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Latent periodic process inference from single-cell
RNA-seq data
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The development of a phenotype in a multicellular organism often involves multiple, simul-

taneously occurring biological processes. Advances in single-cell RNA-sequencing make it

possible to infer latent developmental processes from the transcriptomic profiles of cells at

various developmental stages. Accurate characterization is challenging however, particularly

for periodic processes such as cell cycle. To address this, we develop Cyclum, an autoencoder

approach identifying circular trajectories in the gene expression space. Cyclum substantially

improves the accuracy and robustness of cell-cycle characterization beyond existing

approaches. Applying Cyclum to removing cell-cycle effects substantially improves deli-

neations of cell subpopulations, which is useful for establishing various cell atlases and

studying tumor heterogeneity.
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The development of a phenotype in a multicellular organism
often involve multiple, simultaneously occurring biological
processes such as cell proliferation, differentiation, transi-

tion, and cell-to-cell communication1,2. The course of develop-
ment can be influenced by a variety of genetic (e.g., mutations),
epigenetic, and environmental factors, which when being
abnormally perturbed can result in pathogeneses3. Early efforts
have been made to reconstruct the temporal ordering of biolo-
gical samples using bulk data4–6, although challenges associated
with cellular heterogeneity make it difficult to infer accurate time
series. Advances in single-cell RNA sequencing (scRNA-seq)
enabled large-scale acquisition of single-cell transcriptomic pro-
files and provided an unprecedented opportunity to uncover
latent biological processes that orchestrate dynamic expression of
genes in single cells throughout the course of the development7.
However, it is very challenging to deconvolve these processes
from scRNA-seq data accurately. A sufficiently large number of
cells across time, lineage, and space need to be sampled in order
to capture detailed sub-populational features and reduce tech-
nological noise. Tremendous efforts have been made to develop
trajectory inference methods from scRNA-seq data. Over 70
methods have been developed since 20148, including the widely
known Monocle9 and Wanderlust10. These methods represent
biological processes in linear, bifurcating, or other graph
topologies.

Many developmental processes, such as embryogenesis, orga-
nogenesis, and tumorigenesis, are inherently nonlinear11–15. For
example, cell cycle, a fundamental biological process, is periodic.
For human cells, a cycle starts from the G1 phase, goes through S
and G2/M, and then returns to G1 within 24 h2. This process is
orchestrated elegantly by sets of genes (e.g., cyclins and cyclin-
dependent kinases) that are turned on and off at relatively precise
timings. As a result of such periodicity, the cycling cells at dif-
ferent transcriptomic states form a circular trajectory in high-
dimensional gene expression space. The position of a cell
alongside the circular trajectory indicates its timing (pseudo-
time) in the cell cycle. Although well regulated, the process can be
stochastic. For instance, cells can experience different fates (e.g.,
going into apoptosis or senescence), and the rate of development
may fluctuate due to endogenous or exogenous factors16.

Existing trajectory/pseudo-time inference methods are not
optimal for representing such nonlinear periodicity8. Those based
on linear representations, such as principal component analysis
(PCA), cannot accurately represent circular timings or infer effect
sizes. The cell cycle regression approaches implemented in
scLVM17, Seurat18, and ccRemover19 are based on linear repre-
sentations generated from user-defined gene sets, which may be
biased or incomprehensive, particularly in cancer cells with
aberrant cell cycle. scLVM17 infers latent factors using a linear
Gaussian process latent variable model (GPLVM) and identifies
which of these factors corresponds to cell cycle by examining
correlation with a set of cell-cycle markers. f-scLVM (also known
as Slalom)20 further acquires the ability of refining known gene
sets and discovering new ones. Other linear factorization
approaches such as non-negative matrix factorization (NMF) and
independent component analysis (ICA) have also been
explored21–23. Although these methods benefit biological dis-
coveries in various ways, they cannot effectively model multi-
stage, nonlinear biological processes such as cell cycle. Cyclone24

