
fication procedures based on computational algorithms. 
Additionally, standardized criteria were not used among 
these studies, and the same gene mutation appeared in 
different molecular subtypes, rendering the results dif-
ficult to apply prospectively for subtype classification in 
patients. Furthermore, limited information is available on 
each mutant gene; thus, it is difficult to utilize the mu-
tants accurately to guide clinical treatment. Except for the 
MYD88(L265P) mutation, which appears to be clinically 
important (patients with this mutation have a poor prog-
nosis),4,5 knowledge on other DLBCL gene mutations is 
limited. Based on extensive sequencing efforts worldwide 
and identification of common DLBCL mutations, future 
research should focus on interpreting the available muta-
tion data. To this end, we analyzed the datasets contain-
ing detailed clinical and gene mutation data published 
in high-impact journals, to identify clinically significant 
mutant genes that can predict prognosis and treatment ef-
fectiveness in DLBCL.

2   |   MATERIALS AND METHODS

2.1  |  DLBCL cohorts

Datasets from three published articles were reanalyzed in 
this study. The gene mutation and clinical data are pro-
vided in Supporting Information. The discovery patient 
cohort was from the Lacy et al. Dataset (S2),3 and the gene 
mutation data and detailed patient clinical data are in-
cluded in Supporting Information of their study. Patients 
in the Lacy et al. dataset were derived from the UK 
population-based Haematological Malignancy Research 
Network (HMRN; https://www.hmrn.org). The valida-
tion datasets included cohorts from studies conducted by 
Reddy et al. (Dataset S3)6 and by Chapuy et al. (Dataset 
S1)2

2.2  |  Analysis methods

The discovery dataset was evaluated using data from the 
HMRN reported by Lacy et al. The HMRN dataset has 
a large sample size and contains comprehensive clini-
cal data. We first selected patients who were followed 
up for 24 months or longer; based on their Progression 
of Disease within 24 Months (POD24), we divided these 
patients into high-  and low-risk groups. Chi-square 
test was used to analyze the frequencies of different 
mutated genes in the groups, and genes showing sig-
nificant differences in frequency between groups were 
selected. Survival curves were plotted to identify muta-
tions impacting prognosis. The results were validated 
using published data by Reddy et al. and Chapuy et al. 
The relationships between selected gene mutations and 
DLBCL subtypes were analyzed.

2.3  |  Lollipop plot of mutation sites 
in SGK1

serum and glucocorticoid-inducible kinase 1 (SGK1) mu-
tation data from the DLBCL cohort from Lacy et al. were 
downloaded. Data analysis was conducted using R ver-
sion 3.5.2 (R Core Team). After eliminating mutations 
that did not lead to protein changes, the sites of gene mu-
tations and frequencies of genes containing these muta-
tions were obtained. Lollipop plots were drawn using 
the R package Maftools7 and trackViewer8 to illustrate 
the sites of mutations in SGK1 and corresponding sites 
in the SGK1 protein. The sequences of SGK1 splice iso-
forms were obtained from the UniProt website (http://
www.unipr​ot.org). We compared these amino acid se-
quences and found the identification number of the 
SGK1 splice isoform corresponding to that reported in 
the article to be O00141-2 (RefSeq code NM_001143676). 
Based on this information, the sequences of the protein 
domains of the SGK1 splice isoform were obtained from 
the UniProt website. Annotations of the protein domains 
obtained were loaded into a GRanges object, along with 
the mutation site data.

2.4  |  Statistical analysis

Statistical analyses were performed using GraphPad Prism 
version 7.00 (GraphPad, Inc.) and R version 3.5.2 (R Core 
Team) statistical software. Pearson's chi-square test was 
employed to compare categorical data. Survival analyses 
were performed using Kaplan–Meier plots and a log-rank 
test. A two-sided p value <0.05 was considered to indicate 
significant results, unless otherwise stated.

https://www.hmrn.org
http://www.uniprot.org
http://www.uniprot.org
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3   |   RESULTS

3.1  |  DLBCL patients with POD24 have a 
poor prognosis

Based on our definitions, the Lacy et al. dataset in-
cluded 252 patients in the high-risk group and 476 pa-
tients in the low-risk group, whereas the Chapuy et al. 
dataset included 72 patients in the high-risk group and 
174 patients in the low-risk group. The survival curves 
of the two cohorts stratified by risk group are shown in 
Figure 1. The results showed that patients with POD24 
had an inferior overall survival (OS) compared with 
those without POD24 (p < 0.001).

