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Background: Cohen syndrome (CS) is a clinically heterogeneous disorder characterized

by extensive phenotypic variation with autosomal recessive inheritance. VPS13B was

identified to be the disease-causing gene for CS. The objectives of the present study

were to screen likely pathogenic mutations of the patient with developmental delay and

mental retardation, and to determinate the effect of this splice-site mutation by reverse

transcription analysis.

Methods: Whole exome sequencing (WES) in combination with Sanger sequencing

were performed to identify the causative mutations of this CS family. Subsequently, the

impact of the intronic variant on splicing was analyzed by reverse transcription and the

construction of expression vector.

Results: A novel homozygous splice-site mutation (c.6940+1G>T) in the VPS13B gene

was identified in this proband. Sanger sequencing analysis of the cDNA demonstrated

that the c.6940+1G>T variant could cause the skipping of entire exon 38, resulting in

the loss of 208 nucleotides and further give rise to the generation of a premature in-frame

stop codon at code 2,247.

Conclusions: The homozygous VPS13B splicing variant c.6940+1G>T was

co-segregated with the CS phenotypes in this family and was identified to be the cause

of CS after comprehensive consideration of the clinical manifestations, genetic analysis

and cDNA sequencing result.

Keywords: cohen syndrome, VPS13B, splice-site mutation, mRNA analysis, exon skipping

INTRODUCTION

Cohen syndrome (CS) (OMIM 216550), initially described in three patients by Cohen et al., is
an uncommon autosomal recessive neurodevelopmental disorder with more than 200 causative
mutations in ∼1,000 CS-affected individuals reported to date worldwide (1–3). CS can affect
multiple organs and systems including the face, head, eyes, blood system, cardiovascular system,
nervous system, and endocrine system (4). CS is relatively common among Finnish population in
spite of the low prevalence worldwide (5). Apart from this, CS has also been reported in Indian,
Jordanian, Chinese, Saudi, Tunisian, Iranian, German, Syrian, Lebanese, and Pakistani (6–14).
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To date, clear phenotype–genotype correlations of CS have
not been established yet. Although CS-affected individuals from
outside Finland present with variable phenotypes (15), the typical
clinical characteristics usually include intellectual disability, short
stature, a cheerful disposition, retinal dystrophy, hypotonia,
scoliosis, joint laxity, intermittent neutropenia, slender fingers,
hyperlinear palms, midchildhood onset truncal obesity and
craniofacial dysmorphisms such as microcephaly, thick hair, low
hairline, short philtrum, wave-shaped eyes and prominent upper
central incisors (1, 16, 17).

Vacuolar protein sorting 13 homolog B (VPS13B), also known
as COH1, was identified to be the disease-causing gene for CS by
Kolehmainen et al. (15) and since then, a large number of variants
have been detected in CS patients. In addition, VPS13B is also
responsible for autism spectrum disorders (ASDs) (18). VPS13B
is localized on chromosome 8 (8q22.2) with 62 exons and encodes
a 4022-amino acid transmembrane protein (14). The encoded
protein is a Golgi-associated peripheral membrane protein that
plays an important role in Golgi integrity and homeostasis, and
membrane transport (17, 19), and it belongs to the VPS13 protein
family, which are highly conserved in eukaryotic cells (20, 21).
Loss-of-function mutations in other VPS13 family members
such as VPS13A, VPS13C, and VPS13D could result in chorea-
acanthocytosis (OMIM 200150), rapidly progressive, early-
onset autosomal recessive Parkinson’s disease (OMIM 616840)
and spinocerebellar ataxia, recessive type 4 (OMIM 607317),
respectively (22–24).

With the rapid development of high-throughput
sequencing technology, next-generation sequencing (NGS)
for molecular analysis has enabled patients with inconspicuous
clinical symptoms to get timely and accurate diagnosis,
which could contribute to improving the quality of
life of the patients and facilitating genetic counseling.
NGS technology has been routinely available in clinical
practice and research due to significant advantages
including high efficiency, low cost, and high accuracy (25).
Furthermore, it is also worth noting that NGS technology
as a powerful tool is increasingly widely used in the
identification of pathogenic mutations of rare monogenic
disorders and the discovery of novel causative genes of
certain diseases.

In the present study, we investigated a pedgree with
CS from Shandong province, China and identified a novel
homozygous splicing mutation in the VPS13B gene by
performing trio-based whole-exome sequencing (WES).
In addition, we further determined that the intronic
mutation could lead to aberrant mRNA splicing by reverse
transcription analysis.

Abbreviations: ACMG, American College of Medical Genetics and Genomics;

ACTH, Adrenocorticotropic hormone; ASDs, Autism spectrum disorders; CS,

Cohen syndrome; FT3, Free triiodothyronine; FT4, Free thyroxine; GH, Growth

hormone; IGF1, Insulin-like growth factor 1; MRI, Magnetic resonance imaging;

NCBI, National Center Biotechnology Information; NGS, Next-generation

sequencing; PCR, Polymerase chain reaction; TSH, Thyroid stimulating hormone;

VPS13B, Vacuolar protein sorting 13 homolog B; WES, Whole exome sequencing.

FIGURE 1 | Pedigree of the family with CS. The black arrow denotes the

proband.