uses PCA and relative expression of gene pairs to predict cell-
cycle phases, which appears to perform better than traditional
machine learning methods, such as random forest, logistic
regression, and support vector machine (SVM). A recent method
reCAT25 reconstructs cell-cycle pseudo-time using a Gaussian
mixture model (GMM) to cluster single cells into groups and a
quasi-optimal traveling salesman path (TSP) solver to order

them. The resulting pseudo-time is expressed in consecutive
integers indicating the order of cells, instead of continuous real-
number timings. Neither Cyclone nor reCAT can be applied to
remove cell-cycle effects from the expression data. In addition,
Oscope26 checks pairs of genes to identify circular patterns, which
has a high computational burden. Cyclops6 models circadian
rhythm using an autoencoder approach, but employs square root
and division in the neural network, which complicates the
optimization.

To address these limitations, we develop an ab initio inference
method, namely Cyclum, which employs a distinct sinusoidal
autoencoder to capture the circular trajectory in high-
dimensional gene expression space, formed by single cells sam-
pled from various stages of a periodic process. Conceptually, our
approach identifies an optimal (least square) embedding of cells
in a circular space. It effectively unfolds the circular manifold
onto a linear space to obtain precise pseudo-time.

Results
Overview of Cyclum. In a nutshell, the Cyclum program (Fig. 1)
analyzes a cell-gene expression matrix using an autoencoder
technique (see Methods and Supplementary Fig. 1), which pro-
jects the cells onto a nonlinear periodic trajectory, where the
pseudo-times of the cells in a periodic process can be more
accurately determined than with linear approaches, such as PCA.
Cyclum can be used to identify genes associated with the periodic
process, based on the degrees of match between the kinetics of
gene expressions and the inferred periodicity. Additionally, this
program can treat the inferred periodic process as a confounder
and deconvolve its effects from scRNA-seq data. Using Cyclum in
this way can result in enhanced delineations of cell subpopula-
tions segregated by lineages or phenotypes.

Accuracy of Cyclum for cell-cycle characterization. We com-
pared Cyclum’s performance for characterizing cell cycles with
Slalom, Cyclone, reCAT, Oscope, Cyclops and PCA. Four data-
sets were used (Table 1). The first dataset was obtained from a set
of mouse embryonic stem cells (mESC) using SMARTer kit and
Illumina HiSeq 2000 sequencing technology17. The other three
datasets were obtained using nanoString nCounter technology
from the bone metastasis of a prostate adenocarcinoma (PC3),
the pleural effusion metastasis of a breast adenocarcinoma (MB),
and the lymphoblast node of a lymphoma (H9), respectively27.
Each of these datasets has 200–400 cells. Flow sorting with
Hoechst staining was performed on the same set of cells, classi-
fying the cells into three stages, G0/G1, S, and G2/M, based on
their DNA mass.

We ran each algorithm on each dataset and classified cells into
various cell-cycle stages (e.g., Fig. 2a, Supplementary Fig. 2, and
Supplementary Note 1). Discretization of the continuous Cyclum
and reCAT results was accomplished using a three-component
Gaussian mixture model. We then calculated the fraction of cells
that were correctly classified by comparing the predicted cell-
cycle labels with those obtained from the flow-sorting. As shown
(Fig. 2b), for all four datasets Cyclum outperformed the other
methods, including Cyclone and reCAT, which used known cell-
cycle genes to optimize their performances. Further tests also
showed that Cyclum performs better than NMF, ICA and PCA
Supplementary Fig. 2g). We also performed gene set enrichment
analysis (GSEA)28,29 of the genes discovered ab initio using
Cyclum, PC1, and PC2 on the mESC dataset. Cyclum yielded a
normalized enrichment score (NES) for cell-cycle genes of 1.57,
which compared favorably with the PC1 and PC2 scoring of 1.07
and 1.06, respectively, showing that Cyclum can better infer cell-
cycle genes than the principal components.
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We further assessed the robustness of Cyclum as related to
sample size. We randomly subsampled the mESC data for fewer
cells or genes. Stratified subsampling was used to keep an equal
number of cells in each stage. Here, dimensionality of Cyclum is
restricted to one to accelerate computing (see Methods), although
it slightly reduces the accuracies. We observed that the median
classification accuracy of Cyclum (ranging between 0.7 and 0.75)
remained largely invariant with regard to the number of cells. In
contrast, the median accuracy of reCAT became substantially
worse with fewer cells (Fig. 2c). The variance increased with fewer
cells for both programs. In a parallel experiment, we uniformly
randomly subsampled genes. The accuracy of Cyclum was
unaffected when there were over 10,000 genes (Fig. 2d). However,
reCAT performed substantially worse with fewer genes and failed
to return results when there were less than 5000 genes.