3.2  |  Frequencies of mutated genes 
in high- and low-risk groups and their 
relationship with prognosis

The gene mutation data in the Lacy et al. dataset were 
analyzed, and the mutation frequencies of different genes 
in the high- and low-risk groups were compared. The mu-
tation frequencies of 11 genes, namely MYD88(L265P), 
SGK1, MPEG1, TP53, SPEN, NOTCH1, ETV6, TNFRSF14, 
MGA, CIITA, and PIM1, significantly differed between 
groups (Table 1).

Next, we investigated the relationships between the 
selected mutant genes and prognosis by analyzing data 
from the patients who were administered the R-CHOP 

F I G U R E  1   Overall survival of high- 
and low-risk subgroups identified by 
Progression of Disease within 24 Months. 
(A) Cohort from Lacy et al. study and (B) 
cohort from Chapuy et al. study
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regimen. OS was compared between patients with 
these 11 mutant genes and those without mutations in 
any of the abovementioned genes (i.e., not elsewhere 

classified group). Patients harboring mutations in 
different genes were assigned to multiple groups. 
Patients in the SGK1 mutation group exhibited the best 

Gene name Good prognosis (n/%) Poor prognosis (n/%) p-value

MYD88L265P 48 (10.08) 50 (19.84) 0.00038

SGK1 95 (19.96) 24 (9.52) 0.00044

MPEG1 14 (2.94) 19 (7.54) 0.00804

TP53 75 (15.76) 60 (23.81) 0.01048

SPEN 11 (2.31) 15 (5.95) 0.02095

NOTCH1 7 (1.47) 11 (4.37) 0.03221

ETV6 23 (4.83) 23 (9.13) 0.03521

TNFRSF14 95 (19.96) 34 (13.49) 0.03830

MGA 13 (2.73) 1 (0.40) 0.04256

CIITA 9 (1.89) 12 (4.76) 0.04893

PIM1 112 (23.53%) 77 (30.56%) 0.04904

T A B L E  1   Mutant genes with 
significant differences in frequencies 
between the high- and low-risk groups 
(data source: Lacy et al. dataset)

F I G U R E  2   Overall survival of 
patients harboring different mutant genes 
(dataset from Lacy et al.)
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F I G U R E  3   Overall survival of 
patients with DLBCL with and without 
SGK1 mutations. (A) Cohort from Lacy 
et al. study, (B) cohort from Chapuy et al. 
study, and (C) cohort from Reddy et al. 
study
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prognosis (SGK1 was commonly mutated in DLBCL) 
(Figure 2).

We analyzed two additional datasets to confirm that 
patients with SGK1 mutations exhibited a good prognosis 
(Figure 3).

3.3  |  Relationship between SGK1 
mutations and COO

Data from patients with SGK1 mutations were extracted 
from the three datasets and the COO of DLBCL was an-
alyzed. Among the patients whose DLBCL had a clear 
COO, most had the GCB DLBCL subtype (Table 2).

3.4  |  Effects of SGK1 mutations on the 
prognosis of GCB and novel DLBCL 
molecular subtypes

The current standard first-line treatment for patients 
with DLBCL is the R-CHOP regimen. We analyzed the 
Lacy et al. dataset by selecting 191 patients with the GCB 
DLBCL subtype who were administered the R-CHOP regi-
men. The patients were divided into two groups based on 
their SGK1 mutation status, and survival curves were plot-
ted. The results showed that the patients with GCB and 
SGK1 mutations exhibited a better prognosis than those 
without SGK1 mutations, indicating that GCB patients 
can be further stratified by their SGK1 mutation status. 
Similar results were obtained after the analysis of the 
Chapuy et al. dataset (Figure 4).

