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Abstract

Controversies in the complexity-stability debate have been attributed to the methodologies

used such as topological vs. dynamical approaches or rigid vs. adaptive foraging behaviour

of species. Here, we use a bipartite network model that incorporates both topological and

population dynamics to investigate the robustness of 60 real ecological networks to the loss

of generalist and specialist species. We compare the response in both adaptive and rigid

networks. Our results show that the removal of generalists leads to the most secondary

extinctions, implying that conservation strategies should aim to protect generalist species in

the ecosystem. We also show that adaptive behaviour renders networks vulnerable to spe-

cies loss at initial stages but enhances long term stability of the system. However, whether

adaptive networks are more robust to species loss than rigid ones depends on the structure

of the network. Specifically, adaptive networks with modularity < 0.3 are more robust than

rigid networks of the same modularity. Interestingly, the more modular a network is, the less

robust it is to external perturbations.

Introduction

Human activities are continuously driving species extinction in many ecosystems, threatening

their function and the provision of ecosystem services [1–5]. Understanding the stability of

ecological networks, i.e. how the systems respond to perturbation through both natural and

anthropogenic means, has remained at the forefront of attention in ecological studies [3, 6–

10]. Traditionally, the stability of a complex dynamical system can be mathematically deter-

mined by analysing the local and asymptotic behaviours of its trajectories [11–14]. However,

such Lyapunov stability analysis only reflects one facet of how systems respond to perturba-

tions, and can become clumsy when the dimension and complexity of the system reaches

certain levels, which is often the case for ecological networks [15]. Alternative methods have

been designed that cater for other facets of network stability, especially for large and complex

systems where the traditional methodology fails [16–17]. To this end, robustness has been

proposed to capture how ecological networks respond to the loss of species (nodes in the

network). Although there are a variety of definitions of robustness in literature, all have
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quantified it as a measure of subsequent secondary extinctions due to species removal in an

ecological network. In particular, robustness is defined as the fraction of species that need to

be removed to result in a greater than 50% total loss of species in a food web [18]. A central

goal for biological conservation is, thus, to identify networks with high robustness and poten-

tially preserve processes that can enhance ecosystem robustness.

Robustness analysis is traditionally carried out in a topological test: nodes in a network are

sequentially removed, and after each removal nodes left with no links are considered secondar-

ily lost; the sequence of node removal is often considered as a function of node degree (high

node degrees represent generalists, while low node degree represents specialists) [6,7,18]. For

food webs’ response to the perturbation of species removal we have known[18]: (i) the removal

of generalist species can cause more secondary extinctions than the removal of specialists; (ii)

robustness increases with network connectance (the number of realised links divided by the

number of possible links when fully connected—although connectance alone cannot deter-

mine robustness); (iii) the removal of some species (defined as functionally important) can

lead to fatal consequences in the network. For the sequential removal of generalist species (i.e.

highly connected species), to attain high robustness, a network needs to have high connec-

tance, relatively uniform degree distribution and good expansibility (the absence of structural

bottlenecks in a food web, whose removal separates the network into large isolated clusters)

[7].

Although these studies have portrayed a clear picture of particular network architecture

that can foster robustness, the static nature of the network topology (i.e. fixed binary interac-

tions in a rigid network) is unrealistic [3, 4, 19]. Species often switch their interacting partners

as a response to changing availability of habitats and resources [20–25]. The adaptive interac-

tion switching can be further explained by the adaptive diet choice according to optimal forag-

ing theory in varying environments where a predator will only forage a subset of potential

preys to maximise the energy intake rate [26–28]. Earlier studies proved that adaptive behav-

iours can potentially favour stability particularly in antagonistic networks and food webs [10,

29–31]. Adaptive interaction switching can further affect species abundance and thus interac-

tion strengths in ecological networks [32–33]. However, recently, Gilljam and colleagues

showed that this switching behaviour could only be advantageous to individual consumers in a

short term but harmful for the long-term network persistence because rewiring can result in

resource overexploitation [34].

