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ABSTRACT

The conserved DnaA-oriC system is used to initi-
ate replication of primary chromosomes through-
out the bacterial kingdom; however, bacteria with
multipartite genomes evolved distinct systems to
initiate replication of secondary chromosomes. In
the cholera pathogen, Vibrio cholerae, and in re-
lated species, secondary chromosome replication re-
quires the RctB initiator protein. Here, we show that
RctB consists of four domains. The structure of its
central two domains resembles that of several plas-
mid replication initiators. RctB contains at least three
DNA binding winged-helix-turn-helix motifs, and mu-
tations within any of these severely compromise bio-
logical activity. In the structure, RctB adopts a head-
to-head dimeric configuration that likely reflects the
arrangement in solution. Therefore, major structural
reorganization likely accompanies complex forma-
tion on the head-to-tail array of binding sites in oriCII.
Our findings support the hypothesis that the second
Vibrionaceae chromosome arose from an ancestral
plasmid, and that RctB may have evolved additional
regulatory features.

INTRODUCTION

Regulated initiation is a common feature of DNA replica-
tion systems of chromosomes. Although incompletely un-
derstood at the atomic level, studies in Escherichia coli and

other bacterial model systems have yielded great insight
into this critical process (1–8). Two molecular players play
a central role in the current model: (i) the origin of DNA
replication, a site on the chromosome where DNA synthe-
sis begins, and (ii) the initiator protein that recognizes seg-
ments of double-stranded DNA and single-stranded DNA
within the origin (1). In E. coli, where initiation of bac-
terial chromosomal replication has been extensively stud-
ied, binding of multiple DnaA initiator proteins (∼53 kD)
to sites within the 245 bp oriC DNA sequence leads to
assembly of a large multi-protein DNA complex (1,9,10).
The DnaA–OriC complex mediates initial melting of origin
DNA within an A-T rich segment of the origin (1,11,12);
the resulting single-stranded DNA is bound and stabilized
by an oligomeric form of DnaA (4,13). Melted DNA at
the origin serves as the entry point for the replicative he-
licase, and additional events lead to establishment of the
replisome (14). Notably, DnaA is conserved in all bacte-
ria (15), suggesting that the E. coli paradigm for initiation
of chromosome replication applies throughout the bacte-
rial kingdom. Furthermore, many elements of the bacterial
paradigm can be discerned in the more elaborate replication
systems found in eukaryotes (16–18).

However, organization of the bacterial genome into the
paradigmatic single circular chromosome found in E. coli
is by no means universal. For example, the genomes of sev-
eral bacterial families, including the Vibrionaceae and the
related Photobacteriacea, are distributed across more than
one chromosome (19). Relatively little is known about the
factors and mechanisms that govern replication initiation
of secondary chromosomes in bacteria with multipartite
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Figure 1. Architecture of the origin of DNA replication of the secondary
chromosome (oriCII) from Vibrio cholerae. oriCII contains five distinct
binding sites for the RctB initiator, named for their length: 12-mer (pink),
11-mer (cyan), 39-mer (black), 29-mer (purple) and the rctA-39-mer (teal).
The oriCII-min segment contains six direct repeats of the 12-mer site, and is
sufficient to direct replication initiation in the presence of RctB. The other
RctB binding sites are proposed to serve regulatory purposes. The origin
also contains binding sites for DnaA (light orange) and integration host
factor (IHF, light green), and an A-T rich region (white) that is the locus
of the initial melting at the origin. The numbered black bars represent the
probes used for DNA binding electrophoretic mobility shift assay.

genomes. In Vibrio cholerae, the causative agent of cholera,
replication of the larger primary chromosome (chrI) is man-
aged by a DnaA-oriC system that closely resembles that of
E. coli (20–22). In contrast, replication of the smaller sec-
ondary chromosome (chrII) is managed by a parallel system
that contains unique components (20,21). Neither the chrII
origin (oriCII), nor RctB, its cognate replication initiator
protein, bear any sequence similarity to functional analogs
utilized by characterized chromosome or plasmid replica-
tion systems (19).

RctB is a highly conserved 75.3 kD protein (658 residues),
which is unique to the Vibrionaceae, and shows no de-
tectible relationship to any other protein in the sequence
database. The first ∼500 amino acids of RctB are suffi-
cient to mediate oriCII-based replication (19,23,24) and its
C-terminal 165 residues may mediate regulatory processes
(19,23–25). The restriction of RctB to the Vibrionaceae, a
large family of organisms that includes several important
human and fish pathogens, suggests it as a potential tar-
get for discovery and design of novel selective antibacterial
agents (26).

The V. cholerae oriCII DNA element spans 887 base-
pairs, and is organized into two functional domains (Fig-
ure 1) (25). These are: (i) a 367 bp segment (oriCII-min)
that supports RctB-based replication of plasmids contain-
ing this sequence in V. cholerae and E. coli (21), and (ii) an
adjacent 520 bp segment (oriCIIinc), which exerts a negative
regulatory role on oriCII-based replication (21,25). Both
oriCIIinc and oriCII-min harbor a variety of sites, referred
to as 12-mers, 11-mers, 39-mers and 29-mers based on their
lengths, which are known to bind RctB (19,21,27–29) (Sup-
plementary Table S1). OriCII-min contains a 167 bp region
that harbors six 12-mer sites, arranged with a regular spac-
ing (10 or 11 bps apart) in a head-to-tail manner. Thus,
six copies of RctB (or a multiple thereof) are expected to
bind to oriCII-min, and associate into an oligomeric entity
that should retain the head to tail configuration of the 12-
mer sites. OriCII-min also contains a single binding site for
DnaA, which is required for chrII replication (21). The re-
maining 190 bp of the oriCII-min element contains an A-T
rich segment, which is likely melted to initiate replisome as-
sembly (25), and a 29-mer RctB binding site that overlaps
with the rctB promoter (29). Thorough mutational anal-
ysis of oriCII-min revealed high sensitivity to introduced

changes (e.g. changes in the spacing between 12-mer bind-
ing sites impaired oriCII-based replication (25)).

With a mass of 75.3 kDa, RctB is larger than other initia-
tors for bacterial (DnaA: ∼53 kDa) or plasmid DNA repli-
cation (RepE: 29 kDa, �: 35 kDa), implying that the second
V. cholerae initiator (DnaA is the first) may encode addi-
tional functions not found in other initiators. To gain in-
sights into mechanisms implemented by RctB at oriCII, we
describe biochemical and structural analyses of RctB. Our
findings suggest that RctB is comprised of four structural
domains. The two central domains of RctB are structurally
related to the plasmid replication initiators RepE and �.
However, RctB contains two additional domains not found
in the plasmid initiators, and we found that one of these do-
mains is also critical for the initiator to bind to oriCII and
mediate replication. The finding that the DNA binding sur-
face of RctB is comprised of domains 1, 2 and 3 provokes re-
examination of models of binding to the array of 12-mers in
oriCII-min. The head-to-head dimeric configuration seen in
the RctB structure is incompatible with binding to the head-
to-tail arrangement of binding sites in oriCII; this suggests
that dissociation and/or conformational switching in RctB
dimers must accompany the initiator’s binding to oriCII.