Separability of subclones after corrected for cell cycle. We
assessed the utility of Cyclum in reducing the confounding effects
introduced by cell cycle. A tissue sample often consists of multiple
types of cells (e.g., tumor subclones) with distinct transcriptomic
profiles1,30. When the cells are actively cycling, it can become
difficult to delineate the cell types.

To assess the utility of Cyclum in this setting, we generated a
virtual tumor sample consisting of two proliferating subclones of
similar but different transcriptomic profiles. We used the mESC
data as one clone and created a second clone by doubling the
expression levels of a randomly selected set of genes containing
variable numbers of known cell-cycle and non-cell-cycle genes

(see Methods). We then merged cells from these two clones
together into a virtual tumor sample. This strategy allowed us to
use real scRNA-seq data, although the perturbations applied are
artificial. More importantly, it allowed us to track the clonal
origins of each cell in the mixed population. We then ran Cyclum,
ccRemover, Seurat, and PCA on the virtual tumor samples
created under a wide range of parameters and assessed the
accuracy of the algorithms in delineating cells from the two
subclones. Cyclone and reCAT cannot remove cell-cycle effects,
thus they were not included in the assessment.

We found that cells from the two subclones in a virtual tumor
sample are intermingled in the t-SNE plot generated from the
unprocessed scRNA-seq data (Fig. 3a). After removing cell-cycle
effects using Cyclum, cells in the two subclones became separable
(Fig. 3b). We then performed systematic assessment under a
range of parameters, including the number of cells, number of
perturbed genes, and the fraction of cell-cycle genes. We used a
two-component Gaussian mixture model to quantify how well the
two subclones were separated (classification accuracy) in the
t-SNE plot. Under almost all conditions, Cyclum achieved
significantly higher accuracy than the other methods, particularly
when a large number (>400) of cell-cycle genes were perturbed
(Fig. 3c and Supplementary Fig. 3). In contrast, approaches such
as Seurat and ccRemover, which rely on the known cell-cycle
genes, performed worse, especially when more cell-cycle genes
were perturbed. These results demonstrated the benefit and
robustness of Cyclum in deconvolving cell-cycle effects from the
scRNA-seq data.
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Fig. 1 Overview of the Cyclum program. Single-cell RNA-seq data in the format of a cell-gene expression matrix are given to Cyclum, which identifies a
circular trajectory consisting of cells at different times (indicated by letters) and stages (labeled by colors) in the high-dimensional gene expression space
(illustrated by a cube). Cyclum unravels the circular trajectory (red arrows) along with the projected cells to infer their pseudo-time. In contrast, a linear
projection (yellow arrow) would result in incorrect ordering and timing. The inferred genes and pseudo-times can be further analyzed to discover new
functions, cell-types, and cell-phenotype associations.

Table 1 Labeled cell-cycle scRNA-seq datasets.

Dataset Assaying Labeling Cell count Gene count

Total G0/G1 S G2/M

mESC scRNA Hoechst 288 96 96 96 38,293
PC3 (CRL-1435) qPCR Hoechst 361 85 141 135 253
MDA-MB-231 (HTB-26) qPCR Hoechst 342 123 103 116 253
H9 (HTB-176) qPCR Hoechst 227 66 68 93 253
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Application of Cyclum to the melanoma data. We further
examined the utility of Cyclum in analyzing scRNA-seq data
obtained from real cancer samples. We examined the dataset
consisting of the RNA expression of 23,686 genes in 4645 single
cells from 19 melanoma patients, profiled using the 10X Chro-
mium technology31.

