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Abstract: The dual-functional Bi2WO6/polydopamine (PDA)-modified gauze membrane has been
developed for applications in photocatalytic degradation and solar steam generation. Two types
of membrane were prepared by changing the growth sequence of Bi2WO6 nanomaterials and PDA
on gauze substrates. The spatial distribution of Bi2WO6 and polydopamine has a great influence
on light absorption, photocatalytic degradation, and solar steam generation performances. Bi2WO6

photocatalysts can absorb short-wavelength light for the photocatalytic decoloration of organic dyes.
The photothermal polydopamine can convert light into heat for water evaporation. Besides, the
gauze substrate provides water transport channels to facilitate water evaporation. The morphology,
surface chemistry, and optical properties of Bi2WO6-PDA modified gauzes were characterized by
scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy,
and diffuse reflectance spectra. The photothermal properties, wetting properties, and solar steam
generation rates of the composite films were also studied. Degradation of 96% of indigo carmine was
achieved after being irradiated for 120 min in the presence of G/PDA/BWNP. The water evaporation
rates of the G/BWP/PDA sample under the irradiation of an Xe lamp (light intensity = 1000 W/m2)
reached 1.94 kg·m−2·h−1.

Keywords: Bi2WO6; polydopamine; photocatalytic degradation; solar steam generation

1. Introduction

Developing practical approaches to obtain clean water and eliminate pollutants is an
important issue for our society because of the increasing world population [1] and water
contamination caused by various industrial production processes. Besides, since solar en-
ergy is a sustainable and renewable energy source, light energy has been widely utilized in
photovoltaic [2,3], photothermal [4–6], and photocatalytic [7,8] applications. Solar energy-
driven water production is significant for people living in remote areas without electricity
supply [9]. Solar steam generation is a promising process to produce clean water from
seawater [10,11] or contaminated water sources [12,13]. Meanwhile, photocatalysts can be
applied to the photocatalytic degradation of organic pollutants or the reduction of heavy
metal ions [14,15]. Pollutants can also be degraded in the presence of heat (thermocatalysis)
or light (photocatalysis, photoactivation and photothermocatalysis) [16]. Therefore, the de-
velopment of dual-functional membranes for water treatment by the combined solar steam
generation and photocatalytic degradation approaches is worth studying. Yang et al. [17]
developed a novel dual-functional water-treatment system by integrating photothermal
Ti3C2Tx, La0.5Sr0.5CoO3 photocatalysts, and polyvinyl alcohol/chitosan hydrogels. The
system can achieve high photothermal conversion performance and photodegradation
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activity. Jin et al. [18] reported that the Pt/Au/TiO2 NP-wood carbon composite materi-
als exhibited outstanding interfacial solar steam generation property and photocatalytic
degradation activity toward tetracycline. Ding et al. [19] reported a large-scale outdoor
solar conversion device that was constructed to simultaneously harvest freshwater from
contaminated water and degrade organic dyes in the source water. The daily freshwater
production rate is 5.7 kg m−2. This demonstrated the potential of the membrane for the
production of potable water and the treatment of contaminated water using one device.

The combination of polymer and inorganic materials was useful for improving vari-
ous properties, such as solar steam generation, moisture blocking, photocatalytic degra-
dation, photoconductive, and gas sensing [20–26] performance. Polydopamine (PDA)
exhibits excellent adhesion, biocompatibility, hydrophilicity, and photothermal conver-
sion properties [27]. It has been used for various applications, such as adsorbents for
heavy metals ions [28,29], photothermal cancer therapy [30–32], and solar steam gen-
eration [33]. PDA was used in the preparation of some polymer/inorganic composite
photocatalysts. PDA modification was effective in improving the activity of g-C3N4,
BiOBr, BiOCl, ZnO, BiVO4, and TiO2-based composite photocatalysts that can be used
for photocatalytic degradation, photocatalytic CO2 reduction, and removal of hexava-
lent chromium [34–38]. Furthermore, polydopamine-inorganic composites were loaded
on fabrics for catalysis applications. Liu et al. reported the preparation and properties
of flexible Ag/AgCl/polydopamine/cotton fabric-based photocatalysts [39]. Wang and
coworkers studied the UV protection, antimicrobial activity, and photocatalysis property
of CuO/BiVO4-polydopamine and ZnO/polydopamine-modified cotton fabrics [40,41].