MATERIALS AND METHODS

Plasmids

The wild-type RctB expression construct has been de-
scribed (19). Other RctB expression constructs were gener-
ated using conventional PCR-based cloning. Point mutants
were generated using the QuikChange® II XL site-directed
mutagenesis kit (Agilent).

The oriCII-min transformation plasmid, as well as plas-
mids from which the electrophoretic mobility shift assay
(EMSA) probes corresponding to (i) the array of six 12-
mer sites, (ii) the inc11 site and (iii) the inc12 site were gen-
erated have been described (25). Plasmids containing the
EMSA probes corresponding to the inc39 site, the rctA39
site and the PrctB sites were generated by inserting the rele-
vant double-stranded DNA (Supplementary Table S4) into
the SmaI restriction of pBlueScript II KS+.

A complete list of plasmids, primers and EMSA probes
appears in Supplementary Tables S3–S5, respectively. The
sequence of the insert in each plasmid was verified by DNA
sequencing (Genewiz).

Protein biochemistry

Proteins in this study were produced using standard meth-
ods for preparing recombinant proteins in bacteria (30). Ex-
pression plasmids for full length (19) and designed vari-
ants (Supplementary Table S2) included C-terminal hex-
ahistidine affinity tags; the full-length RctB constructs (wild
type and the mutants), as well as the RctB-1-499 con-
structs, contained an additional alanine in position 2 fol-
lowing the first methionine, and additional leucine and glu-
tamic acid residues at the C-terminus preceding the hex-
ahistidine affinity tag; RctB-2-124 and RctB-155-483 con-
structs contained the hexahistidine affinity tag only. All the
expression plasmids were grown in E. coli BL21. Small-
scale growths were performed in LB media supplemented
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with 50 �g/ml kanamycin. Cultures were started by ad-
dition of an overnight ‘starter’ culture prepared from a
fresh transformation at a 5% volume ratio of starter to cul-
ture volume. Cells were cultured at 37◦C until their den-
sity reached at OD600 ≈ 0.6–0.7, the culture was cooled
to ∼20◦C, and protein expression was induced by addition
of 1 mM isopropyl-�-D-thiogalactopyranoside to the cul-
ture medium. Protein expression was allowed to continue
at 16◦C for 14–18 h. Cells were then harvested by centrifu-
gation and resuspended in buffer A (500 mM NaCl, 50 mM
sodium phosphate (pH 8.0), 5% glycerol) at a ratio of 5 ml
of buffer A per gram of cells. Large scale growths were car-
ried out in a fermenter as above, except that SuperBroth (12
g/l tryptone, 24 g/l yeast extract, 2.3 g/l KH2PO4, 12.5 g/l
K2HPO4, 3.2% glycerol), supplemented with 1 mM MgCl2
and 0.1 mM CaCl2 was used in place of LB, 100% oxygen
was bubbled through the media at 0.5–1 l/min, and the ag-
itation rate was set to 450 RPM. The culture was grown
at 37◦C until its density reached OD600 ≈ 2. Protein ex-
pression was induced by addition of 1 mM isopropyl-�-D-
thiogalactopyranoside to the media. Protein expression was
allowed to proceed for 14–18 h at 27◦C. RctB proteins sub-
stituted with selenomethionine were prepared as described
(31,32).

RctB proteins used for EMSAs were expressed and puri-
fied as described previously (21,33).

RctB proteins that were used for crystallization were puri-
fied using different purification protocols with a number of
chromatography steps. The first purification step was com-
mon for all the purification protocols. The proteins were
initially purified by thawing frozen biomass cells express-
ing the appropriate construct into Ni buffer A (500 mM
NaCl, 50 mM potassium phosphate, pH 8.0) such that a
3-fold dilution was achieved. Cell lysis was achieved by son-
ication. The soluble fraction was then isolated by centrifu-
gation and incubated with nickel-nitrilotriacetic acid (Ni-
NTA) agarose (QIAGEN) for 40 min at 4◦C.

For RctB-2-124, the Ni-NTA agarose beads were washed
with a set of buffer solutions with increasing imidazole
concentration containing up to 40 mM imidazole; RctB-
2-142 was then eluted by washing with 500 mM imida-
zole. The Ni-NTA purified material was diluted 5-fold (to
achieve a final NaCl concentration of 100 mM) with Q-
SP buffer A (20 mM Tris 7.4, 5% glycerol, 5 mM beta-
mercaptoethanol), and applied to a Q column (Q Sepharose
Fast Flow, GE Healthcare) arranged inline with an SP-
column (SP Sepharose Fast Flow, GE Healthcare), both
equilibrated with Q-SP buffer A. RctB was eluted from the
SP column to which it bound using a gradient from 0.1
to 2 M sodium chloride. Fractions containing pure pro-
tein were dialyzed into the following buffer: 50 mM sodium
chloride, 20 mM Tris pH 7.4, 5% glycerol, 5 mM beta-
mercaptoethanol, concentrated and either were used fresh
or were flash-frozen in liquid nitrogen, and stored until use.
The yield was ∼18 mg/l of culture (3 mg of protein per 1
gram of cells).

For RctB-2-124-L48M (selenomethionine labeled), the
Ni-NTA agarose beads were washed with a set of buffer
solutions with increasing imidazole concentration contain-
ing up to 40 mM imidazole; RctB-2-124-L48M was then
eluted by washing with 500 mM imidazole. The resulting

Ni-NTA purified protein was concentrated, and applied to
a size-exclusion column (Superdex 200 beads, GE health-
care). Chromatography was carried out in SEC buffer: 500
mM NaCl, 20 mM Tris pH 7.4, 5% glycerol, 5 mM beta-
mercaptoethanol. Fractions containing pure protein were
concentrated, and either were used fresh or were flash-
frozen in liquid nitrogen, and stored until use. The yield was
∼18 mg/l of culture (3 mg of protein per 1 g of cells).

For RctB-155-483 (selenomethionine labeled), the Ni-
NTA agarose beads were washed with a set of buffer so-
lutions with increasing imidazole concentration containing
up to 60 mM imidazole, RctB-2-155-483 was then eluted
with 500 mM imidazole. Fractions containing pure protein
were pooled and brought to 1.4 M ammonium sulfate by
addition of powder. Then protein was loaded onto butyl
column (Macro-Prep® t-Butyl HIC Support, BIO-RAD),
and eluted with reverse gradient of ammonium sulfate (gra-
dient from 1.4 to 0.07 M ammonium sulfate). The fractions
containing the pure protein were pooled, concentrated and
further purified using size-exclusion chromatography (Su-
perdex 200 media, GE healthcare). The final buffer (SEC
buffer) contained 500 mM NaCl, 10 mM Tris pH 7.4, 5%
glycerol, 5 mM beta-mercaptoethanol. Fractions contain-
ing pure protein were concentrated, and either were used
fresh or were flash-frozen in liquid nitrogen and stored un-
til use. The yield was ∼15 mg/l of culture (2.5 mg of protein
per 1 g of cells).