We analyzed the data from the five patients (i.e., Mel78, 79, 80,
81, and 88) that had over 100 cancer cells. First, we assessed how
accurately Cyclum could characterize the cell cycle. We compared
the pseudo-time inferred by Cyclum, reCAT, PC1, and PC2
against the GO:0007049 GO_CELL_CYCLE gene set using the
GSEA. A higher GSEA score indicates that the pseudo-times
inferred are more accurately tracing cell cycle. Cyclum performed

the best in this analysis (Fig. 4a and Supplementary Table 1), even
on samples that reportedly had few cycling cells (e.g., Mel79).
Among the novel cycling genes nominated (see Methods) by
Cyclum (Supplementary Table 2 and Supplementary Figs. 4, 5),
KCNQ1OT1 and FBLIM1 have been shown recently in the
literature to be related to proliferation and tumorigenesis32–37.

We estimated the proportions of cycling cells in these samples
using Cyclum. Although Cyclum does not directly model
quiescent cells, samples with fewer cycling cells (e.g., MEL79)
appeared to have large gaps in the inferred pseudo-times
(Supplementary Fig. 6). These gaps corresponded well to the
missing S, G2, and M stages in these samples. In contrast, samples
with a large fraction of cycling cells (e.g., the mESC) had largely
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continuous pseudo-times. By partitioning the pseudo-time
densities, we estimated the fraction of cycling cells in each
sample (Supplementary Table 3). The resulting fractions
appeared consistent, but were generally higher than those
estimated based on the expressions of marker genes31. That
could be expected, as Cyclum summarized signals from a larger
set of genes showing periodicity.

Two dormant drug resistance programs (MITF-high and AXL-
high) were present mutually exclusively in these melanoma
patient samples, based on the immunofluorescence staining
data31. To calculate the AXL/MITF program scores, we followed
the method and gene sets suggested in the original publication31.
The scores were defined as the average expression of the sets of
genes. However, cell cycle could confound the expression profiles
of these cells19, making it difficult to delineate the resistance
subgroups. Indeed, before correcting for cell-cycle effects, almost
no correlation (Fig. 4c, R=−0.02, P= 0.81) was observed
between the expressions of the cells from the two mutually

exclusive programs in the actively proliferating sample Mel78.
After applying Cyclum correction, a clearly negative correlation
(Fig. 4b, R=−0.43, P= 9 × 10−7) emerged, which is consistent
with the expected mutual exclusivity between the two programs
in single melanoma cells. The result was also better than that
obtained using ccRemover and Seurat (Supplementary Fig. 7).

Broader applications of Cyclum. To evaluate Cyclum on larger
high-throughput single-cell RNA-seq dataset, we applied it on a
human embryonic stem cell (hESC) dataset containing 12,280
cells generated by the 10X Chromium technology, from a study of
nicotine effects38. Results show that Cyclum accurately and effi-
ciently infers cell-cycle pseudo-time (Supplementary Fig. 8a and
Supplementary Note 2). Targets of nicotine, including LDHA38

and ENO139 are proposed by evaluating the difference of circular
pattern in each gene between the treated sample and the control
sample (Supplementary Fig. 8b and Supplementary Note 2). To