In recent years, Bi-based photocatalysts have attracted lots of attention, due to their tun-
able morphology, unique electronic band structure, and excellent chemical stability [42–44].
Bismuth tungstate (Bi2WO6) photocatalyst was developed to remove organic pollutions
due to its advantages, such as tunable morphology, excellent stability, low cost, and high
photocatalytic activity [45,46]. The activity of photocatalysts can be improved by introduc-
ing conductive polymer, carbon nanotube, carbon dots, and metal substrate [47–50]. Since
it is difficult for Bi2WO6 photocatalysts to be separated and collected for repeated opera-
tion, the growth of Bi2WO6 nanomaterial on a porous substrate to make the immobilized
photocatalyst is worth developing. Bi2WO6 photocatalysts have been coated on differ-
ent supporting materials such as indium-tin-oxide glass [51], stainless steel [52,53], and
polyester fabric [54,55] to make immobilized photocatalysts, exhibiting some advantages
such as enhanced photocatalytic activity, self-cleaning properties, and recyclability. Indigo
is a widely used dye in the textile industry for the dyeing of blue jeans and other blue denim
products [56]. Its strong intermolecular hydrogen bonding leads to a high melting point and
poor solubility. Indigo carmine (IC) exhibits better solubility. However, it is carcinogenic
and can cause severe health problems [57,58]. In this work, we studied the decolorization of
an IC dye to evaluate the degradation by various photocatalysts. The utilization of gauze as
the porous substrate to support the functional polydopamine and Bi2WO6 in this work has
some advantages. Its interconnected pore structure can provide water transport channels
for photothermal evaporation. Besides, it was reported that a rough surface could enhance
light trapping of incident solar light by multi-scattering [59,60]. The large specific surface
area of microporous gauze also increases the contact area between the loaded Bi2WO6 and
pollutants in wastewater, leading to enhanced water treatment capacity.

Considering the high activity of Bi2WO6, together with the broad optical absorp-
tion and excellent photothermal conversion characteristics of PDA, two types of PDA-
Bi2WO6-gauze-based dual-functional membranes, G/BWP/PDA and G/PDA/BWNP,
were developed by the sequential growth of Bi2WO6 nanomaterials and PDA on gauze
substrates through microwave-assisted hydrothermal and self-polymerization methods.
The effects of the spatial distribution of Bi2WO6 and polydopamine on the light absorption
properties, photocatalytic degradation, and solar steam generation performances of these
films were studied.
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2. Experimental
2.1. Nomenclature

G, G/PDA, and G/PDA/BWNp mean the gauze substrate, gauze/polydopamine,
and gauze/polydopamine/Bi2WO6 nanoparticles samples, respectively. G/BWP and
G/BWP/PDA indicate the gauze/Bi2WO6 nanoplates and gauze/Bi2WO6 nanoplates/
polydopamine samples, respectively.

2.2. Preparation of Dual-Functional Membrane

The non-sterile non-woven rayon/polyester gauze is provided by YASCO Enterprise
Corp. Two types of dual-functional film were developed by the sequential growth of
Bi2WO6 nanomaterials and PDA on gauze substrates for applications in photocatalytic
degradation and solar steam generation in this study.