One measure of the integrity of point mutants of RctB,
in comparison to wild-type, was to assess solution prop-
erties by SEC (Supplementary Figure S6). SEC was per-
formed using a 21.6 ml column packed with Superdex
200 prep grade (GE Healthcare) in the following buffer:
500 mM NaCl, 10 mM Tris-HCl pH 7.4, 5% glycerol, 5
mM 2-merceptoethanol. Estimates of the masses of various
RctB proteins were obtained by comparing elution volumes
against those by a set of molecular weight standards (GE
Healthcare).

Electrophoretic mobility shift assay

Due to the requirement for methylated DNA (methylation
at the N6 position of the adenine residues in the sequence
GATC) for RctB binding (25), it was necessary to pro-
duce EMSA probes by excising them from methylated plas-
mid DNA. Probe fragments were cloned into the pBlue-
Script II SK(+) vector and the constructs were prepped
from Dam(+) E. coli. The constructs were then digested
with XbaI and XhoI and treated with CIP (NEB) for 2 h at
37◦C. The digests were separated on 1% agarose gels and the
probes were excised and extracted from the gel. The DNA
was then desalted using Illustra MicroSpin G-50 Columns
(GE) and the concentration was quantitated with a Nan-
oDrop (ThermoFisher Scientific). The probe ends were then
labeled with T4 PNK (NEB) and a slight excess of gamma
P32 ATP. The probes were separated from the nucleotide
using Illustra MicroSpin G-50 Columns (GE). The labeled
probes were then phenol–chloroform extracted and sub-
jected to ethanol precipitation.

Binding reactions were conducted in 20 �l of 1x EMSA
reaction buffer: 20 mM TrisCl pH 7.5, 1 mM ethylenedi-
aminetetraacetic acid,150 mM NaCl, 1 mM MgCl2, 100



Nucleic Acids Research, 2017, Vol. 45, No. 7 3727

�g/ml bovine serum albumin,12.5 �g/ml poly (dI-dC). Ra-
diolabeled probes were added to a final concentration of 0.1
nM. The reactions were incubated for 10 min at room tem-
perature. Five microliters of 1x EMSA reaction buffer with
50% glycerol was added to the reactions, which were then
loaded onto 6% DNA retardation gels (ThermoFisher Sci-
entific) and run in 0.5% TBE buffer. The probes contained
binding sites embedded in a larger DNA sequence, and for
the complete sequence of the probes, please refer to Sup-
plementary Table S5. The gels were then dried onto filter
paper and then exposed to a Phosphor Screen and imaged
with Fuji FLA-5000 imager. Band intensities were quanti-
fied using Image Studio™ Lite software (LI-COR, Inc). The
data were fit to appropriate binding equations using Kalei-
daGraph 4.5.

Transformation efficiency assay

The transformation assay was performed as previously de-
scribed (19,25). To place the results of this assay on a quanti-
tative basis, we noted that, when cells that harbored a plas-
mid expressing wild-type RctB were transformed with an
oriCII-min containing plasmid, 200–300 colonies were ob-
tained. Under these conditions, this number of colonies was
set as the maximum in our quantitative scale, thus, this as-
say could be used to analyze mutant RctB proteins that have
∼1% replication competence. The standard deviation for all
RctB proteins tested was 0.09 or less across the replicates.

Matrix-assisted laser desorption time-of-flight mass spec-
trometry (MALDI-TOF MS) analysis

To probe for RctB domain organization, trypsin proteoly-
sis of full-length RctB was performed at room temperature
with a trypsin:RctB ratio of 1:500 followed by MALDI-
TOF MS analysis. At various time points during diges-
tion, 0.5 �l of the sample was collected and mixed with
9.5 �l of matrix consisting of a saturated solution of �-
cyano-4-hydroxycinnamic acid in a 1:3:2 (v/v/v) mixture
of formic acid/water/isopropanol. An aliquot of 0.5 �l of
this protein-matrix solution was spotted onto a MALDI
plate precoated with an ultrathin layer of matrix (34,35).
The sample spots were washed for a few seconds with 2 �l
of cold 0.1% aqueous trifluoroacetic acid solution. MALDI
spectra were acquired in linear, delayed extraction mode us-
ing a Spiral TOF JMS-S3000 (JEOL, Tokyo, Japan). The
instrument is equipped with a Nd:YLF laser, delivering 10-
Hz pulses at 349 nm. Delayed extraction time was set at 1
�s and acquisition was performed with a sampling rate of
2 ns. Each MALDI spectrum corresponded to an average
of 500 scans. Mass calibration was performed using a tech-
nique of pseudo-internal calibration wherein a few shots on
a nearby calibrant spot are collected and averaged with the
sample shots into a single spectrum. The spectra were pro-
cessed and analyzed using MoverZ (Proteometrics, LLC).

For characterizing protein degradation in the crystalliza-
tion drop, 1–2 protein crystals covered in residual mother
liquor were removed from a crystallization drop, and dis-
solved in the matrix solution (same as above). A 0.5 �l
aliquot of the resulting protein-matrix solution was spot-
ted onto a MALDI plate precoated with an ultrathin layer

of matrix (34,35). The sample spots were then washed for a
few seconds with 2 �l of cold 0.1% aqueous trifluoroacetic
acid solution. MALDI spectra were acquired and processed
as detailed above.

Native mass spectrometry

RctB proteins samples were diluted to 10–20 �M with 10
mM Tris pH 7.4, 500 mM NaCl and subsequently buffer-
exchanged into the native MS buffer (500 mM ammonium
acetate, 0.01% Tween-20) using the Zeba microspin desalt-
ing columns (Thermo Scientific) with a 40-kDa molecu-
lar weight cut-off. The buffer-exchanged samples were then
further diluted with the native MS buffer into the desired
concentrations ranging from 0.1 to 5 �M. An aliquot (2–3
�l) of the sample was loaded into an in-house fabricated
gold-coated quartz capillary and sprayed using a static
nanospray source into the Exactive Plus EMR instrument
(Thermo Fisher Scientific). The EMR was calibrated using
cesium iodide. Typical native MS parameters included spray
voltage, 0.9–1.5 kV; capillary temperature, 100◦C; S-lens
RF level, 200; resolving power, 8,750 or 17,500 at m/z of 200
corresponding to 32 or 64 ms analyzer transient duration,
respectively; AGC target, 5 × 105; number of microscans,
5; maximum injection time, 200 ms; injection flatapole, 8
V; interflatapole, 7 V; bent flatapole, 6 V; ultrahigh vacuum
pressure, 3–5 × 10−10 mbar; total number of scans, 100.
The in-source dissociation and high energy collision disso-
ciation parameters were varied accordingly. RAW files were
processed manually using Thermo Xcalibur Qual Browser
(version 3.0.63).

Crystallization of RctB

All aspects of the crystallization of full length and shorter
variants of RctB were carried out using an automated crys-
tallization and analysis instrument available in house. Crys-
tals of RctB domain 1 (1 - 124) were prepared using the sit-
ting drop vapor diffusion method by mixing 0.1, or 0.2 or
0.4 �L of the protein solution (22.4 mg/ml RctB-2-124 in
20 mM Tris pH 7.4, 50 mM sodium chloride, 5% glycerol,
5 mM 2-mercaptoethanol) and 0.2 �L of reservoir solution
(0.24 M Sodium malonate pH 7.0, 20% w/v PEG 3350).
Crystals grew within 7 days. Crystals were flash-frozen in
liquid nitrogen without additional cryoprotection for X-ray
diffraction.

