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Abstract

Morphometric studies in multicellular organisms are mostly performed manually because of the 

complexity of multidimensional features and lack of appropriate tools for handling these 

organisms. Here we present an integrated system to autonomously (i.e. without human 

supervision) identify and sort mutants with altered subcellular traits in real-time. We performed 

self-directed screens of synapse formation 100× faster and found both novel genes and phenotypic 

classes previously unidentified in extensive manual screens.

Microscopy is a powerful tool widely used to investigate cells, tissues, and organisms. 

Combining imaging and perturbations (e.g. mutations, siRNA treatment, or drugs) allows us 

to probe functions, explore mechanisms, and remediate dysfunctions1. Recent technological 

developments have made automated microscopy and sample handling for single-cell 

samples routine, even allowing automated identification of cells2. This has enabled large-

scale imaging and drug interaction studies in cultured cells3–5. Statistical methods have been 

applied to high-content quantitative phenotypical descriptors of cell lines to identify subtle 

phenotypes and the underlying networks5–7. In contrast, although advances in sample 

handling, largely through the use of a modified FACS system8 and multiwell-plate methods, 

have increased imaging and screening throughput, they are low-resolution technologies, and 

thus unable to distinguish many phenotypes of interest. A primary obstacle is that automated 

screening requires equipment that can robustly handle large sample numbers and a system 

for extracting and understanding data from high-content images. Recently, microfluidic 

approaches have improved the throughput of high-resolution imaging of Caenorhabditis 
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elegans (C. elegans)9–11, but sorting has been based on user input10 or simplistic criteria, 

such as the local intensity9.

Here we present a system for performing autonomous screens based on high-content 

quantitative features in C. elegans. The system combines a microfluidic device, computer-

vision tools, and a statistical framework to classify animals. The microfluidic device allows 

animals to be imaged and sorted rapidly (Fig. 1a). The acquired images are processed to 

identify the fluorescently-labeled objects using a two-stage computer-vision algorithm (Fig. 

1b–d), and quantitative phenotypical descriptors are extracted and used to predict whether 

the animal has a pattern of interest (Fig. 1e–f). Finally, the microfluidic device sorts the 

identified mutants. Using this integrated system, we performed an autonomous forward 

screen for new classes of mutants affecting synaptogenesis.

Our automated microfluidic system (Fig. 1a and Supplementary Fig. 1) is optimized to 

simplify fabrication, minimize possible failures, and increase throughput while image at 

high magnification. It uses a simple “load, image, and sort” routine9,10 that reliably 

manipulates animals and allows extended automated operation, even with the large 

variations in animal size resulted from mutagenesis (Supplementary Fig. 2). When loaded, 

the animal is transiently (~10sec) cooled to ~3°C. This rapidly immobilizes the animal for 

high-resolution image acquisition9 without having to use feedback from the images to 

control mechanical immobilization mechanisms. In order for fully automated operation, we 

also developed extensive external system-level components and error handling that 

collectively minimizes situations requiring human intervention (Supplementary Note 1 and 

Supplementary Fig. 3).

To automate the decision-making and sorting based on morphometric criteria, we developed 

a computational framework that identifies specific fluorescent objects of interest such as the 

synapses or neuron soma, extracts quantitative phenotypical descriptors from these objects, 

and classifies the animal based on the descriptors (Fig. 1b,c). In contrast to most published 

computer-vision methods applied to biological analysis which are run offline5,6,12, real-time 

processing is critical to allow sorting decisions in forward genetic screens. We therefore 

designed the algorithm to balance two competing requirements: high accuracy to maximize 

enrichment, which usually correlates with computational time, and minimal computational 

burden to maximize throughput (Supplementary Note 2).

We applied the method to identification of an EGFP-tagged synaptic vesicle marker in the 

well-characterized motor neuron DA913. This is challenging because fluorescently labeled 

synapses are small, have limited numbers of fluorophores, and autofluorescent fat granules 

often have similar size and appearance to synapses. To automatically extract specific 

quantitative phenotypical descriptors requires the ability to distinguish relevant fluorescent 

structures from the irrelevant. A low false positive rate of fat granules labeled as synapses is 

important as a single synapse located far from stereotyped synapse positions could indicate 

an interesting mutant (Supplementary Note 2). Furthermore, to identify mutants, we need to 

detect subtle changes in synapse locations, size, and intensity because synaptogenesis is both 

complex and regulated13,14.
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To minimize errors, we designed a computer vision framework to identify the fluorescent 

objects of interest to operate in two stages (Fig. 1c): first, the program identifies pixels 

associated with probable synapses using features based on the local neighborhood 

surrounding each pixel; second, it uses these probable synapses to extract features based on 

the relative positions of potential synapses to each other and within the image. The second 

stage features were designed using a priori knowledge about the synaptic patterns, for 

example, that synapses are more likely to cluster near one another than to be randomly 

located in the worm body. Support Vector Machine (SVM) classifiers were trained to 

evaluate these features and identify synapses (Supplementary Notes 2,3 and Supplementary 