For the first type of sample, polydopamine was grown on the gauze substrate by
self-polymerization. A dopamine solution was prepared by dissolving 0.25 g of dopamine
hydrochloride in 50 mL of deionized water. Then, a 2 M NaOH solution was used to tune
the pH value of the solution to 8.5. The gauze substrate (2 cm × 2 cm) was immersed in
the dopamine solution at room temperature for 24 h to make the G/PDA sample. Then,
a uniform Bi2WO6 nanoparticle layer was formed by the alternative immersion of the
G/PDA sample into separately placed Bi(NO3)3 (0.06 M, 50 mL) and Na2WO4 (0.06 M,
50 mL) solution for 3 min. Before immersion in another solution, the gauze-based sample
was immersed in D.I. water for 1 min. The alternative immersion was repeated 10 times.
Then, the G/PDA/BWNp sample was obtained after washing by water and drying at
60 ◦C for 24 h (Figure 1a).
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Figure 1. Procedures of the formation of Bi2WO6-polydopamine decorated gauze (a) G/PDA/BWNp
(gauze/polydopamine/Bi2WO6 nanoparticles) (b) G/BWP/PDA (gauze/Bi2WO6 nanoplates/ poly-
dopamine) samples, schematic illustrations of the setup for (c) solar steam generation test (d) photocat-
alytic degradation test.

For the second type of sample, G/BWP/PDA was prepared by the consecutive growth
of Bi2WO6 nanomaterials and PDA on gauze substrates (Figure 1b). The Bi2WO6 nanoma-
terials were grown by a two-step process. At first, a uniform Bi2WO6 nanoparticle layer
was formed on the gauze by the alternate immersion of the gauze substrate (2 cm × 2 cm)
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into separately placed Bi(NO3)3 (0.06 M, 50 mL) and Na2WO4 (0.06 M, 50 mL) solution.
Before the immersion in another solution, the gauze-based sample was rinsed with D.I.
water for 1 min. The alternative immersion was repeated ten times. G/BWNp sample was
obtained after washing by water and drying at 60 ◦C for 24 h. For the second step, Bi2WO6
nanoplates (BWP) were grown on the previous G/BWNp substrate to make the G/BWP
sample by a microwave-assisted hydrothermal method. 0.365 g of Bi(NO3)3 was dissolved
in 20 mL of ethylene glycol to prepare solution A. 0.125 g of Na2WO4 was dissolved in
20 mL of ethylene glycol to prepare solution B. The G/BWNp substrate (2 cm × 2 cm), so-
lution A, and solution B were put in a EasyPrep Plus® closed vessels (100 mL). The reaction
mixture was sealed and heated by a Microwave Synthesis System (MARS 6, CEM, NC,
USA) at 160 ◦C for 20 min to make the G/BWP sample. Then, polydopamine was grown
on the G/BWP by self-polymerization to make the G/BWP/PDA sample. A dopamine
solution was prepared by dissolving 0.25 g of dopamine hydrochloride in 50 mL of deion-
ized water. Then, a 2 M NaOH solution was used to tune the pH value of the solution to
8.5. The G/BWP sample (2 cm × 2 cm) was immersed in the prepared dopamine solution
for 24 h at room temperature. Then, the G/BWP/PDA sample can be obtained after being
washed with deionized water three times and dried at 60 ◦C (Figure 1b).

2.3. Solar Steam Generation

The solar steam generation test was performed to investigate the light-to-heat conver-
sion performance of various samples (Figure 1c). A fluoro acrylate copolymer-based water
repellent agent solution (JR7101, J-Young Technology Corp., Hsinchu city, Taiwan) was
spray-coated on the top layer of the sample (2 cm × 2 cm) and dried at 60 ◦C for 10 min to
make the sample floatable. In the solar steam generation experiment, 20 mL of water was
added to a beaker with a diameter of 2.9 cm (height 4.1 cm), and the sample was floated on
the water. The light intensity of the simulated solar light (Xenon lamp, PX350A, Prosper
OptoElectronic Co., New Taipei City, Taiwan) was tuned at 1000 W/m2. The thermal
images and surface temperature of the membranes floating on the solution were monitored
by an infrared thermal imaging camera (FLIR-A320, FLIR SYSTEMS, Wilsonville, OR, USA).
An analytical balance (GF2000, A&D, Tokyo, Japan) connected to a computer was used for
real-time monitoring of the mass changes during the photothermal evaporation test. The
whole evaporation process was carried out under the ambient temperature of 30 ◦C and
relative humidity of 70%.