Here, we allow species to switch their interacting partners adaptively in response to the

loss of species in ecological networks. The rule of adaptive interaction switching is designed to

follow Russell Wallace’s definition of natural selection via the elimination of the unfit and ran-

dom drift. The former makes species eliminate the worst link for them (i.e. selection or optimi-

zation), and the latter allows species to randomly find new link (i.e. explore other unlinked

resources). The hybrid switching rule might imitate the real behaviour of species and has been

shown to account for the majority of variation in observed network structures (e.g. node

degree, nestedness and modularity) [32, 35]. Here, we plan to examine: (i) which network

structures strongly affect network robustness; (ii) how the sequence of species removal affects

network robustness; (iii) the effect of species’ adaptive behaviour on network robustness, and

(iv) the impact of different levels of robustness threshold on our results. Importantly, for the

first time, the robustness of rigid and adaptive networks is compared.

Material and methods

Let us consider an antagonistic plant-herbivore network (host-parasite network in the same

way), consisting of m plant species and n herbivore species. The population dynamics of plant
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i is controlled by its own density-dependent recruitment minus the loss due to feeding by her-

bivores, whereas the population dynamics of herbivore j is governed by the population

increase rate due to foraging (depicted by Holling’s type II functional response) minus its mor-

tality. This yields the following Lotka-Volterra model:

1

Pi

dPi

dt
¼ ri � ciPi �

X

j

aijvijHj

1þ h
X

k
akjvkjPk

1

Hj
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where Pi and Hj are the population sizes of plant i and herbivore j, respectively; ri and ci the

intrinsic growth rate and the density-dependent coefficient of plant i; dj the mortality rate of

herbivore j. The last term depicts the functional response of the plants to the foraging by herbi-

vores. Specifically, the binary diet matrix <aij> indicates whether plant i is part of herbivore

j’s diet (aij = 1) or not (aij = 0); the preference matrix <vij> depicts the probability of herbivore

j determining to feed on species i once met; the benefit matrix <bji> represents the benefit

received by herbivore j from consuming plant i; h denotes a herbivore’s handling time spent

on a plant and is assumed to be equal for all species [36–37] (h = 0.1). Direct competition

within the same trophic level is ignored as its impact on population dynamics is often much

weaker than cross-trophic antagonistic interactions [9, 38–42]. We here emphasize indirect

resource competition mediated by ecological network.

Due to lack of information from realistic networks, the values of initial population sizes

were randomly assigned between 0 and 1. The values of intrinsic growth rates, density-depen-

dent coefficients and the entries of the preference matrix, the entries of the benefit matrix were

randomly assigned such as to ensure the persistence of all species in the network at equilibrium

[43]. The assignment of different values to parameters does not affect the results [32]. The

entries of the diet matrix were initially randomly assigned to be either 0 or 1, with the number

of species and interactions being equal to the observation from 60 real networks (see S1 Table)

and also ensuring no isolated species in the network. This diet matrix was then updated at each

time step when numerically solving the model according to the following rule of interaction

switch. During each time step, we first randomly select two herbivores: one drops from its diet

the plant species that contributes the least to its fitness (i.e. per capita growth rate, bjiaijvijPj), and

the other randomly add a new plant into its diet with a preference value randomly assigned

between 0 and 1 (all the other parameters unchanged) [32].

We ran the model with an interaction matrix (i.e. the diet matrix) randomly assigned ini-

tially with an equal number of interactions as the observed networks in our previous work

[32]. Each simulation corresponds to a specific real network. We tracked the interaction matri-

ces, their modularity, nestedness and skewness of node degree distribution over time, with

each time unit equalling n+m steps of interaction switching. Modularity was calculated by

using the software NETCARTO based on simulated annealing [44] as the modularity optimi-

sation technique [45–46] while nestedness was measured based on the overlap and decreasing

fill (NODF) using the software ANINHADO 3.0 [47]. Before the removal of species, the model

was run up to the time t = 150 to allow the network architecture to reach its equilibrium (nor-

mally when t = 20). An illustration of the performance of the model for predicting the struc-

tures of these 60 real networks was shown in Fig 1. The network was then subjected to a

sequential removal of plant species.

For the sequential removal of generalist (specialist) species, a plant species which had the

highest (lowest) number of interactions was removed from the network. The network was

Robustness of networks to species loss
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then allowed some time to reorganise via adaptive interaction switching. The time allowed for

species to reorganise was proportional to the diversity of the network at the moment in order

for each species to have a chance to respond to the change in the network. A herbivore was

declared extinct if it had no interacting partner, while plant species were not allowed to go

extinct even without interacting partners. The network obtained after each “adaptation period”

was considered to be ready for the next species removal.