0.6

0.7

0.8

0.9

p =
3.6 × 10

–7

4.7 × 10
–4

3.8 × 10
–10

9.8 × 10
–7

1.2 × 10
–7

1.7 × 10
–8

5.2 × 10
–10

8.0 × 10
–12

C
yc

lu
m

S
eu

ra
t

cc
R

em
ov

er

P
C

1

P
C

2

P
C

3

P
C

4

P
C

5

U
nc

or
re

ct
ed

Method

S
ep

ar
ab

ili
ty

 o
f s

ub
cl

on
es

−10

0

10

−10 0 10

t-SNE 1

t-
S

N
E

 2

Virtual subclone

Subclone 1

Subclone 2

Cell-cycle stage

G0/G1

G2/M

S

−10

0

10

−10 0 10

t-SNE 1

t-
S

N
E

 2
a b c

Fig. 3 Subclone detection from virtual tumor data. a t-SNE plot of the virtual tumor data consisting of two subclones (blue and red dots) of 288 cells each
at various cell-cycling stages (shades). b t-SNE plot of the data corrected for cell-cycling effects using Cyclum. c The separability of subclones of n= 10
randomly generated virtual tumor datasets corrected by Cyclum, Seurat, ccRemover, principal component (PC) 1~5, and the uncorrected data. The median
(center lines), interquartile range (hinges), 1.5× interquartile range (whiskers), and corresponding data points (dots) are shown. P-values were calculated
using two-tailed Student’s t-test. The expression levels of 1600 genes, including 600 known cell-cycle genes that were doubled in creating the virtual
tumor data. Each method was evaluated five times on each dataset and the best accuracy is recorded. In this context, n denotes sample size, not to be
confused with number of cells in Methods. For all subpanels, source data are provided as a Source Data file.

0.5

1

1.5

2

2.5

0

3

79 81 80 78 88

C
yc

lu
m

re
C

A
T

P
C

 1
P

C
 2

C
yc

lu
m

re
C

A
T

P
C

 1
P

C
 2

C
yc

lu
m

re
C

A
T

P
C

 1
P

C
 2

C
yc

lu
m

re
C

A
T

P
C

 1
P

C
 2

C
yc

lu
m

re
C

A
T

P
C

 1
P

C
 2

−0.6 −0.4 −0.2 0.0 0.2 0.4

R = –0.43
−0.4

−0.2

0.0

0.2

0.4

−0.5 0.0 0.5

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6
a b c

MITF score
Patient ID

G
S

E
A

 n
or

m
al

iz
ed

 e
nr

ic
hm

en
t s

co
re

A
X

L 
sc

or
e

A
X

L 
sc

or
e

MITF score

R = –0.02

Fig. 4 Cyclum results on the melanoma data. a GSEA NES scores were obtained based on pseudo-times inferred by Cyclum, reCAT, and principal
component 1 and 2. b The correlation between the MITF score and the AXL score for sample Mel78, based on Cyclum corrected expression data. c The
correlation based on the uncorrected expression data. The AXL and MITF scores were calculated based on the average expression levels of the reported
genes in AXL and the MITF program31. The lines in (b) were drawn manually for visual reference. The R values are the Pearson correlation coefficients. For
all subpanels, source data are provided as a Source Data file.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15295-9 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:1441 | https://doi.org/10.1038/s41467-020-15295-9 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


further demonstrate application of Cyclum on processes other
than cell cycle, we investigated the nonlinear epithelial-
mesenchymal transition (EMT) and mesenchymal-epithelial
transition (MET) on an mESC dataset12,40. Two transition
points are identified and unique EMT and MET marker genes are
extracted from them, respectively (Supplementary Fig. 9 and
Supplementary Note 3). These results demonstrate Cyclum’s
broad utility over various biological questions and technologies
and its scalability over large datasets.

Discussion
In this work, we developed a trajectory inference method that can
effectively characterize latent periodic developmental processes,
such as cell cycle from scRNA-seq data. Compared with currently
available methods, most of which are based on linear repre-
sentations of the data, our approach can more effectively capture
the nonlinearity and achieve more accurate characterization of a
periodic process.