Crystals of selenomethionine-substituted RctB domain 1
(1–124, L48M) were grown by mixing 0.1, or 0.2 or 0.4 �l
of the protein solution (20.1 mg/ml RctB-2-124-L48M in
20 mM Tris pH 7.4, 500 mM sodium chloride, 5% glycerol,
5 mM 2-mercaptoethanol) and 0.2 �l of reservoir solution
(0.1 M Sodium HEPES pH 7.5, 20% w/v PEG10000). Crys-
tals grew within 7 days. In preparation of cryogenic X-ray
diffraction, crystals were transferred sequentially, over a pe-
riod of 10 min, into a set of drops that contained 5%, 10%,
15 and 20% glycerol.

Crystals of selenomethionine-substituted RctB domains
2–3 (155–483) were prepared by mixing 0.1, or 0.2 or 0.4 �l
of the protein solution (22.7 mg/ml RctB-155-483 in 20 mM
Tris pH 7.4, 500 mM sodium chloride, 5% glycerol, 5 mM
2-mercaptoethanol) and 0.2 �l of reservoir solution (0.1 M
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Bis-Tris propane pH 6.5, 0.2 M Magnesium chloride, 2%
w/v PEG 8000). Crystals grew 10–14 days. In preparation
of cryogenic X-ray diffraction, crystals were transferred se-
quentially into a set of drops that contained 5%, 10%, 15
and 20% glycerol over a period of 10 min.

X-ray data collection

Diffraction data for the RctB-2-124 crystal was recorded
at the X-25 beam line at Brookhaven National Labora-
tory using a wavelength of 0.979 Å. The data extended to
Bragg spacings of 2.0 Å. RctB-2-124 crystallized in space
group P21, with the following cell parameters: a = 45.84
Å, b = 52.15 Å and c = 63.53 Å, � = 90◦, � = 101.5◦,
� = 90◦. Matthews analysis indicated that the crystal had
two molecules in the asymmetric unit (Vm = 2.51 A3/Da).
Diffraction data for crystals of RctB-2-124-L48M were
measured at the Stanford Synchrotron Radiation Light-
source at SLAC National Accelerator Laboratory using a
wavelength 0.9791 Å. The data extended to Bragg spacings
of 2.0 Å. RctB-2-124-L48M crystallized in space group P1,
with the following cell parameters a = 32.45 Å, b = 38.17
Å and c = 63.04 Å, � = 97.46◦, � = 91.49◦, � = 98.43◦.
Matthews analysis revealed that two molecules in the crys-
tallographic asymmetric unit (Vm = 2.58 A3/Da). Data for
the RctB-155-483 crystal were recorded at the Northeastern
Collaborative Access Team facility at the Advanced Photon
Source at Argonne National Laboratory using a wavelength
0.9792 Å. The data extended to Bragg spacings of 2.6 Å.
RctB-155-483 crystallized in space group R3, cell dimen-
sions are a = 128.54 Å, b = 128.54 Å and c = 127.8 Å, � =
90◦, � = 90◦, � = 120◦. Matthews analysis suggested that
the two molecules resided in the asymmetric unit (Vm = 2.58
A3/Da).

Structure determination and refinement

Diffraction data were processed using HKL2000 software
(36). Phenix (37) was used to solve the structures of RctB-
2-124-L48M and RctB-155-483 using the single wavelength
anomalous dispersion method and crystals with selenome-
thionine substituted protein. The final model of RctB-
2-124-L48M consists of residues 7–122 with a crystallo-
graphic R factor of 21.46% and Rfree of 25.09%. The final
model of RctB-155-483 consists of residues 182–472 (with
a 14-residue gap 242–255) with a crystallographic R factor
of 24.00% and Rfree of 28.38%.

The RctB-AA-2-124 structure was solved using molecu-
lar replacement (with the RctB-2-124-L48M structure as a
search model) in Phenix (37). The final model of RctB-2-124
consists of residues 7–122 with a crystallographic R factor
of 24.03% and Rfree of 28.04%. In all cases, initial models
were improved using several rounds of model building and
refinement as implemented in Phenix (37), Coot (38) and
Phenix.refine (37). Structural models were visualized with
Coot (38) and PyMol (MacPyMOL: The PyMOL Molecu-
lar Graphics System, v1.7.0.5 Schrödinger, LLC).

Crystallographic computing and structural analyses

Global structural alignments were performed using DALI
on-line server (39) and PDBefold online-server (40). Struc-

Figure 2. Sequence conservation, domain architecture and structures of
the RctB initiator protein. (A) A BLAST alignment (63) consisting of 99
RctB orthologues was converted to a numerical conservation score where
equivalence of amino acid at each position was established using a normal-
ized BLOSUM62 matrix (64). Conservation score is plotted against the pri-
mary sequence (gray lines). Reds dots represent positions with greater 90%
sequence conservation. (B) Domain architecture of RctB as deduced from
mass spectrometric analysis of proteolytic digestion products. A precise
boundary for the fourth domain of RctB could not be obtained owing to
this region’s sensitivity to limited proteolysis. The cleavage sites revealed by
our analysis are depicted with scissors. (C) The crystal structures of RctB
domain 1 and domains 2–3 are shown in a cartoon representation. The
coloring scheme employed corresponds to that in Figure 2B. The dotted
line represents one protomer of the RctB dimer. Full-length RctB forms a
dimer, and the dimerization interface localizes to domain 2.

tural alignments using particular regions of a structure were
performed in Pymol (MacPyMOL: The PyMOL Molecular
Graphics System, v1.7.0.5 Schrödinger, LLC). Other calcu-
lations were carried out in the CCP4 (41) and the Uppsala
Software Factory (42,43) software suites.

RESULTS

RctB folds into a four-domain structure organized around two
central domains related to plasmid initiators

Our efforts to crystallize full-length RctB were thwarted by
spontaneous proteolysis in the crystallization drop. Conse-
quently, we used limited proteolysis and MS to identify sta-
ble fragments more amenable for structure determination
by X-ray crystallography. Limited proteolysis of RctB re-
sulted in rapid release of a ∼14 kDa N-terminal segment
(residues 1–124, referred to as domain 1 below) and a ∼38
kDa segment (residues 155–483, referred to as domains 2–3
below) (Figure 2, Supplementary Figures S1, and S2). Al-
though our analysis did not yet identify a stable fragment
corresponding to the C-terminus (residues 484–658), RctB
mutants deleted for these C-terminal residues exhibit de-
fects in binding to the inc and rctA 39-mer sequences in
oriCII (19,24), suggesting that this segment constitutes a
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fourth domain. Thus, RctB appears to adopt an architec-
ture that includes four structural domains (Figure 2).