In the Lacy et al. dataset, DLBCL was classified into 
five clusters using the Akaike Information Criterion, 
namely MYD88, BCL2, SOCS1/SGK1, TET2/SGK1, and 
NOTCH2, along with a cluster of unclassified gene mu-
tations. Most patients with SGK1 mutations were classi-
fied into the SOCS1/SGK1 or TET2/SGK1 clusters. The 
COO in these two clusters was primarily the GCB DLBCL 
subtype, which was also the molecular subtype associ-
ated with good prognosis. We reclassified the patients into 
three groups: (1) Patients in the SOCS1/SGK1 and TET2/
SGK1 clusters with SGK1 gene mutations; (2) Patients in 

the SOCS1/SGK1 cluster without SGK1 mutations; and (3) 
Patients in the TET2/SGK1 cluster without SGK1 muta-
tions. After eliminating data from patients in the SOCS1/
SGK1 and TET2/SGK1 clusters with SGK1 mutations, we 
found that patients in the two clusters without SGK1 mu-
tations had a poor prognosis (Figure 5A).

The Chapuy et al. dataset used nonnegative matrix fac-
torization consensus clustering for 158 identified driver 
gene mutations in DLBCL. They discovered five subsets 
of patients with discrete genetic signatures (C1–C5) and 
an additional subset of patients without detectable driver 
gene mutations (C0). The C3 and C4 subsets in the Chapuy 
et al. dataset were primarily of the GCB DLBCL subtype. 
We analyzed the C3 and C4 subsets from their study and 
found that the patients in the C3 and C4 subsets who were 
administered the R-CHOP regimen and possessed SGK1 
mutations exhibited a better prognosis than those without 
SGK1 mutations (Figure 5B).

3.5  |  Characteristics of SGK1 mutations

Using the Lacy et al. dataset, we identified the mutated 
proteins encoded by mutant SGK1, enabling further anal-
ysis of the characteristics of these SGK1 mutants. Most 
SGK1 mutations were single-base substitutions, with a 
few being small deletions. SGK1 mutations were primar-
ily scattered throughout the catalytic domain (Figure 6). 
A patient could simultaneously harbor multiple muta-
tions in the SGK1 gene. Of the 138 patients with SGK1 
mutations, 57 had one SGK1 mutation, 48 had 2 to 5 SGK1 
mutations, and 33 had six or more SGK1 mutations. The 
largest number of SGK1 mutations identified in a patient 
was 23.

4   |   DISCUSSION

Next-generation sequencing is widely used in clinical can-
cer research. The relationship between gene mutations 
and the development and prognosis of DLBCL is a research 
hotspot. More than 100 driver genes have been identified 
in DLBCL, and common mutations have been identified. 

Study

Number 
of SGK1 
mutations GCB ABC Unknown p

Lacy et al. 138 66 6 65 <0.0001

Chapuy et al. 38 25 3 10 <0.0001

Reddy et al. 93 51 11 31 <0.0001

Abbreviations: ABC, activated B-cell; COO, cell of origin; GCB, germinal center B-cell.

T A B L E  2   Relationship between SGK1 
mutations and COO
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F I G U R E  4   Overall survival of 
patients with germinal center B-cell 
(GCB)-diffuse large B-cell lymphoma with 
and without SGK1 mutations. (A) Cohort 
from Lacy et al. study, (B) cohort from 
Chapuy et al. study, and (C) cohort from 
the Reddy et al. study
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However, key issues, such as how to interpret the muta-
tion data and the clinical significance of the mutations, 
remain poorly understood and require urgent attention. 
Several recent studies have sought to introduce muta-
tion data into the molecular classification of DLBCL to 

investigate the relationships between gene mutations and 
COO and prognosis. The use of gene mutations for molec-
ular classification of DLBCL was first reported by Schmitz 
et al.1 However, 53.4% of the patients in the Schmitz et al. 
study could not be classified, indicating the limitations of 

F I G U R E  5   (A) Overall survival of 
SOCS1/SGK1 and TET2/SGK1 clusters 
with and without SGK1 mutations. (B) 
Overall survival of C3 and C4 subsets with 
and without SGK1 mutations