We examined Cyclum using multiple real and synthetic
datasets. Using cancer cell lines and mouse embryonic stem cell
data, we demonstrated that Cyclum accurately infers cell-cycle
timing from the gene expression profiles of single cells, which
was validated by flow-sorting results obtained independently on
the same set of cells. Using virtual tumor data, we showed that
Cyclum can be applied to remove confounding cell-cycle effects
and achieving an improved classification of distinct cell sub-
populations. Although the virtual tumor datasets cannot fully
replace real data, the inputs were created under a wide range of
parameters that facilitated systematic assessment of Cyclum
and other comparable programs. Using the real datasets
obtained from melanoma patients, we showed that Cyclum can
accurately infer the cell-cycle expression components, nominate
novel cell-cycle genes (e.g., KCNQ1OT1 and FBLIM1), and
elucidate latent associations between cell subpopulations and
drug resistance. Cyclum also showed potential utility on other
possibly circular processes such as epithelial-mesenchymal
transition, endothelial-mesenchymal transition and their
reverse processes13,14. These experiments indicated that Cyclum
can be applied as a generic tool for characterizing periodic
processes and discovering biologically meaningful cell sub-
populations from scRNA-seq data.

We anticipate that Cyclum will be able to impact several
important areas of investigation. First, it may be applied to dis-
covering new genes involved in a periodic process, particularly
genes that have a transitional or relatively low expression, and
whose relevance is only evident when being observed across time
(Supplementary Note 2). Second, it can be applied to remove cell-
cycle effects and enhance the characterization of cell types and
developmental trajectories. These utilities will be in great demand
by the Human Cell Atlas41, the Human Tumor Atlas Network,
and many other projects.

It is worth noting that Cyclum is a model-based approach that
fits the data to predefined circular manifolds. This design makes
Cyclum more robust to handle random noise and small sample
sizes. It constitutes a clear advantage over other model-free
approaches, such as reCAT, for the purpose of characterizing cell
cycles. Evidently, Cyclum’s demonstrated robustness to a reduced
number of cells and genes makes it desirable to analyze current
scRNA-seq datasets, which often suffer from cell-specific drop-
outs and amplification bias42. Cyclum also appeared to work
better on data that was heavily confounded by cell cycles. This is
an important feature for studying cancer data, as many cancer
cells have heightened cell-cycle activities43,44. On the other hand,
when the latent process does not fit the circular manifold well, the
method may bring limited benefit.

Our study clearly demonstrated the advantage of fitting
scRNA-seq data to circular manifolds in a variety of settings. We
plan to further explore how to use Cyclum in conjunction with
other methods to deconvolving data generated by more complex,
intertwined processes. For example, we plan to explore Gaussian
process latent variable models (GPLVM) to track a generic per-
iodic manifold that is not restricted to sinusoidal functions in the
high-dimensional expression space. GPLVM has been applied
previously to model linear trajectories45, but also can be expanded
to model periodic trajectories using specialized nonlinear kernels.
We also plan to investigate the potential of applying Cyclum to
characterize other periodic processes, such as circadian rhythms15

from scRNA-seq data as well. A previous study has clearly
demonstrated the potential of sorting biological samples based on
circadian rhythms inferred from bulk gene expression data6.

Our work also demonstrated that unsupervised machine-
learning techniques, such as autoencoders, can be successfully
applied to model latent periodic processes, with innovations on
the network architecture and activation functions. The Cyclum
package is efficiently implemented in Python using Keras with
TensorFlow and has been comprehensively tested. For example,
Cyclum can analyze an scRNA-seq dataset consisting of 12,280
cells 33,694 genes in 40 min on a laptop computer with a GTX
960M GPU and 2 GB graphic memory (detailed in Supplemen-
tary Note 2). Cyclum can be easily scaled up to bigger datasets in
a high-performance computer cluster.

In summary, we developed Cyclum, a machine learning
approach that can effectively and efficiently infer latent circular
trajectories from scRNA-seq gene expression data. It can also be
applied to removing confounding cell-cycle effects, improving the
classification of cell subpopulations, and enhancing the discovery
of functional gene subsets. These features make Cyclum useful to
constructing the Human Cell Atlas, the Human Tumor Atlas, and
other cell ontologies.