Robustness was mainly measured as the proportion of plant species that needed to be

removed before at least 50% of the herbivore species went extinct (denoted by R50). This defi-

nition was modified here specifically for bipartite networks and slightly different from the one

for food webs proposed before [18]. Other levels of robustness threshold were used to reflect

the proportion of plant species that needed to be removed before at least a certain percentage

of the herbivore species went extinct, in particular, R10, R30 and R70. To determine which

variable contributes most to the level of robustness, we carried out the principal component

analysis to group highly correlated variables. From each group one variable was then used in

the generalised additive model fitting of robustness on these selected variables, with the impor-

tance of these variables in determining network robustness assessed. To compare with the tra-

ditional definition of robustness for rigid networks, all analyses were also run for networks

without allowing for adaptive interaction switching.

Results

Robustness (R50) was significantly correlated with many network properties, including

resource-consumer ratio, link density (number of interactions/links), connectance, nestedness,

modularity, and the skewness and kurtosis of the node degree distribution (Table 1 and S1

Table) for both adaptive (cyan lines and dots in Fig 2) and rigid (red lines and dots in Fig 2)

networks. In contrast, the correlation between robustness and species richness (n+m) was not

significant (Table 1). The correlation between robustness and network architecture (nested-

ness, modularity and connectance) was stronger when species were allowed to switch than

Fig 1. Predicted vs. observed network architecture. For each network, simulations were run to equilibrium

and its architecture (modularity, nestedness, and connectance) recorded. Predictions are the averages of the

last 200 time units after the dynamics stabilize.

https://doi.org/10.1371/journal.pone.0189086.g001
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when they were assumed to be fixed as to who they interact with (Fig 2), while the opposite

was true for other network structures (Table 1).

Although rigid networks were usually more robust than adaptive ones at the beginning of

the removal of generalist resource species, they became less robust in the long run (Fig 3).

Whenever the rigid network was more fragile to species removal compared to the adaptive one

at the beginning, it remained less robust till the end (see Fig 3A and 3B). In cases where the

adaptive network was less robust at the beginning to species removal, after a certain threshold

(which was mostly never reached in specialist removals; Fig 3C and 3D), it later always became

more robust than the rigid one, suggesting that species adaptive behaviour enhances robust-

ness although it might initially enhance the fragility of networks.

Networks were more robust to the removal of specialists than to the removal of generalists

whether using rigid or adaptive networks (Fig 4). However, while using the threshold percent-

age of consumers that go extinct after the removal of resources, we found that there were varia-

tions as to whether adaptive networks are more robust than rigid ones (Fig 5). That is, whether

networks are more robust when rigid or adaptive depends on the threshold level used in the

definition of robustness. For example, for the network in Fig 3B, if R30 is taken, the adaptive

network (cyan dots) will be less robust than the rigid one (red dots), but if R70 is taken, the

opposite will be true. For different levels of robustness threshold the impact of network struc-

ture (depicted by modularity and nestedness) on robustness can be different, with opposite

signs of the regression slopes (Fig 4).

Importantly, the conclusion as to whether adaptive networks are more robust than rigid

ones depends on the network structure. For instance, for networks whose modularity is less

than 0.3 adaptive networks are more robust than rigid ones, and the robustness is more sensi-

tive to changes in the structure of adaptive networks rather than rigid networks (comparing

the steepness of the regression lines of R50 vs. R50ns in Fig 5). Overall, adaptive networks are

more robust than rigid networks for weakly compartmentalized networks (modularity <0.3)

and highly nested networks (NODF > 50) (Fig 5).

The principal component grouped variables of network structures that were used for

explaining the level of robustness, with particular variables highly aligned with the principal

component vectors. The three groups depict, respectively, network structure (including modu-

larity, nestedness and connectance), network complexity (including species richness and link

Table 1. Spearman’s rank correlations between network structure and robustness (R50, is the per-

centage of generalist resources that need to be removed before at least 50% of consumer species go

extinct).