2.4. Photocatalytic Degradation

The photocatalytic activities were evaluated for the decoloration of the indigo carmine
solution under light irradiation. The photocatalytic degradation of indigo carmine dye
was performed in a reactor using 10 mL of a 60 ppm dye solution and the photocatalysts
(2 cm × 2 cm). Before the irradiation, the solution was magnetically stirred for 60 min in
the dark to reach an absorption-desorption equilibrium. These solutions were illuminated
with a 350 W Xe lamp (Prosper HID). The temperature of the solution was maintained
at 30 ◦C using a water bath. The dye degradation was monitored by a JASCO V-770
UV-vis spectrophotometer.

2.5. Characterization

The morphologies of samples were analyzed with a field scanning electron microscope
(FESEM, HITACHI, S-4800) and a field-emission transmission electron microscope (TEM,
JEOL, JEM-2100F). The surface chemical composition and elemental valence were identified
from X-ray photoelectron spectra (XPS, ULVAC-PHI, PHI 5000 Versa Probe), using C 1s
peak as a reference to calibrate binding energies. The surface wettability of the samples was
evaluated with a contact-angle meter (CAM-100, Creating-Nanotech Co., Tainan city, Tai-
wan). The Raman spectrum was measured by a Raman microscope (MRI532S, Protrustech,
Tainan city, Taiwan) with an emission wavelength of 532 nm (He–Ne laser). The detector
integration time and laser irradiation power were 10 s and 2 mW. The diffuse reflectance



Polymers 2021, 13, 4335 5 of 16

spectra (DRS) were recorded by a spectrometer (JASCO V-770, Tokyo, Japan) to measure
the light absorption property of photocatalysts.

3. Results and Discussion
3.1. Morphology

The fiber surface morphology of the membrane changed after the growth of Bi2WO6
nanoplates and polydopamine on the surface of gauze, as observed by the FESEM images.
Figure 2 illustrates the FESEM images of gauze, G/PDA, G/PDA/BWNp, G/BWP, and
G/BWP/PDA samples. As shown in Figure 2a,f, the fibers of pristine gauze show a smooth
surface with a diameter ranging between 9 to 11 µm. The polydopamine was grown
on the gauze substrate by self-polymerization to enable the G/PDA sample to act as a
comparative sample. Parts of the surfaces of PDA-modified fibers for G/PDA are covered
by some particles with the size ranging from 150 nm to 500 nm, due to the polymerization
of dopamine (Figure 2b,g). Then, Bi2WO6 nanoparticles (BWNp) were grown on the
surface of G/PDA by a successive ionic layer adsorption and reaction process to prepare
G/PDA/BWNp sample. As shown in Figure 2c,h, BWNp with the size of less than 100 nm
was uniformly distributed on almost all the fiber surfaces of G/PDA/BWNp. The Bi2WO6
nanomaterials were grown by a two-step process to achieve uniform modification of the
fiber surface. The first step was a successive ionic layer adsorption and reaction route.
The second step was a microwave-assisted hydrothermal process. The morphology of
the G/BWP sample (Bi2WO6 nanoplate modified gauze) is shown in Figure 2d,i. For
the G/BWP sample, the surface of the fiber is fully covered with a lot of assembled two-
dimensional Bi2WO6 nanoplates. The enlarged image of the G/BWP sample (Figure 2i)
shows that Bi2WO6 grows into two-dimension rectangular-plate-like morphologies with a
side length of 5–10 µm and the width of 1.0–5.5 µm. The thickness of an individual Bi2WO6
nanoplate is 0.22–1.1 µm. Bi2WO6 nanoplates were randomly stacked together. Besides, the
fiber diameter of G/BWP increases, ranging between 35 to 55 µm (Figure 2d). The increased
fiber diameter results from the formation of large amounts of nanoplates on the fiber surface.
Then, polydopamine was grown on the surface of G/BWP to make the G/BWP/PDA
sample. Figure 2e,j show that randomly stacked Bi2WO6 nanoplates were still observed on
G/BWP/PDA. Besides, compared to the enlarged image of G/BWP (Figure 2i), there are
lots of PDA nanoparticles formed on the Bi2WO6 nanoplates (Figure 2j). The fiber diameter
of G/BWP/PDA (Figure 2d) is close to G/BWP (Figure 2e).
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3.2. Chemical Compositions
3.2.1. Transmission Electron Microscopy Energy-Dispersive X-ray (TEM EDX)