Methods
The Cyclum. The objective of Cyclum is to infer pseudo-time/embedding xn for
cell n from its transcriptome profile yn, a column vector containing the expression
levels of G genes. Linear methods, such as PCA, find a linear transformation
xn ¼ F yn

� � ¼ Wyn and an inverse linear transformation ŷn ¼ F�1 xnð Þ ¼ WTxn ,
where F �ð Þ denotes the transformation in general sense and W denotes the specific

linear transformation matrix, such that the total error
PN

n¼1 yn � ŷn
�� ��2 is mini-

mized46. Cyclum follows similar formulations, except that the transformation
functions F�1ð�Þ and F �ð Þ are nonlinear periodic functions, which makes Cyclum
sensitive to circular trajectories (Fig. 1).

We use autoencoder46, a machine learning approach to realize this nonlinear
transformation (Supplementary Note 4). Specifically, we adopt an asymmetric
autoencoder (Supplementary Fig. 1a). In the encoder, we use a standard multi-layer
perceptron with hyperbolic tangent activation functions (Supplementary Fig. 10
and Supplementary Note 5). In the decoder, we use cosine and sine as the
activation functions in the first layer, followed by a second layer performing linear
transformations. These transformations can be represented mathematically as

xn ¼ x circularð Þ
n

x linearð Þ
n

" #
¼ WðcircularÞ

3 tanh W circularð Þ
2 tanh W circularð Þ

1 yn þ b1
� �

þ b2
� �

W linearð Þyn

2
4

3
5

¼Δ F yn
� �

and ŷn ¼ ŷ circularð Þ
n þ ŷ linearð Þ

n

¼ VðcircularÞ V linearð Þ
h i cos x circularð Þ

n

sin x circularð Þ
n

x linearð Þ
n

2
64

3
75 ¼ Vxn ¼Δ F�1 xnð Þ;

where W’s and b’s are the weight matrices and translation vectors of the encoder,
and V is the weight matrix of the decoder. The encoder part is useful when there
are a large number of cells. Data from these cells can be divided into minibatches
and sequentially loaded into the memory to train the parameters.
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We use the least square error as the optimization target with L2 regularization,
formally

argmin
Wi ;V

XN

n¼1

yn � ŷn
�� ��2

2
þ
X

i

αi Wik k2Lþβ Vk k2L;

where Wi refers to all the W’s presented above. The network is implemented
using Keras with TensorFlow, which optimizes the parameters using gradient

descent. We take the modulus of x circularð Þ
n to confine its range to [0, 2π] after the

optimization.

Choosing dimensionality for the embedding. The dimensionality of embedding
(and the number of added linear components) impacts the accuracy of Cyclum. We
determined the dimension of the latent layers (k) by comparing the mean squared
error (MSE) reconstruction loss of Cyclum (containing one circular dimension)
with that of the principle component analysis (PCA) of the same k dimensions. We
declare a k being the optimal k*, if it leads to a large decrease of MSE. The
dimensionality may be manually given to reduce computing time. An example is
provided in Supplementary Note 1.

Removing cell-cycle factor. We assume that cell-cycle has an additive effect on
the log-transformed expression. The ŷ circularð Þ

n is the estimated cell-cycle effect in yn
and can be removed through subtraction. We then perform t-SNE on the resulting
expression levels. For comparison, we use principal components to remove cell-
cycle factor by back-transferring the designated principal component to the
expression space and subtracting it from the expression levels. Seurat uses a linear
model to find the relationship between gene expression levels and the S and G2M
scores it assigns to each cell. The residuals are the expression levels with the cell-
cycle factor removed. ccRemover uses the PCA as the backend to iteratively remove
all factors correlated with given cell-cycle genes.