The structures of both the 14 kDa N-terminal (domain 1)
and the 38 kDa middle fragments (domains 2–3) were deter-
mined using X-ray crystallography (Supplementary Table
S2). Two crystal forms of domain 1 (one with the wild-type
sequence and native sulfomethionine, and a second with an
L48M substitution containing selenomethionine) were used
to decipher its structure; both forms contain two copies in
the asymmetric unit, but with different crystal packing ar-
rangements. The four structures of the N-terminal domain
of RctB (molecules A and B from each of the two crys-
tal forms) were virtually identical (RMSD over C-alpha
atoms varies from 0.23 to 0.543 Å, Supplementary Fig-
ure S3). We focused our analyses on molecule A of crys-
tal form I (residues 2–124, L48M), as this was the best-
defined structure. RctB domain 1 consists of an array of
four helices packed against a four-stranded beta sheet (Fig-
ure 2C). Comparative structural analyses using the Dali (39)
and PDBefold (40) tools revealed that RctB’s domain 1 clos-
est structural neighbors are a number of DNA binding pro-
teins, including transcription factors and replication initia-
tors. The top hit (1Q1H) was archaeal TFIIE (a compo-
nent of the core transcriptional machinery). Closer analysis
of hits with Z-scores of 5.0 or higher revealed a high de-
gree of structural similarity between three alpha helices and
two beta-sheets of RctB domain 1 (residues 42–57, 65–72,
78–91, 94–97, 111–114) and a family of winged-helix-turn-
helix motif proteins (RMSD from 1.3 to 3.0 Å, Supplemen-
tary Figure S4). No function has yet been ascribed to RctB
domain 1; however, these comparisons raise the possibility
(supported by findings shown below) that domain 1 binds
to DNA.

The 38 kDa fragment of RctB (residues 155–483) crys-
tallized as a dimer in the asymmetric unit; the two RctB
monomers are configured in a head-to-head arrangement.
The dimerization interface of RctB domains 2–3 localizes
exclusively to domain 2, and is comprised of two seven-
stranded beta sheets arranged in a domain swapped con-
figuration whereby one monomer contributes four of the
seven strands to one sheet, and the remaining three come
from the second monomer; this arrangement is reversed in
the second sheet (Figure 2, Supplementary Figure S5). This
configuration represents the most extensive protein-protein
interface in the crystal (∼4300 Å2), and is likely to be func-
tionally significant (44). We pursue this question further be-
low. Each 38 kDa monomer is composed of two domains
– residues 182 to 360 (henceforth domain 2) and residues
361 to 472 (henceforth domain 3). Superposition analysis
revealed a small (∼9◦) difference between the relative ori-
entation of domains 2 and 3 in the two copies present in
the dimer seen in the asymmetric unit, suggesting flexibility
between the two domains (Supplementary Figure S6).

Structural comparisons against the PDB (39,40) revealed
that the 38 kDa fragment of RctB bears significant simi-
larity to several replication initiator proteins from plasmid
DNA replication systems, including π (2NRA, (45)), RepE
(2Z90, (46), 1REP, (47)) and RepA (1HKQ, (48)), (Z scores
of between 7.7 and 9 using the DALI server). Nearly every
secondary structure element of π or RepE can be mapped
on to a corresponding element of RctB domain 2 or 3 (Fig-

ure 3, Supplementary Figures S7 and S8). For RepA, the
structure of only one domain of the two is available, and
its secondary structure elements correspond to RctB do-
main 2 (Figure 3); the structure of the second domain of
RepA is not known, but it likely resembles the correspond-
ing domain of RepE based on primary sequence considera-
tions (47). However, domains 2 and 3 of RctB also include
some unique structural elements (Figure 3). Both RepE
and RepA crystallized as dimers (46,48), with a beta sheet
arranged in a domain swapped configuration as in RctB.
However, unlike in RctB, the interfacial beta sheet for the
RepE, and RepA initiators contains five strands instead of
seven; however, all––RepE, RepA and RctB––are arranged
as head-to-head dimers. The structures of these plasmid ini-
tiators, like that of the corresponding RctB fragment, con-
sist of two domains; both have been shown to bind DNA
(45,47,48), suggesting that RctB domains 2 and 3 might
likewise both bind to DNA (as is confirmed below). Ad-
ditional database searches using the RctB domain 2 and 3
structures individually revealed similarities with a variety
of winged-helix-turn-helix DNA binding domains, includ-
ing the archaeal and eukaryotic replication initiator pro-
teins Cdc6 and Orc2 proteins (Supplementary Figures S9
and S10). Collectively, these analyses suggest that RctB is
a four-domain protein with a core region (domains 2 and
3) structurally homologous to plasmid initiators, and two
unique peripheral domains (domains 1 and 4), not present
in plasmid initiators.

RctB harbors at least three DNA binding surfaces

Mutational analyses were used to explore the possibility
that the winged-helix-turn-helix motifs in RctB domains 1,
2 and 3 mediate DNA binding. Comparisons against close
structural homologs bound to DNA were used to predict
RctB residues likely to contact DNA. Mutations at the se-
lected sites were introduced into full-length RctB, and the
DNA binding capacity of mutant proteins was subsequently
assessed using EMSA. Additionally, the biological activ-
ity of mutant proteins was assessed using a transforma-
tion assay in which the capacity of RctB variants to sup-
port oriCII-min-based plasmid replication was determined
(19,25). Solution properties of mutant RctBs were tested as
well; unless otherwise noted, solution properties of the mu-
tant proteins determined by size-exclusion chromatography
did not differ from those of the wild-type protein, indicating
that substitutions did not cause aggregation or degradation
of mutant proteins (Supplementary Figure S11). Notably,
our analyses below do not represent a complete census of
DNA binding contacts by RctB.

For RctB domain 1, comparative analyses using five dis-
tinct protein–DNA complexes (Figure 4A) suggested that
Gln 83 on helix �D might be important for DNA binding.
Additionally, given their 100% conservation in RctB amino
acid sequences from diverse Vibrio species (Supplementary
Figure S12), we hypothesized that the neighboring posi-
tively charged residues Arg 84 and Arg 86 might also have
roles in DNA binding. To evaluate these predictions, we mu-
tated all three positions to alanine, and measured the affin-
ity of the resulting triple mutant (RctB Q83A-R84A-R86A,
referred to as domain 1 triple mutant below) to six probes
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Figure 3. The structures of the central domains of RctB resemble the structures of plasmid initiators �, RepE and RepA. The structure of the central
domains (domains 2–3) of RctB was aligned to the � (Z-score = 9.0, RMSD = 4.9 Å), RepE (Z-score = 8.4, RMSD = 6.1 Å) and RepA (Z-score = 7.7,
RMSD = 2.9 Å) plasmid replication initiators. Depicted here is an alignment of secondary structure elements extracted from this alignment. Elements
shared by each protein are colored in cyan. Elements unique to RctB are colored in orange, while elements present in the plasmid initiators, but not in
RctB, are colored in black. Grey circles represent regions of the various structures that were not modeled. Depiction of RepA is limited to the one available
domain. A schematic in the bottom right corner shows that RctB middle portion (domains 2 and 3) aligns with the entire structure of �, therefore, the
secondary structure alignment is shown only for domains 2–3 of RctB and structures of the plasmid initiators.