Variable Adaptive network Rigid network

RC ratio 0.264 0.764

Link density 0.389 0.508

n+m -0.022 0.204

n×m 0.019 0.332

Connectance 0.872 0.453

Nestedness 0.807 0.364

Modularity -0.899 -0.631

Skewness -0.577 -0.767

Kurtosis -0.480 -0.721

Note: RC ratio stands for resource-consumer ratio; the level of nestedness is measured by NODF;

Skewness and Kurtosis are measured for the node degree distribution. Underlined correlations are not

statistically significant (p > 0.05).

https://doi.org/10.1371/journal.pone.0189086.t001
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density) and network asymmetry (skewness and kurtosis of the node degree distribution and

resource-consumer ratio) (S2 Table). The impact of network structure and complexity were

under-rated in rigid networks while network asymmetry was emphasized, compared to the

case in adaptive networks (Table 2). When selecting one variable from each group (in particu-

lar, modularity, link density and skewness) to explain robustness, modularity contributed the

most to the level of robustness as dropping it from the generalised additive model will drasti-

cally reduce the variance explained (Table 2).

Discussion

Optimal foraging theory has been supported for being able to capture the realistic decision

making of consumers. It suggests that consumers do not necessarily target all available

resources but rather target only those that can maximise the energy intake rate [26]. However,

because models based solely on optimisation of energy intake rate often exaggerate the struc-

ture of ecological networks, we have proposed the model where the optimisation process of

Fig 2. Robustness vs. network structure. For each simulation, the model was ran up t = 150, after which its structure was recorded. The generalist

species were sequentially removed and the level of robustness recorded. Panels show the relationship between robustness and connectance, link density,

nestedness, resource-consumer ratio, skewness of the degree distribution and modularity in both adaptive and rigid networks. R50 was used as the

measure of robustness. Cyan lines indicate regressions for adaptive networks (cyan dots) while red lines for rigid networks (red dots). Spearman’s rank

correlation coefficients are summarised in Table 1.

https://doi.org/10.1371/journal.pone.0189086.g002
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adaptation was counterbalanced by the random drift [32], reflecting both profit seeking and

risk aversion behaviour of consumers [28]. As the model can predict extremely well the

observed structures of empirical networks of both plant-herbivore and host-parasite interac-

tions, with 90% variance explained [32], implementing the same model for probing the rela-

tionship between network robustness and structure could have captured the essence of the

stability in bipartite antagonistic networks amidst the loss of species.

Thierry et al. (2011) showed that the interaction switch as a species rewiring mechanism

could increase the robustness especially in networks of low connectance [19]. However, Gillja-

mand colleagues [34] stipulate that adaptive behaviour of switching is a two-edged sword. It

may be advantageous for individual consumers but harmful to the network as a whole. Adap-

tive networks were more robust than rigid networks because species under stress from losing

interacting partners could switch and transfer their stress to other species but only until a cer-

tain threshold. Our results show that adaptive switch can enhance network robustness when

Fig 3. Robustness to the removal of species in adaptive and rigid networks. Panels (a) and (c)

correspond to the real network, N41 while (b) and (d) correspond to N43 in S1 Table in the supporting

information. For panels (a) and (b), generalist species were sequentially removed while for (c) and (d),

specialists were sequentially removed. Points show the percentage of consumer extinctions that resulted from

the removal of a certain percentage of generalist (a and b) or specialist (c and d) resource species from an

adaptive or rigid network.

https://doi.org/10.1371/journal.pone.0189086.g003
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the network is close to total collapse (i.e. species removal has led to most species being lost

from secondary extinctions [a large threshold for the robustness measure]). For example, if we

consider R70 as the measure of robustness, adaptive networks are generally more robust than

rigid ones (Fig 3). This shows that, when only a few resource species remain (one or two in our

simulations), adaptive switch enables consumers to coexist and persist with much flexibility,

unlike the scenario in rigid networks. The case is only representative in communities at the

verge of complete collapse, and thus allowing species the flexibility to adaptively switch to

accessible resources could be important to ensure conservation success of stressed communi-

ties. Our simulations also suggest that adaptive networks can have higher secondary extinction

at the beginning phase of species loss (Fig 3), which could serve as a warning sign to conserva-

tion management. This also implies that ignoring adaptive behaviours may often overestimate

the stability of ecological networks.