Figs. 4–7). This framework was designed so identification took less time than acquisition of 

the z-stack (~4 sec). The total processing time, including imaging and sorting, per imaged 

animal was ~10 seconds (Supplementary Table 1). This is a two-orders-of-magnitude saving 

in time compared to manual screening method with quantitation, which requires picking, 

mounting, imaging, manually quantifying phenotypical features using software such as 

ImageJ, classifying, and rescuing the animals (~20 minutes). The computer vision 

framework results in overall pixel accuracy of >99.9% when estimated by 5-fold cross-

validation, which is exceptionally good given the difficulty (Supplementary Fig. 8). Once 

synapses are identified from each image, we use the overall synaptic pattern to extract 30 

quantitative descriptors of the phenotypes such as the average size, shape, number and 

location of the synapses (Fig. 1f and Supplementary Note 3). These features are used to 

classify an animal as wild-type or mutant with high accuracy and limited bias 

(Supplementary Fig. 9).

We used two types of classifiers to screen and classify animals, as wild-type or mutant: a 

discriminative classifier and an outlier-detection classifier (Fig. 2a,b). The discriminative 

screen used both wild-type animals and a known mutant (lin-44−/−)13 to train a classifier to 

maximize the differences between the phenotypical descriptors of both populations. To train 

the classifier, ~130 wild-type and ~80 lin-44−/− mutants were imaged and quantitatively 

phenotyped using the system. Using two populations allowed the classifier to remove 

irrelevant descriptors that provide limited discriminative power. In some cases this method 

can provide a reduced false-positive rate and focus on identification of mutants with 

phenotypes similar to the known mutant (Fig. 2a). Although useful, this type of screen is 

less likely to find new classes of phenotypes, which in many problems would be more 

interesting. To screen more broadly for novel mutant classes, we used an outlier-detection 

scheme, where ~400 wild-type animals were imaged and used to model the wild-type 

population. The wild-type phenospace was modeled as a multi-variate Gaussian, and 

mutagenized animals with a cumulative distribution function <0.1% of wild-type were 

sorted as mutants (Fig. 2b). This allows screening for completely novel patterns, with the 

potential trade-off of a higher false positive rate.

To compare the discriminative powers of each screening method, and to obtain quantitative 

metrics on screening performance, we performed two small-scale screens. The 

discriminative classifier was used to perform a ~1,000 haploid genome screen, while a 

~1,500 haploid genome screen was done with the outlier detection approach (Supplementary 

Note 4). Both screens resulted in similar false positive (~70%) and false negative (~10%) 
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rates (Online Methods), which was due to optimal setting of the decision boundary and 

selection of highly relevant phenotypical descriptors. Previous manual screens resulted in a 

discovery rate of about one mutant per few thousand haploid genomes. In contrast, our 

screens resulted in a discovery rate of one mutant per several hundred animals, and included 

phenotypes similar to those previously published13–15 as well as novel ones. This higher 

discovery rate implies a potential ability to identify more genes affecting the phenotype of 

interest when compared with current methods.

To demonstrate our ability to perform large-scale experiments, we screened ~20,000 haploid 

genomes (Online Methods), and identified nearly 60 mutants with altered phenotypical 

features. The majority of this screening was performed with an outlier detection approach. 

From all screens, we obtained several phenotypic classes of mutants, and a subset of animals 

has been further characterized, including one mutant that exhibited a strikingly novel 

phenotype (Fig. 2c,d and Supplementary Table 2). Interestingly, complementation tests of 

some of the mutants with dendritic RAB-3 localization against genes in the CDK-5 

pathway15 revealed two novel genes (a117 and a102) and two alleles of previously 

implicated genes (a107 and a109) (Fig. 2e). Moreover, allele a085 has a striking novel 

morphological phenotype: axons contain enlarged spine-like protrusions filled with synaptic 

markers (Fig. 2f). The allele is mapped to a small region on chromosome IV. This 

demonstrates that our system is not only capable of finding alleles of previously manually 

identified genes, but also has the ability to identify novel genes and phenotypes missed by 

previous manual screens.