Predicting marker genes. Using a standard trigonometric identity, the cell-cycle
factor of a gene g in cell n can be reformulated as

ŷng ¼Vg;cos cos x
circularð Þ
n þ Vg;sin sin x

circularð Þ
n

¼Ag cosφg cos x
circularð Þ
n þ sinφg sin x

circularð Þ
n

h i

¼Ag cos x circularð Þ
n � φg

� �
;

where φg is the peak timing of a gene g and Ag is the magnitude of the peak,
determined by V circularð Þ

g ¼ ½Vg;cos Vg;sin�, the g’th row of matrix V(circular). This is
an alternative view of the decoder matrix V. It means that the decoder assigns
pseudo-time to each cell and gives each gene a peak timing and a peak magnitude
(Supplementary Fig. 1b–d). The weight Ag indicates the prominence of the circular
pattern in gene g. Cyclum ranks genes by Ag and select those with high Ag as the
marker genes. It is a standardized measurement that can be used to compare the
relevance of a gene to the circular process across datasets. An example is available
in Supplementary Fig. 8 and Supplementary Note 2.

Preprocessing. We used log2 transformed Transcripts Per Million (TPM) in our
experiment for scRNA-seq data (the mESC, the EMT and the melanoma data). For
qPCR data (the cell lines) we used the reported normalized log counts. For droplet
data (the hESC data), we used read counts normalized and log2 transformed data.
One should expect only a slight difference across count normalization methods, as
Cyclum examines overall circular patterns, instead of specific values. We also did
not filter out any genes or cells, as Cyclum is robust against noise. Standardization
was performed on each gene, adjusting the mean expression to 0 and standard
deviation to 1, so that Cyclum equally considered all the genes. For data generated
by the droplet technologies such as the 10X 3’ scRNA-seq, we recommend filtering
out low-quality cells, such as those with high levels of mitochondria gene
expressions and with low read counts38. We do not recommend filtering out
particular genes. Genes expressing stochastically are automatically ignored by
Cyclum due to their poor fitting to the model.

Utilizing prior knowledge. Although Cyclum is a de novo approach, it may benefit
from using known gene sets in some scenarios. By default, Cyclum considers all
genes equal. To apply the prior knowledge, one can allocate more weights in the
MSE to a subset of genes. For examples and detailed discussion, see Supplementary
Fig. 2d–f and Supplementary Note 1.

Simulating virtual tumor data. To simulate the second clone in the virtual tumor
data, we randomly selected a set of cells from the first clone (i.e., the mESC data).
We then randomly selected a set of genes from a list of 892 known cell-cycle genes
(Supplementary Data 1) and a set from other genes, including those that may be
affected by, but are not directly affiliated with cell cycle. We then doubled the
expression levels of the selected genes in the selected cells. We also varied the
number of cells and genes to simulate data collected from a variety of conditions.

Evaluating accuracy of timings and separability of subclones. For Cyclone,
which outputs categorical cell-cycle phases for each cell, the accuracy is defined as
the ratio of cells that are correctly classified. For PCA and reCAT, which output
numerical embeddings (pseudo-times), the score is the precision of a best three-
component GMM classifier on the embeddings47. Because the cell cycle is a con-
tinuous process, cells residing between cell-cycle stages (border cases) exist. The
accuracy scores, evaluated based on discrete cell-cycle stages obtained from flow-
sorting experiments, may underrate the continuous pseudo-time. We further
assessed the accuracy of the inferred cell-cycle pseudo-time using GSEA against the
GO:0007049 GO_CELL_CYCLE gene set28,29, treating pseudo-time as a continuous
phenotype and reporting the normalized enrichment score (NES) as the accuracy.

The separability of subclones is defined as the precision of a best two-
component GMM classifier on the t-SNE embedding of the data. Labels known
from independent experiments (i.e. flow-sorting or simulation) are used to evaluate
the classifiers.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
No new data was generated in this study. All original datasets are accessible (E-MTAB-
2805, https://doi.org/10.1371/journal.pcbi.1003696, GSE72056, GSE125416, and
GSE87038) through the original publications17,27,31,38,40. The source data underlying
Figs. 2a–d, 3a–c, 4a–c are provided as a Source Data file.

Code availability
The open source implementation of Cyclum is available at https://github.com/KChen-
lab/Cyclum under the MIT License.
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