F I G U R E  6   Distribution of SGK1 mutations. Vertical lines at the top and bottom of the figure indicate the positions of the respective 
missense mutations causing diffuse large B-cell lymphoma, and numbers in the circles at the end of vertical lines represent the frequencies 
of the mutations
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their classification system. The Chapuy et al.2 dataset pub-
lished in 2018 reported a comprehensive genetic analysis 
of 304 DLBCL cases. Based on gene mutation data, altera-
tions in copy number, and structural variations, patients 
with DLBCL in this study were classified into five subsets 
(C1–C5). Specifically, C1 and C5 were predominantly of 
the ABC origin, C3 and C4 were predominantly of the 
GCB origin, C2 was of both ABC and GCB origins, and C0 
lacked detectable genetic drivers. Analysis of the relation-
ships between the new genotypes and patient prognosis 
indicated that patients in the C0, C1, and C4 subsets had 
more favorable prognosis compared to the patients in the 
C3 and C5 subsets who had poor prognosis. The study 
published by Lacy et al.3 in 2020 analyzed the gene mu-
tation signatures of 928 patients with DLBCL by targeted 
sequencing of 293 genes, and divided the patients into 
five clusters: MYD88, BCL2, SOCS1/SGK1, TET2/SGK1, 
and NOTCH2. Among them, the MYD88 and BCL2 clus-
ters were mainly of ABC origin, SOCS1/SGK1 and TET2/
SGK1 clusters were mainly of GCB origin, and NOTCH2 
comprised a mixture of ABC, GCB, and unclassified cases. 
The 5-year OS rates of patients in the MYD88, NOTCH2, 
NEC, BCL2, SOCS1/SGK1, and TET2/SGK1 clusters were 
42%, 48.1%, 53.6%, 64.9%, 62.5%, and 60.1%, respectively. 
Based on the 5-year survival rates, there was no significant 
difference among BCL2, SOCS1/SGK1, and TET2/SGK1, 
suggesting that the classification had suboptimal prognos-
tic utility. Both the Chapuy et al.2 and Lacy et al.3 datasets 
were retrospective studies that clustered patients with dif-
ferent genetic signatures using computational algorithms. 
The methods used by these studies were complicated, and 
standardized classification criteria were lacking. A patient 
often harbored multiple mutations that belonged to differ-
ent subtypes. These facts rendered classification difficult 
and posed challenges to the widespread prospective ap-
plication of the classification system in the clinic.

To gain further insight into the clinical significance of 
the DLBCL driver gene mutations, we reinterpreted the 
abovementioned studies. The Lacy et al. dataset3 com-
prised a large sample size, with detailed clinical and gene 
mutation data. We divided their cohort into high-  and 
low-risk groups based on the presence of POD24 and 
found that the mutation frequencies of 11 genes, includ-
ing MYD88(L265P), SGK1, MPEG1, TP53, SPEN, NOTCH, 
ETV6, TNFRSF14, MGA, CIITA, and PIM1, were signifi-
cantly different between the high-  and low-risk groups. 
Analysis of the relationship with patient survival showed 
that patients with SGK1 mutations had the best prognosis. 
We then utilized data from the Reddy et al.6 and Chapuy 
et al.2 datasets and confirmed that patients with SGK1 
mutations had a good prognosis. The mutation frequency 
of SGK1 in DLBCL is 10%–16%.2,3,6 Although SGK1 muta-
tion is considered as common, its clinical significance is 

poorly understood. Furthermore, the prognostic impact of 
SGK1 mutations has not been reported. Therefore, we fo-
cused on delineating the significance of SGK1 mutations 
in DLBCL. We found that most patients with SGK1 muta-
tions had DLBCL originating from GCB. Further analy-
sis showed that among patients with GCB DLBCL, those 
with SGK1 mutations exhibited a better prognosis than 
those without SGK1 mutations. In the Lacy et al.3 dataset, 
most patients with SGK1 mutations were classified into 
the SOCS1/SGK1 and TET2/SGK1 clusters. The COO in 
these two clusters were primarily GCB, and the patients 
in these two clusters also had a good prognosis. However, 
these two clusters included many patients without SGK1 
mutations. Thus, we regrouped the patients in both clus-
ters, such that patients with SGK1 mutations were in one 
group. We then compared the prognosis data for patients 
with and without SGK1 mutations in the SOCS1/SGK1 
and TET2/SGK1 clusters. We found that the patients in 
these two clusters without SGK1 mutations had a poorer 
prognosis than those with SGK1 mutations, suggesting 
that these two clusters could be further stratified by the 
SGK1 mutation status. In the Chapuy et al.2 dataset, the 
C3 and C4 subsets were comprised predominantly of the 
GCB DLBCL subtype. We analyzed the C3 and C4 subsets 
in the study and found that among patients in the C3 and 
C4 subsets who were administered the R-CHOP regimen, 
those with SGK1 mutations exhibited a better prognosis 
than those without SGK1 mutation. This suggests that the 
C3 and C4 subsets can be further stratified by the SGK1 
mutation status.