The TEM energy-dispersive X-ray (EDX) spectrum of a line scan is presented in
Figure 3a to investigate the elemental distribution for the powder scratched from the
G/BWP/PDA composite sample. The Bi, W, O, and N elements are found in the G/BWP/
PDA sample. The elements of Bi, W, and O indicate the existence of Bi2WO6. The N
element originates from dopamine due to the successful polymerization of dopamine on
the fabrics. The signals of the Bi, W, O, and N elements are higher near the center of the line,
indicating that the plate-like sample is Bi2WO6, and polydopamine is distributed well near
Bi2WO6. Similar results were observed for the powder scratched from the G/PDA/BWNp
composite sample (Figure 3b).

3.2.2. X-ray Photoelectron Spectra (XPS) Analysis

The XPS analysis of G/BWP/PDA sample was measured to analyze its oxidation state
and chemical composition. Figure 4 shows the XPS (a) Bi 4f (b) W 4f (c) N 1s (d) O 1s spectra
of G/BWP/PDA. The Bi 4f peaks of G/BWP/PDA at 158.9 and 164.2 eV can be assigned to
Bi 4f7/2 and Bi 4f5/2, indicating the Bi3+ of Bi2WO6. The W 4f peaks of G/BWP/PDA at
37.8 and 34.7 eV are attributed to W 4f5/2 and W 4f7/2, respectively, which are related to
W6+ of Bi2WO6 [61,62]. The N 1s peak is deconvoluted into three peaks (Figure 4c). That
peaks at 401.5, 399.8, and 398.7 eV can be attributed to primary amine (R–NH2), secondary
amine (R1-NH-R2), and tertiary amine (=N-R) groups, respectively [63,64]. The results
are related to the chemical structures of polydopamine, possible intermediate species,
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and dopamine monomer [65]. The primary amine is related to dopamine. The secondary
amine can be assigned to the intermediate species or polydopamine, while the tertiary
amine can be attributed to tautomeric species of the intermediates. The O 1s spectrum
of G/BWP/PDA was deconvoluted into two peaks. The peaks at 531.3 and 532.7 eV are
assigned to Bi–O, and O–H, respectively. These results support the formation of Bi2WO6
and polydopamine on the sample. Figure 4e–h present the XPS Bi 4f, W 4f, N 1s, and O 1s
spectra of G/PDA/BWNp, respectively. The results of the G/PDA/BWNp sample were
similar to those of G/BWP/PDA, except that the Bi–O peak was higher than the O–H peak
in the O 1s spectrum.
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3.2.3. Raman Spectra

The surface chemistry of G/BWP/PDA and G/PDA/BWNP was analyzed by the
Raman spectra (Figure 5). The peak at 709 cm−1 is associated with the asymmetric stretch-
ing mode of WO6 octahedra for the vibrations of equatorial oxygen atoms within layers.
The peak at 307 cm−1 was related to the simultaneous translational movement of Bi3+ and
the bending of WO6 octahedra [66,67]. Besides, two broad peaks at 1343 and 1584 cm−1

were attributed to the catechol stretching vibration and deformation from the chains of
polydopamine. Similar results were reported in the literature [68–71]. These peaks support
the existence of polydopamine and Bi2WO6 on G/BWP/PDA sample. Similar peaks were
found for the G/PDA/BWNP sample.
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3.3. Diffuse Reflection Spectra (DRS)