containing nucleotide sequences derived from oriCII: (i) the
array of six 12-mers in oriCII-min, (ii) a single 12-mer se-
quence, (iii) a single 11-mer sequence from the inc region,
(iv) the 29-mer sequence (corresponding to the RctB pro-
moter), (v) the inc39-mer sequence and (vi) the rctA39-mer
sequence (Figure 1). The domain 1 triple mutant bound to
the 6 × 12-mer array EMSA probe with an apparent Kd
(Kdapp) > 23 000x higher than that of wild-type RctB (Fig-
ure 4, Supplementary Figure S13). Determination of precise
Kdapp values from EMSAs using other probes was challeng-
ing owing to complex binding curves; nevertheless, the trend
we observed with probe #1 was recapitulated with probes
#2 and #3 (Supplementary Figures S14 and S15). However,
domain 1 triple mutant binding to the 29-mer, 39-mer and
rctA sequences was similar to that of wild-type RctB (Sup-
plementary Figures S16–S18). The near wild-type binding
of the RctB-Q83A-R84A-R86A mutant to a subset of the
probes examined supports the idea that its structural in-
tegrity is intact. Thus, the role of domain 1 binding to DNA

appears to vary depending upon the target sequence, and
domain 1 does not appear to play a critical role in binding
to most regulatory sequences outside of oriCII-min. Con-
sistent with its severe deficiency in binding to the oriCII-
min probe, RctB domain 1 DNA-binding mutant failed to
support oriCII-min-based replication (Figure 4). Taken to-
gether, these observations strongly suggest that RctB do-
main 1 binds oriCII DNA, and that this function is critical
for the capacity of RctB to mediate oriCII-based replica-
tion.

A similar experimental approach was used to assess can-
didate DNA-binding residues in RctB domains 2 and 3.
The structure of RctB domain 2 was compared to those of
plasmid initiators (RepE and �) in complex with DNA, as
well as to a variety of winged-helix-turn-helix containing
protein–DNA complexes. As such, domain 2 residues Lys
271, Lys 272, Ser 274, Arg 278, Asp 279 and Arg 282 were
selected for analysis. The residues at these positions were
absolutely conserved in all RctB sequences examined (Sup-
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Figure 4. RctB has three DNA binding domains. Structural comparisons predicted the presence of at least three distinct DNA binding domains in RctB. To
evaluate these predictions, three mutant forms of RctB were studied: (A) RctB Q83A-R84A-R86A (domain 1), (B) RctB K271A-K272A-S274A (domain
2) and (C) RctB R420A-R423A (domain 3). The top of each panel depicts a ribbon representation (colored blue) of the predicted DNA binding domain
of RctB modeled onto a DNA molecule taken from a structural homolog bound to its DNA target. The residues selected for analysis are shown in a ball
and stick representation (colored orange). The middle portion of each panel summarizes, in a sequence alignment format, the structural alignment of the
DNA binding domains that emerged from database searches. The residues tested in this study are shown in orange, and labeled with orange stars. Shown
in green are positions implicated in DNA binding by other studies (45,47,65–70). The lower portion of each panel shows the binding affinity for oriCII-min
and performance in the transformation assay by wild-type and the mutant RctB proteins.

plementary Figure S12). Two distinct triple mutant pro-
teins, RctB-K271A-K272A-S274A (referred to as the first
domain 2 triple-mutant below) and RctB-R278A-D279A-
R282A, were prepared to test the importance of the sub-
stituted residues in RctB binding to oriCII and in repli-
cation. The first domain 2 triple-mutant (RctB-K271A-
K272A-S274A) exhibited reduced binding affinity to all six
oriCII derived DNA probes examined (Figure 4, Supple-
mentary Figures S13–S18); e.g. its binding affinity (appar-
ent Kd) for the 6 × 12-mer array probe was reduced by
∼1000-fold. A similar trend was observed with the remain-
ing probes tested (Supplementary Figures S14–S18). Con-
cordant with its markedly defective binding to oriCII DNA
sequences, the first domain 2 triple-mutant (RctB-K271A-
K272A-S274A) was also unable to support oriCII-based
replication (Figure 4). The RctB-R278A-D279A-R282A
mutant could not be produced in soluble form and was not
analyzed.

Candidate DNA-binding residues in domain 3 were iden-
tified through structural alignment of RctB to PhoB bound
to its target DNA (PDB entry 2Z33); based on this analy-
sis, we anticipated that a number of residues, including Arg

420 and Arg 423, would be required for DNA binding and
generated the RctB-R420A-R423A, referred to as domain
3 double-mutant. Similar to the domain 1 triple-mutant,
domain 3 double-mutant bound to three of the six DNA
probes tested differently than wild-type RctB. The Kdapp
of RctB R420A-R423A binding to the 6 × 12-mer array
probe was ∼1500-fold lower than wild-type RctB (Figure
4, Supplementary Figure S13), and similar marked reduc-
tions in binding to individual 12-mer and 11-mer contain-
ing probes were observed (Supplementary Figures S14 and
S15). However, domain 3 double-mutant binding to the 29-
mer, 39-mer and rctA sequences was similar to that of wild-
type RctB (Supplementary Figures S16–S18). We note that
the near wild-type binding of the domain 3 double-mutant
to a subset of the probes examined supports the idea that
its structural integrity is intact. Moreover, in contrast to the
domain 1 and domain 2 mutants (RctB Q83A-R84A-R86A
and RctB-K271A-K272A-S274A, respectively) domain 3
double-mutant could support oriCII-min-based replication,
albeit at reduced efficiency compared to wild-type RctB.

Collectively, these experiments strongly suggest that at
least three of the four RctB domains are involved in contact-
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ing DNA, and, thus, that the protein contains a much more
extensive DNA binding surface than was previously ap-
preciated (49). Moreover, the observation that the R420A-
R423A mutation only disrupts binding to a subset of
oriCII-derived sequences raises the possibility that RctB
forms structurally distinct complexes on its varied DNA
targets within oriCII, and that these complexes rely on dif-
ferent RctB domains to contact DNA (a summary of the
DNA-binding phenotypes of all the mutants appears in
Supplementary Table S6). However, elucidation of the pre-
cise division of labor between the three RctB DNA binding
domains will require future structural and functional anal-
yses.

RctB forms a head-to-head dimer not compatible with origin
binding

RctB crystallized in a head-to-head dimeric configura-
tion. However, the head-to-tail array of six 12-mer sites at
oriCII implies that the complex on DNA will feature an
RctB oligomer with a matched configuration. Also, RctB
is known to be a dimer in solution, but its configuration
has not been described (49). To better understand RctB
oligomer dynamics, we performed mass measurements in
solution, examined crystal packing for clues on the na-
ture of potentially distinct oligomers (dimers and higher or-
der oligomers), and measured the effects of disrupting the
dimer seen in the crystal. First, we analyzed the oligomeric
state of full-length RctB and a panel of single and multi-
domain RctB fragments, using native MS (Figure 5A, Sup-
plementary Figure S19 and S20 shows SEC data and native
mass spectrometry data as well). Our findings indicate that
full-length RctB is a dimer in solution, consistent with pre-
vious reports (24,49). In addition, only the segments con-
taining the wild-type domains 2–3 form dimers in solution,
while all others are monomeric under the conditions tested
(Figure 5A, Supplementary Figure S19). This finding im-
plies that, in solution, the dimer interface is mediated by the
core plasmid initiator homology domains (domains 2–3) of
RctB.