Our system is both camera- and microscope-independent, and can be easily adapted to other 

laboratories and other model networks. We demonstrated here for the first time 

autonomously screens in C. elegans for subtle subcellular changes using quantitative 

phenotypical descriptors. We screened at a sustained rate of over 100 haploid genomes per 

hour. Moreover, we identified novel phenotypes too subtle to be reliably assessed by eye. 

This allowed the discovery of weak alleles, as well as peripheral players in specific 

pathways. Applied to additional forward genetic, RNAi, or drug screens, this method will not 

only allow faster screens, but with a higher efficiency to find more genes and interactions 

than previously possible.

C. elegans culture

C. elegans were cultured according to established methods1. Mutagenesis was performed on 

age-synchronized L4 animals using ethyl methanesulfonate (EMS) according to standard 

protocols2. The overall scheme is shown in SFig 1. Briefly, when the animals reached the L4 

stage, a large number of synchronized wild-type animals carrying the wyIs85 transgene were 

suspended in a buffer solution and 20mMEMS (Sigma-Aldrich) for a period of four hours. 

Following the incubation, the animals were then rinsed with the M9 buffer solution and 

placed on plates. These P0 animals were allowed to grow to adults, and once the F1 progeny 

from these animals became adults, the F2 offspring were age-synchronized. F2 embryos 

were obtained by bleaching F1 adults using a solution containing about 1% NaOCl and 0.1 

MNaOH, washed in M9 buffer, and cultured for 24 hours. Animals were then transferred 

and cultured on Nematode Growth Medium (NGM) plates seeded with E. coli OP50 until L4 
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stage. The strains used in this project included XA7810: N2, wyIs85 (Pitr-1 pB::gfp::rab-3); 

XA7812: lin-44(n1792)I, wyIs85(Pitr-1 pB::gfp::rab-3).

For imaging and screening, animals were washed and suspended in M9 solution containing 

0.01 volume% Triton X100 (Sigma-Aldrich). This prevented the animals from adhering to 

the tubing during injection. After washing animals off of the plates, animals were allowed to 

settle, the supernatant removed and additional M9 added. Animals were screened under a 

compound microscope using a 40× (NA=1.4) oil objective using the microfluidic chips. 

Sorting decisions were made based on differences in the reporter expression pattern or 

intensity; potential animals of interest were sorted into the mutant outlet and were collected 

directly from tubing connected to the mutant outlet with M9 solution containing 0.01% 

Triton X100. Animals were subsequently transferred to individual plates for culture and 

further examination. SNIP-SNP mapping and complementation tests were performed using 

standard protocols.

Materials and Equipment

The equipment utilized during our experiments includes the following: Peltier cooler (PJT-5 

30 mm square and PJT-6 40 mm square peltier coolers), copper heat exchanger (custom 

designed and machined), peristaltic pump for coolant: 400 F/A (Watson Marlow), digital I/O 

Card (Pacdrive from Ultimarc), solenoid Valves and Manifold (3-Way 10mm Solenoid 

Valve, 188 series, ASCO Valve), microscope (Leica DM4500) with lens (63X Oil, 

NA=1.4). and camera (Infinity 3-1, Lumenera).

Automation, Handling of Multicellular Organisms, and System Design

Although manipulation and imaging of multicellular model organisms are an important part 

of modern biology, most methods are still labor intensive and time-consuming. Recent work, 

largely through multiwell plate methods, and a modified flow cytometer (COPAS), has 

made significant improvements in sample handling and low-resolution imaging of C. 

elegans, and D. rerio and D. melanogaster embryos. Recently, microfluidic approaches have 

improved the throughput of high-resolution imaging of Caenorhabditis elegans3–6, but 

sorting has been based on user input 4,7 or simplistic criteria, such as the local intensity3. To 

date, all C. elegans screens, both automated and manual, have required human intervention 

to set the sorting boundaries4,8,9, and the few automated screens have only been performed 

at very low resolution8,10,11. Thin glass capillary tubes have recently been used to image and 

then ablate axons in D. rerio, but image processing and ablation was performed manually 

using user input12. Similarly, microfluidic traps have been employed to align D. 

melanogaster embryos to enable highly controlled imaging conditions13.