The light absorption properties of various samples were observed by a diffuse reflec-
tion spectrophotometer. G/BWP samples (Figure 6a) showed a strong light absorption
in the UV region ranging from 200 to 380 nm. Compared with the G/BWP samples,
G/BWP/PDA exhibits an increase in UV and visible light absorption ranging from 200 to
800 nm. The G/PDA membrane exhibits the highest UV and visible light absorption among
the four samples. After the decoration of BWNp on the G/PDA, the G/PDA/BWNP
sample showed decreased light absorption than the G/PDA membrane. The results
of G/BWP/PDA and G/PDA/BWNP exhibit the influences of the spatial distribution
of Bi2WO6 and polydopamine on the light absorption properties of G/BWP/PDA and
G/PDA/BWNP. The composition that appeared on the top layer exhibits a greater in-
fluence on the light absorption of the composite membrane. G/BWP/PDA with poly-
dopamine on the top layer show larger absorption in the visible light region, while the
G/PDA/BWNP sample has higher absorption in the UV light range. Figure 6b presents
the Tauc plots of G/BWP, G/BWP/PDA, G/PDA, and G/PDA/BWNP. The bandgaps of
two types of Bi2WO6 (BWP and BWNp) were obtained from G/BWP and G/PDA/BWNP
samples because the Bi2WO6 nanomaterials were located on their top layer. The bandgaps
of BWP and BWNp were 3.33 and 3.35 eV, respectively.
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3.4. X-ray Diffraction (XRD) Spectra

Figure 7 presents the XRD spectra of G/PDA/BWNP and G/BWP/PDA. A broad
diffraction peak of G/PDA/BWNP photocatalyst at 2θ = 28.4◦ is assigned to the (131)
plane of the orthorhombic phase of Bi2WO6 (JCPDS#79-2381). There is a wide peak at
around 2θ = 50◦. The broad XRD diffraction peaks indicated weak crystallinity of the
G/PDA/BWNP photocatalyst. The main characteristic diffraction peaks of the G/BWP/
PDA photocatalyst observed at 2θ = 28.4◦, 32.8◦, 47.2◦, and 55.7◦ are attributed to the
(131), (200), (202), and (133) planes of the orthorhombic phase of Bi2WO6 (JCPDS#79-2381),
respectively. These were consistent with the results reported in other literature [72,73],
indicating the formation of Bi2WO6 in G/BWP/PDA.

3.5. Surface Hydrophilicity

An efficient water supply is essential to the preparation of an effective solar steam
generation membrane. In this study, the SEM images of modified samples revealed that
the porous structures of gauze substrates remained after the growth of polydopamine and
Bi2WO6 nanomaterials. These encapsulated materials should be hydrophilic to facilitate
water supply and steam escape. The surface hydrophilicity also facilitates the contact
between the photocatalyst and the organic pollutant. The surface hydrophilicity was
evaluated by measuring the dynamic contact angles of water droplets on different samples
(without coating the hydrophobic layer) to elucidate their potential applications in solar
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evaporation and photocatalytic degradation. As shown in Figure 8a, the complete wetting
of a water droplet on pristine gauze was achieved within 6.83 s. However, G/PDA
(Figure 8b), G/BWP (Figure 8c), G/BWP/PDA (Figure 8d), and G/PDA/BWNP (Figure 8e)
samples exhibited rapid, complete wetting within 0.033 s. The surface hydrophilicity was
further enhanced after the loading of polydopamine and Bi2WO6 nanomaterials.
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3.6. Photocatalytic Property