Although it was realised that increased human disturbance generally led to the loss of

poorly connected species [4], many studies have shown that their loss does not induce as many

secondary extinctions as those induced by the loss of generalists species [4,6,48–49]. The loss

Fig 4. Robustness to the removal of generalists and specialists in two networks (N41 and N43 in S1

Table). Points show the percentage of consumer extinctions that result from the removal of a certain

percentage of resource generalists and specialists. Panels (a) and (b) correspond to adaptive networks while

(c) and (d) correspond to rigid networks.

https://doi.org/10.1371/journal.pone.0189086.g004
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of these poorly connected species or generalists may occur in the process of selective harvest-

ing of specific species, which is common in human activities such as in the fishing industry

[50]. Our results agreed that the consequence of species removal was much higher when gener-

alists were removed than when were specialists (Fig 4), consistent with the previous studies [4,

6, 48–49]. With the increase in targeted ‘attacks’ in ecosystems, management strategies should

Fig 5. Genaralised additive model lines of fit of robustness with different threshold percentages on

modularity and nestedness. R10—R70 correspond to the percentage of resources that need to be removed

before at least 10–70% of consumer species go extinct in an adaptive network while R50ns corresponds to

the percentage of resources that need to be removed before at least 50% of consumer species go extinct in a

rigid network. Panels (a) and (b) indicate the removal of generalists while (c) and (d) indicate the removal of

specialists.

https://doi.org/10.1371/journal.pone.0189086.g005

Table 2. Variance explained measured by adjusted R2 from the generalised additive model fitting of

robustness on specific models.

Model Adaptive network Rigid network

Modularity + Link density + Skewness 0.854 0.712

Link density + Skewness 0.355 0.648

Modularity + Skewness 0.838 0.698

Modularity + Link density 0.839 0.454

https://doi.org/10.1371/journal.pone.0189086.t002
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be designed to prioritize the protection of generalist species more as they are critical to the sta-

bility of ecosystems [48].

Our results further demonstrated the crucial role of network structure in determining the

level of robustness (Tables 1 and 2). Many studies have argued that a compartmentalized net-

work may contain the effects of any disturbances (for example species loss) and hence enhance

stability [8, 11, 51]. We showed that the more compartmentalized a network is, the less robust

it will be to species removal (Table 1), contrary to many recent studies [8–9]. Previous studies

have demonstrated that networks whose degree distributions are uniform are more robust to

species loss [7, 18]. Highly compartmentalized networks are also highly skewed (Fig 2E and

2F), which could be one reason for reduced robustness in these networks [18]. Importantly,

the measure of stability in these two papers [8–9] is not robustness but persistence, which is

defined as the proportion of species that remain in a system at equilibrium. In contrast, we

used robustness as the proxy of network stability and also allowed the system to first reach its

equilibrium before introducing disturbances (species loss). It is possible that persistence and

robustness measure different facets of network stability, potentially how networks combat

against internal and external disturbances, respectively. In other words, the more compart-

mentalised a network is, the less robust it is to external disturbance, but more persistence to

internal disturbance. Overall, although network robustness can be affected by a number of fac-

tors, network structure, in particular modularity strongly correlated with nestedness and con-

nectance (Fig 1), plays the most important role in determining the level of robustness. The

conclusion as to whether adaptive networks are more robust than rigid ones can potentially

change, depending on the level of compartmentalization.

By allowing species to adaptively respond to changes in their environment, we demon-

strated that biodiversity loss can affect a larger number of other species than expected. In fact,

the consumer which switches to a new resource as a result of losing its own can turn into a

native invader leading to overexploitation of the remaining resources [34]. Therefore, if we

assume that the ecosystem consists of isolated species and that any species loss does not affect

others, we are likely to underestimate the magnitude of the consequences of biodiversity loss

especially during the early phase of disturbances. The early removal of species following any of

the removal sequences (generalist or specialists) in our model resulted in more secondary

extinctions when species were allowed to switch to new diets than when they were not allowed

to. Although this was unexpected, it points to the fact that there is a need for a more inclusive

measure of robustness or stability in order for us to make robust conclusions as to whether

complexity begets stability in ecological networks. Meanwhile, we must value our knowledge

of possible adaptive processes as they may have important implications for network robustness

thus biodiversity maintenance and ecosystem function.
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