Most SGK1 mutations were single-base substitutions, 
which were scattered throughout the catalytic domain of 
the enzyme. Additionally, multiple SGK1 mutations could 
be identified in any one patient. Notably, SGK1 has been 
reported to exhibit oncogenic properties.9 Therefore, SGK1 
may play an oncogenic role in DLBCL development and 
progression with the mutation leading to its inactivation. 
Therefore, the SGK1 mutation appears to be a promising 
molecular marker for prognosis in DLBCL and occurs pre-
dominantly in the GCB DLBCL subtype.

The origin of GCB DLBCL is the B cells in the germinal 
center (GC). The GC is a special microenvironment in sec-
ondary lymphoid tissues, where antigen-activated B cells 
undergo clonal expansion, immunoglobulin class switch-
ing, and affinity maturation. GC cells repeatedly migrate 
between the dark zone and light zone of lymphoid folli-
cles. These cells undergo clonal expansion and somatic 
hypermutation in the dark zone, followed by B-cell recep-
tor affinity selection in the light zone.10–13

SGK1 is a serine/threonine kinase in the AGC kinase 
family and shares high homology and many kinase func-
tions with the Akt family.14 SGK1 was originally cloned 
from rat mammary tumor cells stimulated by serum and 
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glucocorticoids. Its function is closely associated with 
the phosphorylation of mammalian target of rapamycin 
(mTOR).15 SGK1 transforms into an open conformation 
upon phosphorylation by mTOR at Ser422 and becomes 
fully activated by PDK1.16,17 SGK1 has been implicated in 
numerous physiological and pathological processes and 
plays an important role in oncology. SGK1 is a crucial Akt-
independent regulator of the PI3K/mTOR signaling path-
way which is involved in the regulation of cancer growth, 
survival, metastasis, autophagy, immunomodulation, can-
cer stem cells, cell cycle, and induction of therapeutic re-
sistance. Very recently, Gao and colleagues reported that 
there were some mutations with enhanced function, the 
splice mutants, nonsense and frameshift variants within 
exon-1 result in translation from downstream methionine 
that exclude the degradation domain and thereby generate 
stabilized SGK1 protein isoforms.18 The relationship be-
tween gain of function mutation and prognosis is unclear 
and needs further study.

Several studies on SGK1 revealed that its expression is 
elevated in a multitude of cancers and was found to be as-
sociated with cancer growth, survival, and metastasis.19–22 
SGK1 is essential for the proliferation of cancer cells that 
rely on PI3K activation, and SGK1 deficiency reduces the 
proliferation and viability of cancer cells in various ma-
lignant cancers.23–27 Combined inhibition of SGK1 and 
Akt has been shown to be more effective in suppressing 
cell growth than in inhibiting either PI3K or Akt alone.26 
SGK1 has been shown to induce resistance to chemo- and 
radiotherapy in many human cancers,28 whereas an SGK1 
inhibitor significantly increased the apoptosis of colon 
cancer and breast cancer cells following radiotherapy.23,29

In DLBCL, mutation of SGK1 may lead to its loss of 
function, rendering lymphoma cells more sensitive to 
glucocorticoids, chemotherapy drugs, and radiotherapy, 
thereby improving prognosis. Inhibition of SGK1 activity 
may be a potential anticancer treatment approach, par-
ticularly for GCB DLBCL. Previous studies focused on 
identifying genetic markers associated with poor progno-
sis; however, the recent Flyer30 and S100131 trials showed 
that de-escalating therapy may be appropriate for low-risk 
DLBCL. Therefore, identification of a low-risk marker 
is important for eliminating short- and long-term toxici-
ties. SGK1 mutation can define a group of patients with 
DLBCL with favorable prognosis. However, whether the 
intensity of chemotherapy can be reduced in this group of 
patients requires further analysis.
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