Second, we examined the packing environments associ-
ated with the two crystal forms of domain 1 and the single
crystal form of domains 2–3 for potential physiologically
relevant interfaces. Both RctB domain 1 and domains 2–3
crystallized as dimers in the asymmetric unit. The surface
area buried by the various interfaces made by domain 1 in
the crystal ranged from 30 to 1340 Å2, values at the low end
for a physiologically relevant interface (44). Thus, we con-
clude that the likelihood of physiologic relevance for one of
the interfaces made by domain 1 in the crystal is low. This
finding is in concert with results from native MS of wild-
type domain 1 (bottom spectrum in Figure 5A).

In contrast, the non-crystallographic dimer of RctB do-
mains 2–3 buries an extremely large amount of surface
area (∼4300 Å2), a value consistent with physiologic rel-
evance (44). To further explore the biological role of the
RctB dimer seen in the crystal, we substituted a proline
residue (D314P) in the beta strand closest to the dimer in-
terface to disrupt the dimerization process and produce a
monomeric form; such a strategy was used with the RepE
plasmid initiator (47). This D314P substitution was intro-

Figure 5. RctB adopts a head-to-head dimeric configuration in solution.
(A) Native mass spectrometric analysis of the oligomeric state of full length
and truncated constructs of RctB, including variants that harbored the
D314P mutation (wild-type: red, mutant: black). Spectra for the wild-type
and D314P entities are grouped together. To the left of each spectrum ap-
pears a schematic, colored as in Figure 2B, of the configuration revealed by
the analysis. (B) The head-to-head dimer of RctB seen in the crystal. The
Asp314 residue on each protomer is depicted as a red sphere. Residues
shown to be involved in contacts to DNA are depicted in the ball-and-
stick representation and colored dark blue. The two monomers of RctB
are colored in varying shades (domain 2: orange, domain 3: purple). One
of the RctB monomers is outlined with a dashed line. (C) Binding affinity
for oriCII-min and performance in the transformation assay for wild-type
and RctB-D314P.
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duced into three RctB constructs: (i) full-length (residues
1–658), (ii) the smallest fragment that is active in replica-
tion initiation (residues 1–499) and (iii) the domains 2–3
construct (residues 155–483). Native MS analyses of these
mutant proteins revealed that they were all monomers un-
der the conditions tested (Figure 5A, Supplementary Fig-
ure S19). Furthermore, DNA binding assays indicated that
monomeric RctB-D314P bound to all six probes with near
wild-type affinity (Kdapp for the binding of the D314P mu-
tant to oricII-min was 0.003 ± 0.006 nM versus 0.014 ± 0.01
nM for the wild-type) (Figure 5C). This stands in contrast
to results from the transformation assay where the capacity
of the RctB-D314P mutant to support replication was re-
duced (efficiency of 0.11 versus 1 for wild-type) (Figure 5C).
These findings suggest that the head-to-head dimer of RctB
observed in the crystal corresponds to the dimer revealed
by native MS in solution. Additionally, the solution con-
figuration of the RctB dimer implies incompatibility with
binding to the head-to-tail array of 12-mer binding sites
seen in oriCII. It is likely that a substantial rearrangement
will accompany formation of the RctB – origin DNA com-
plex that mediates replication initiation. The incompatibil-
ity of RctB head-to-head dimer with the head-to-tail array
of the 12-mer binding sites is not entirely surprising, since
the same is true for plasmid initiator systems. Plasmid ini-
tiators, which are structurally related to RctB, also exist as
head-to-head dimers in solution, and the current model sug-
gests monomerization takes place prior to binding the head-
to-tail sites on the replication origin (46).

Taken together, our data show that RctB adopts a head-
to-head dimeric configuration in solution; this arrangement
resembles similarly configured dimers of the RepA and
RepE plasmid initiators (46,48). Moreover, the dimeriza-
tion interface is localized to RctB domain 2. Notably, our
findings do not exclude the possibility that other segments
of RctB may play significant roles in oligomeric forms of
RctB, indeed the symmetry mismatch between the 2-fold ro-
tational symmetry of the head-to-head dimer and the trans-
lational symmetry of the RctB binding sites at the origin
make this very likely.

DISCUSSION

In contrast to the well-studied DnaA-OriC ensemble that
operates in all bacteria, little is known about molecular
mechanisms that mediate replication of secondary chromo-
somes in bacteria with multipartite genomes. RctB, the con-
served initiator of chrII replication among the Vibrionaceae,
lacks homologs outside of this large family of organisms
whose genomes are divided between two chromosomes. Al-
though RctB bears no significant sequence similarity to
other proteins, we demonstrate here that the structure of
the two central domains of RctB (RctB 2–3) bears signifi-
cant structural similarity to several well-characterized plas-
mid initiators including RepE (from the F-plasmid), RepA
(from the pPS10 plasmid) and � (from the R6K plasmid).
However, RctB is considerably larger, and contains at least 2
additional domains. Three RctB domains contain winged-
helix-turn-helix DNA binding motifs, all of which were im-
plicated in binding to oriCII, and in the initiator’s capac-
ity to mediate oriCII-based replication. In the crystal and

Figure 6. Incompatibility of a head-to-head dimer structure with origin
binding. RctB middle fragment structure is shown as a ribbon representa-
tion. Domain 2 is colored in different shades of orange, domain 3 is colored
in different shades of purple. The top RctB monomer is shown by dotted
line. The bottom monomer is modeled to be bound to its site on the origin,
according to our findings about the residues involved in the DNA binding
and structural alignments; the two winged-helix-turn-helix domains con-
tact two adjacent major grooves of the DNA, the DNA binding residues
are shown as red sticks. When one of the monomers is bound to DNA, the
DNA binding residues of the second monomer are located very far away
from the DNA, and they can not interact with the following binding site
on the DNA. Therefore a head-to-head RctB dimer is incompatible with
origin binding not only because of the binding site orientation (direct re-
peats), but also because of the molecule geometry that does not allow the
second monomer to contact the same DNA molecule.

in solution, RctB adopts a head-to-head dimeric configura-
tion mediated by interactions between residues in domain
2. However, this arrangement is not structurally compatible
with binding to the head-to-tail array of 12-mer RctB bind-
ing sites in oriCII (Figure 6). Additionally, we found that
dimerization-deficient RctB retained affinity to oriCII, but
exhibited a greatly reduced ability to support replication.

A segment of RctB between domains 3 and 4 has also
been proposed to mediate RctB dimerization and DNA
binding (49). Our data do not support these results. Rather,
our structural, mutational and native MS analyses provide
strong evidence that DNA binding and dimerization are in-
stead dependent upon other regions of RctB. However, we
cannot exclude the involvement of this or other segments in
weak contacts in the expected oligomer formed on origin
DNA.