The activity of different immobilized photocatalysts (G/BWNP, G/BWP, G/BWP/PDA)
under light illumination was investigated through photocatalytic decoloration experiments
using indigo carmine (IC) as the pollutant model compound. The photocatalytic degra-
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dation performance of various samples is shown in Figure 8. The initial concentration of
indigo carmine (60 ppm) and the size of the membrane (2 cm × 2 cm) were kept the same
in all experiments for the comparison of different samples. For the Bi2WO6 nanoplates-
based G/BWP sample, 39% of IC was adsorbed on the photocatalyst during the dark test
(Figure 9a). The absorption peak of residual IC solution at 610 nm decreases rapidly under
light irradiation, indicating the high photocatalytic degradation activity of G/BWP. 99% of
IC can be degraded after the irradiation for 60 min in the presence of G/BWP. However,
the IC adsorption property changed when PDA was grown on G/BWP. No noticeable
decrease of IC was observed for the dark test of the G/BWP/PDA sample, indicating the
adsorption of IC on the G/BWP/PDA was negligible (Figure 9b). Besides, the photocat-
alytic degradation activity of G/BWP/PDA was lower than that of G/BWP. The residual
concentration of IC solution decreases gradually after light irradiation. The irradiation
time required for degradation of 99% IC by G/BWP/PDA is 210 min. Such a decrease in
the photocatalytic activity of the G/BWP/PDA sample may result from the coverage of
B2WO6 nanoplates by polydopamine, leading to a reduction in the exposed active sites of
B2WO6 nanoplates. Such a problem can be solved by changing the formation sequence of
Bi2WO6 and polydopamine on the gauze substrate. The G/PDA/BWNP photocatalyst was
prepared by the deposition of polydopamine on the gauze substrate by self-polymerization,
followed by the formation of a uniform Bi2WO6 nanoparticle layer on top. Compared with
G/BWP/PDA, the photocatalytic activity of the G/PDA/BWNP membrane was improved.
Degradation of 96% of IC was achieved after being irradiated for 120 min in the presence
of G/PDA/BWNP (Figure 8c). Photodegradation of indigo carmine (60 ppm) without
photocatalyst was shown in Figure 9d as a blank test. Its decoloration rate was slower
than other three curves with different photocatalysts. De Andrade et al. [74] studied the
degradation of the indigo carmine dye in aqueous medium by the autoclaved cellular
concrete/Fe2O3 catalyst in Fenton-like and photocatalytic processes. The toxicity tests
against Vero cells indicated that the toxicity of the degradation products, generated by
both processes, is smaller or similar to the precursor dye. Vautier et al. [56] reported the
photocatalytic degradation of indigo carmine using UV-irradiated titania-based catalysts.
The oxidative agents are photo-produced holes h+ and/or •OH radicals. A detailed degra-
dation pathway, based on careful identification of intermediate products, is proposed. In
addition to a prompt removal of the color, photocatalysis can mineralize carbon and of
nitrogen and sulfur heteroatoms into innocuous compounds. In our previous study [53],
the photocatalytic degradation by Ag/flower-like Bi2WO6 photocatalysts with and with-
out scavengers reveals that h+ and •O2

− are the major active species generated by the
photocatalyst. The oxidation of water by holes can generate •OH. We believe the products
of the photocatalytic degradation using Bi2WO6 photocatalysts will not be more toxic than
the parent compound, indigo carmine.