Automation of information extraction has largely been focused on post-processing of data 

acquired during an experiment. Within multicellular model organisms, this has focused on 

understanding animal behavior and interactions, and with lineage tracking of cell fates. 

Social interaction between flies has been analyzed using computer vision to extract 

behavioral information14,15. Similar work has also been extended to mammalian models 

with mice16. Tracing of cell lineages from early to late embryogenesis has allowed tracking 
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of C. elegans embryos through many divisions17–20. A digital atlas of C. elegans cell 

locations, and methods to identify them, has recently been created21. Performing image 

processing to identify quantitative information in near real time during a screen, however, 

requires a framework that places a significantly higher value on speed and throughput. The 

framework provided in this work can be extended to tackling these problems for real-time 

screening of other model organisms.

Included on the website is software used during screening. Because of differences in 

equipment this is primarily intended as a guide for development of customized code for the 

end user. The code contains functions used to operate the microfluidic device, as well as that 

to extract relevant information from the fluorescent images. The optimized feature 

extraction and phenotypical parameters can be modified to focus on identification of other 

small, fluorescent objects. More information can be found in a readme available with the 

software.

The completed microfluidic device is shown in SFig 4A. The device is a standard two-layer 

PDMS device22,23, similarly to our previous work3,4,24, fabricated using a rapid prototyping 

method and thermal bonding between layers (SFig 4B). Rather than using conventional 

fullclosure valves that rely on a curved cross-section of the flow-layer, this device uses a 

rectangular flow layer. Although valves incapable of fully closing are typically considered 

drawbacks in microfluidic devices, in this case they could be used advantageously to 

simplify the design. Because the valves always allow a small amount of flow 

(Supplementary Fig. 2C), the device was designed using partial closure valves to position 

animals in the imaging channels, instead of suction channels3.

In addition to the development of a microfluidic device for screening, external systemic 

components were required to allow for automated sorting. This required a closed loop 

control system and the development of specific hardware to interface with and control the 

on-chip components. Creating external components that would allow computerized control 

of on-chip components was necessary (Supplementary Fig. 1).

Because we needed to run the system for a very long period during the screen, a 

comprehensive framework was developed for handling errors robustly (Supplementary Fig. 

3). This includes an external macroscale control components to be integrated with the 

microfluidic device to allow closed-loop control, an error handling routines to reduce the 

need for operator intervention for the closed loop control, and optimization of the 

operational sequence to minimize the amount of time spent per animal. The entire system 

was coded within Matlab. External calls were to the machine learning libraries and a dll for 

valve control operation. Due to potential stability issues with Matlab operation, however, it 

could be advisable for future efforts to focus on the open microscopy environment and code 

in a more robust language such as Java.

Genetic Screening

The screening methodology was optimized to maximize the number of independent F2 

animals screened, and to minimize the likelihood of screening clonal siblings. This was done 

by pooling F2 animals from a number of F1 mothers, and then screening a subset of this 
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group. Due to the screening methodology of the number of haploid genomes cannot be 

directly calculated, but several assumptions have to be made regarding the sampling from F2 

population. These assumptions are derived from an earlier paper25.

Following mutagenesis, approximately 25 P0 animals were placed on each large NGM plate. 

Each P0 animal has around 60 progeny. This results in approximately 1,500 F1 animals per 

plate, or 3,000 haploid genomes. Given that F1 animals are A/B, we can assume that half of 

the animals are homozygous (A/A or B/B), and the naïve assumption is that for every 2 F2 

animals screened, we have screened 1 haploid genome. On average, 500 F2 animals were 

screened from each of these populations, resulting in 250 haploid genomes. Given that we 

were sampling from a larger population of animals, there is the possibility that an F2 animal 

could be homozygous for the same genome present in an animal that was previously 

screened. The probability of this occurring was calculated as . Given 

there were 3,000 haploid genomes present, we screened 0.08 * 3,000 = 240. This yields a 

ratio of , implying that because we have screened a total of ~40,000 animals, that 

corresponds to nearly 20,000 haploid genomes.

Following screening, the animals identified were cloned and then verified by reimaging. 