The oligomeric state of plasmid initiators, which like
RctB, are dimers in solution, is thought to regulate their
activity. It has been proposed that plasmid initiator dimers
dissociate into monomers prior to binding their respec-
tive replication origins, whose arrangement of binding sites
resembles that oriCII (45,47,48). It is tempting to pro-
pose that formation of the RctB – oriCII replication initi-
ation complex may involve dissociation of the RctB dimer
into monomers, which then seed formation of a new RctB
oligomer in the complex on origin DNA; such a complex
is also predicted to form on plasmid origins (47,48). How-
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ever, our observation that disruption of the RctB dimer di-
minishes, rather than enhances, biological activity as the
above model predicts and as observed with plasmid initia-
tors (50,51) does not, at present, allow us to rule out more
complicated protein–DNA complexes. Alternate models,
such as, e.g. where an array of RctB dimers, not monomers,
bind to origin DNA are possible; however, in such mod-
els, steric constraints make it unlikely that both members
of the head-to-head dimer contact DNA. This observation
has a precedent with the bacteriophage lambda cII pro-
tein, where two protein dimers, each with two DNA-binding
domains, however, only one DNA-binding domain within
each dimer binds to the major groove of the DNA molecule
(52). In addition, match in symmetry between the array of
binding sites at the origin and the proteins that will popu-
late these sites requires clarification. The question of sym-
metry between protein configuration and DNA target sites
has also been considered with the steroid hormone recep-
tors (53–57). Typically, these proteins bind to a pair of tar-
get sites that exhibit head-to-head or head-to-tail configu-
rations. With rare exception (58), the symmetry of the DNA
target matches that of the protein (53–57) (i.e. a head-to-tail
array of DNA sites is bound by proteins that are arranged in
head-to-tail manner, etc), and we anticipate this to be true
in the RctB–DNA complex. Comparisons between RctB -
DNA complexes and those made by hormone receptors to
their target sites are limited, though, because RctB binds to
an array of six sites and the receptors are limited to two sites.
Indeed, it is likely that a series of novel contacts, not seen in
our head-to-head dimer structure, will further stabilize the
RctB oligomer. A more precise definition of the RctB origin
DNA complex must await future studies.

Although similarities between RctB and plasmid initia-
tors were not recognized prior to our work, previous stud-
ies have commented on similarities between iteron plasmid
and oriCII-based replication systems (21,59). Identification
of the structural similarity between RctB and plasmid ini-
tiator proteins provides greater understanding of parallels
between these systems. For example, the origins from chrII
and plasmids share a number of elements, including directly
repeated initiator binding sites. However, close examination
reveals important differences, e.g. the 12 bp length of the
RctB binding site is considerably shorter than the 19–22 bp
length of iterons in plasmid origins. Structures of plasmid
initiators bound to DNA provide insight on likely inter-
actions between RctB and its binding sites on oriCII-min
(Figure 7). Notably, these models suggest that only one of
the three DNA binding domains on RctB can be accom-
modated on one face of the 12-mer sequence, and make se-
quence specific contacts in the major groove. Thus, it seems
likely that some DNA binding sites within RctB recognize
sequences other than the 12-mer, even in the context of the
6 × 12 array, since we have shown that all three domains
contribute to interactions made by RctB with this probe.
One possibility is that RctB also interacts with the adjacent
major groove in the 10–11 bp spacer sequences between the
12-mers, so that the effective target size of RctB is actually
closer to that found in plasmid origins. If so, then at least
one of RctB’s core DNA-binding domains is likely to lack
sequence specificity in binding since the nucleotide sequence
of the spacer segments is not conserved (25). Given spatial

Figure 7. Model for the interaction of RctB with DNA. (A) The 12-mer
binding site is of insufficient length to accommodate the three DNA bind-
ing domains of RctB. On the left is a ribbon representation of the exper-
imental structure of the � initiator (domains of � are colored in light or-
ange and purple) bound to its 22 bp iteron DNA target. Each domain of
the � plasmid initiator binds to ∼10 bp of DNA. On the right is shown a
schematic of the three DNA binding domains of RctB (domain1: cyan, do-
main 2: orange, domain 3: purple) and its 12-mer binding site (colored in
red), drawn approximately to scale. We propose that domains of RctB (ten-
tatively domains 1 and 2) will make contacts to positions in a 12-mer bind-
ing site on either side of the major groove, and that domain 3 (tentatively)
will make contacts to positions in the ‘spacer’ sequence between the 12-
mers. (B) Linear representation of a putative head-to-tail RctB oligomer
formed on the array of 12-mer sites at oriCIImin. One of the members of
the RctB oligomer is outlined with a dashed line. (C) Schematic of the
putative organization of the RctB oligomer on the 12-mer array in a DNA
loop configuration to facilitate melting of the A-T-rich region of oriCIImin.
This model is constructed by analogy with that proposed for the plasmid
initiator (47).

constraints, we postulate that domain 1 and domains 2–3
bind to opposite faces of the DNA target, where they are
presumed to also interact with the major groove (Figure 7).
This scheme is compatible with the expected head-to-tail ar-
rangement of RctB on the direct repeats in oriCII-min, but
does not rule out the possibility that there is a division of
labor among the three RctB DNA binding domains, such
that some specialize in contacts to a subset of its target se-
quences, as perhaps evidenced by mutational analysis of do-
mains 1 and 3 (Figure 4, Supplementary Figures S13–S18).
Future structural analyses of the nature of the oligomeric
RctB initiator complex on oriCII DNA are required to ad-
dress these issues.

The incompatibility of the head-to-head dimeric config-
uration of RctB with the directly repeated 12-mer binding
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sites implies that a structural reorganization must take place
prior to formation of the initiator complex on origin DNA.
Indeed, this is known to be the case for the head-to-head
dimeric plasmid initiators, which do not bind to the directly
repeated binding sites within their cognate origins, unless a
chaperone is provided to promote disruption of the dimer
(60). RctB, however, appears to bind to oriCII-min with-
out a chaperone (though it is impossible to exclude trace
amounts in our preparations). Also, disruption of the RctB
dimer into monomers does not promote DNA binding (Fig-
ure 5), as seen with the plasmid initiator RepA (60). This
finding implies a potential role for the 12-mer RctB binding
site itself in the necessary structural rearrangement. How-
ever, the precise mechanism that mediates rearrangement of
the dimer remains to be clarified. It is possible that binding
of the head-to-head RctB dimer to sites outside of the 6 ×
12mer array in oriCII is important for RctB-mediated reg-
ulation of initiation or of its own transcription.

Two basic scenarios for the evolution of multi-
chromosomal bacteria have been put forward (61,62).
A single large ancestral chromosome could have split
into two chromosomes or alternatively, an ancestral
strain could have acquired a plasmid, which subsequently
acquired essential genes. In this context, our discovery
that the structure of the core of RctB resembles plasmid
initiator proteins lends strong support for the plasmid
acquisition scheme. However, RctB and oriCII also contain
features not found in plasmids. Notably RctB has two ad-
ditional domains, one of which is critical for oriCII binding
and replication. It seems plausible that these additional
domains arose during the evolution of the Vibrionaceae,
and allow for the more stringent regulatory requirements
necessary for proper chromosome maintenance.
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