3.7. Solar-Steam Generation

The photothermal and solar steam generation performance of various samples (G/PDA,
G/BWP/PDA, gauze) were evaluated. Typical infrared thermal images and the surface
temperature changes of different membranes recorded by an infrared camera are shown
in Figure 10a,b, respectively. Figure 10a reveals that the temperatures around the floated
composite films are all higher than the bulk solution. Figure 10b shows the surface temper-
ature profiles of G/PDA, G/BWP/PDA, G/PDA/BWNP, and gauze samples versus time
under the simulated solar illumination. Before the light illumination, the initial surface
temperature of all samples is about 30 ◦C. After the simulated solar illumination with
a power density of 1000 W m−2 for 1 h, the surface temperature of the gauze is 36.1 ◦C.
However, the surface temperatures of G/PDA and G/BWP/PDA samples reached 67.4 and
65.7 ◦C, respectively. These two samples with PDA on the top layer showed similar surface
temperatures. The Bi2WO6 nanoplates under the PDA polymer did not deteriorate the light-
to-heat transform property of polydopamine. Han et al. [75] studied the dual functional
polydopamine-modified CuS@HKUST for quick sterilization through enhanced photother-
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mal and photocatalytic ability. They found that the nanoparticles’ ability to produce heat
was improved after the coating of polydopamine. Compared with G/BWP/PDA, the
G/PDA membrane exhibits higher light absorption (Figure 6) and photothermal-induced
temperature rise (Figure 10a). The surface temperature of G/PDA/BWNP (49.0 ◦C) is
lower than that of G/PDA. The Bi2WO6 nanomaterials exhibit lower light absorption
than PDA (Figure 6). PDA also has excellent photothermal conversion properties. It may
explain why the coverage of polydopamine by B2WO6 nanoparticles leads to the decrease
of surface temperature from 67.4 (G/PDA) to 49.0 ◦C (G/PDA/BWNP). The distribution
of PDA and Bi2WO6 on the samples has some influences on the temperature increase.
G/BWP/PDA with PDA-coated G/BWP structure exhibit a higher temperature increase
than the G/PDA/BWNP sample with BWNP-coated G/PDA structure. The surface temper-
atures reached the maximum values for all samples after 10 min of irradiation (Figure 10b).
The photothermal-induced temperature rise of gauze (as a comparative sample) was much
lower than G/PDA and G/BWP/PDA. The results indicate the high light absorption
and effective photothermal conversion properties of these PDA-based samples (G/PDA,
G/BWP/PDA, G/PDA/BWNP). Meanwhile, polydopamine is the critical component for
the photothermal conversion properties of composite materials. Figure 10c presents the
mass loss of water over time by G/PDA, G/BWP/PDA, gauze after simulated solar illumi-
nation at 1 kW m−2. The water evaporation rates of the Bi2WO6-PDA based films did not
follow the trend of the light-induced temperature rise. The water evaporation rates of the
G/BWP/PDA sample under the irradiation of the Xe lamp (light intensity = 1000 W/m2)
reached 1.94 kg·m−2·h−1. Although the G/PDA and G/BWP/PDA films exhibited similar
light-induced temperature rise, G/BWP/PDA showed a higher water evaporation rate
than the G/PDA film (1.68 kg·m−2·h−1). The water evaporation rates of the functional
films depend on the photothermal effect of the material, film structure for water supply
and steam escape, and thermal management [76]. As shown in the SEM images (Figure 2),
there are interstices among the Bi2WO6 nanoplates for G/BWP/PDA. Compared with
the G/PDA film, the G/BWP/PDA sample with Bi2WO6 nanoplate aggregates on the
fiber surface may provide a better capillary structure for water supply and steam escape.
Besides, both the G/PDA and G/BWP/PDA films showed higher water evaporation rates
than the gauze (0.93 kg m−2 h−1). The G/PDA/BWNP membrane shows a higher water
evaporation rate (1.83 kg m−2 h−1) than the G/PDA sample (Figure 10c). The Bi2WO6
nanomaterials may contribute to water transport and steam escape. These photothermal
membranes can convert light energy into localized heat and vaporize water across the
microporous surface into steam.
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4. Conclusions

A Bi2WO6-polydopamine (PDA) modified gauze was developed as a dual-functional
membrane for application in photocatalytic degradation and solar steam generation. The
spatial distribution of Bi2WO6 and polydopamine has a great influence on the light absorp-
tion properties, photocatalytic degradation, and solar steam generation performances of
G/BWP/PDA and G/PDA/BWNP. G/BWP/PDA with polydopamine on the top layer
showing a higher photothermal temperature rise. G/PDA/BWNP with Bi2WO6 nanopar-
ticles on top exhibit higher photocatalytic activity and similar solar steam generation
performance when compared with G/BWP/PDA. Active sites of Bi2WO6 nanoparticles
that were not covered by polydopamine may contribute to the improved photocatalytic
performance of G/PDA/BWNP. For the G/BWP/PDA and G/PDA/BWNP with better so-
lar steam generation performance than G/PDA, the Bi2WO6 nanomaterials may contribute
to the water transport and steam escape. The membrane with an interconnected pore
structure can facilitate the contact between Bi2WO6 and dye pollutants, and the capillary
transport of water to the top surface. Degradation of 96% of IC was achieved after irradia-
tion for 120 min in the presence of G/PDA/BWNP. The photothermal water evaporation
rate and surface temperature of the G/BWP/PDA membrane under irradiation (1 sun)
reached 1.94 kg m−2 h−1 and 65.7 ◦C, respectively. For the application of water production
in remote areas without electricity supply, a dual-functional membrane (G/BWP/PDA or
G/PDA/BWPNp) using a ternary compound may be a good choice. People can collect
clean water by condensing the solar-generated water vapor, and can degrade the pollutant
before it flows into the water body.
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