Once the identified mutants have been cloned and decontaminated, it is necessary to verify 

that the animals are probable mutants. Furthermore, because genetic validation by 

sequencing is such a slow and time consuming process, it is important to visually confirm 

that each of the animals to be mapped or sequenced indeed have an altered synaptic 

expression. Validation was done using standard worm protocols using a worm-slide and 

sodium azide for immobilization. A small population (~15–20) of animals of each genotype 

was imaged, and these images were used to determine whether the animals were actual 

mutants, and thus the accuracy of the screening. Some of the mutants were phenotyped with 

larger numbers, and were characterized in greater detail to predict the potential pathway that 

was affected (Supplementary Table 2). Each of the genotypes classified as mutants of 

interest were phenotyped. For the purpose of these results, animals that were sorted as 

mutants but failed to produce any offspring that could be used to verify whether the animals 

were correctly or incorrectly sorted, were removed from the results.

To determine the accuracy of the screening protocol, images of all processed animals were 

collected and analyzed to determine whether animals were correctly or incorrectly sorted as 

wild-type animals. This information was used to determine the accuracy of the system 

during screening. The false negative rate was determined by comparing the manual scores to 

the computer scores to determine the accuracy of the algorithm. The screen using the 

discriminative classifier resulted in a false positive rate of 69%, a false negative rate of 9%, 

and a theoretical enrichment of 6,000%. The screen using the outlier detection approach 

resulted in a false positive rate of 74%, a false negative rate of 7%, and an enrichment of 

6,000%. The marginally higher false negative rate could be a result of the discriminative 

classifier not recognizing some mutant phenotypes, or merely the sample size. The false 

positive rates of these classifiers are similar to or better than the manual methods due to 

animal-to-animal variations and the manual method’s subjectivity in scoring the phenotypes. 
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These false positive animals also do not pose an issue in these rare-sort problems since it is a 

very small number of candidate mutants that need to be characterized in the following steps.

False positives were calculated using the following equation where animals sterile animals 

were removed from the denominator: .

The false negative rate was calculated using the following equation:

The upper bound of the enrichment was calculated using the equation:

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Integrated system for autonomous screening of fluorescent reporters. (a) Schematic of the 

microfluidic device used to automate sample handling of a mutagenized C. elegans 

population and allow imaging and sorting (scale bar 150 µm). (b–d) The computer vision 

framework to identify the fluorescent reporter in a low signal-to-noise environment: (b) 

Maximum projection of a representative wild-type animal acquired in the device (scale bar 

20 µm). (c) Computer vision framework applied to identify the objects of interest (synapses). 

For each pixel in (b) local features and used to predict the probability that a pixel is a 
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synapse; for high probability locations the spatial relationship between potential synapses is 

used to distinguish between autofluorescence and the signal of interest. (d) The probability 

that each pixel of the wild-type animal is a synapse (top), and the locations of the identified 

synapses (bottom)(scale bar 20 µm). (e–h) Statistical framework for quantitative 

phenotyping and autonomous decision making during screening. (e) Representative images 

of wild-type and lin-44−/− mutants acquired in the device, and the resulting identified 

synapse locations (scale bar 20 µm). (f) Quantitative phenotypical descriptors extracted from 

the representative images. These descriptors are used to train the classifier for performing 

autonomous screens and predicting whether an animal is a mutant.
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Figure 2. 
Autonomous screens for mutants containing altered synaptic patterns. (a) LDA projection of 

the phenotypical descriptors from wild-type and lin-44−/− animals used to train the 

discriminative classifier. Classification during screening was performed in the original high-

dimensional space using an RBF-kernel SVM. (b) PCA projection of the phenotypical 

descriptors from wild-type animals used for the outlier detection screen, and showing a 

representative decision boundary. Classification during screening was performed in the 

original high-dimensional space. (c) Schematic location of the DA9 neuron within C. 
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elegans. (d) (left) Schematics of the phenotypical classes identified during autonomous 

screening, including both previously identified and novel phenotypical classes. (right) 

Representative images of alleles with phenotypes falling into the appropriate categories. (e) 

Candidate mutants of a single phenocluster, trafficking, were selected for further 

investigation. Complementarity tests were performed between these new alleles and genes 

known to cause a similar dendritic puncta phenotype. Two alleles complemented with genes 

known to act within this pathway while two alleles failed to complement with any of the 

known genes, suggesting the discovery of additional players within the pathway. (f) A 

mutant (a085) showing a novel phenotype of enlarged spine-like protrusions (scale bars 20 

µm).
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