MATERIALS AND METHODS

Patient
The 4-year-old female proband (III1, Figure 1) was the first child
of the family born at 40 weeks gestation with a birth weight of
2,600 g from non-consanguineous, healthy parents. There was
no significant family history. Other family members including
her younger brother (III2, Figure 1) did not show any obvious
symptoms or signs. This study was approved by the Ethics
Committee of the Affiliated Hospital of Qingdao University.
Blood samples were collected from the proband and her family
members after written informed consent was obtained from
the parents.

WES for Mutation Screening
The genomic DNAwas isolated from peripheral blood leukocytes
of the proband using a DNA extraction kit (TIANGEN, Beijing,
China) following the manufacturer’s protocol. The DNA was
quantified with Nanodrop 2000. The qualified genomic DNA
sample was randomly fragmented into 180–250 bp by Covaris
S220 sonicator. DNA fragments were end repaired, A-tailed and
ligated to adapters on both ends for the preparation of DNA
libraries. Adapter-ligated libraries were enriched by polymerase
chain reaction (PCR) amplification. A Agilent 64M liquid phase
chip capture system was used to efficiently enrich the whole-
exome regions. Exome libraries were enriched in a PCR reaction
followed by library quality assessment. Only qualified libraries
were sequenced on Illumina NovaSeq platform for paired-end
150 bp reads. The target area coverage was 99.73%, the average
sequencing depth was 189.58× and the proportion of average
depth of target area >20× was 98.97%.

Sequencing Data Analysis
For raw data, filter reads with adapter contamination, reads with
more than 10% of uncertain bases and low quality reads to obtain
clean data. Burrows-Wheeler Aligner (BWA) software was used
to compare clean reads with reference genome (GRCh37/hg19).
Samtools and picard tool were utilized to sort the comparison
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results and mark duplicate reads, respectively. Single nucleotide
polymorphisms (SNPs) and insertions or deletions (InDels)
were determined by the Genome Analysis Toolkit (GATK)
software. Subsequently, the SNPs and InDels were annotated
by ANNOVAR. Remove synonymous variants and variants with
minor allele frequency (MAF) > 1% in at least one of the three
available frequency databases 1000 Genomes Project, Exome
Aggregation Consortium (ExAC) and esp6500si_all. Finally, the
pathogenicity of the variants were predicted by SIFT (https://sift.
bii.a-star.edu.sg/), PolyPhen-2 (http://genetics.bwh.harvard.edu/
pph2/), MutationTaster (http://www.mutationtaster.org/) and
CADD (https://cadd.gs.washington.edu/score).

Sanger Sequencing Validation
The identified variant by WES analysis was confirmed by
Sanger sequencing. The genomic DNA was extracted from
peripheral blood samples of the proband, her parents,
paternal grandparents and maternal grandparents with
a DNA extraction kit (TIANGEN, Beijing, China). The
partial DNA sequences involving the splicing mutation
site were amplified by PCR using primers: forward (5′-
TTAATGAGGAGGGAAATTTTGAAGTAC-3′) and reverse
(5′-TGGGCAATCTTCAGTTTCATTATAAA-3′). PCR products
were analyzed by 1% agarose gel electrophoresis and then were
purified and sequenced on an ABI 3730 analyzer (Applied
Biosystem). The obtained DNA sequences were compared
with the reference sequence on National Center Biotechnology
Information (NCBI) website to discover the mutation site.

mRNA Analysis by the Construction of
Recombinant Plasmid
Total RNA was extracted from peripheral venous blood of the
proband using a Blood RNA Extraction Kit (Takara) according
to the manufacturer’s instructions. cDNA was prepared from 2
µg total RNA using HiScript R© II 1st Strand cDNA Synthesis
Kit (+gDNA wiper) (Vazyme). PCR for amplification of the
cDNA covering exons 37–41 and partial sequences of exons 36
and 42 of the VPS13B gene was performed with 2×TransStart R©

FastPfu PCR SuperMix (TransGen Biotech) following primers:
forward (5′-CAAGAAAACATGTGGAGAGCTGTT-3′) and
reverse (5′-CACTGTCGAAGATACATGTGTGGTT-3′). PCR
product was identified by 1% agarose gel electrophoresis
followed by the extraction of target cDNA with an
agarose gel DNA recovery kit (Solarbio). Subsequently,
the recovered PCR product was connected with pEASY R©-
Blunt E2 Expression Vector. The recombinant plasmid
was confirmed by bidirectional sequencing with universal
primers: forward (5′-TAATACGACTCACTATAGGG-3′) and
reverse (5′-TAGTTATTGCTCAGCGGTGG-3′).

RESULTS

Clinical Phenotypes
OnOctober 30, 2017, when the proband was 1 year and 3 months
old, she was admitted to hospital because she was unable to stand
or walk independently. Physical examination showed good eye
contact, decreased muscle tone in all limbs, active patellar tendon

TABLE 1 | Summary of clinical findings of the proband.

Clinical phenotypes Patient (III1)

Developmental delay +

Intellectual disability +

Hypotonia +

Micrognathia +

Wave-shaped eyes +

Short philtrum +

Thick hair +

Thick eyelashes +

High myopia +

Neutropenia +

Talipes valgus +

Left coherent palm +

Hyperlinear palms +

reflex, ankle clonus (–), hyperextended knee and talipes valgus
(Table 1). Preliminary diagnoses were growth retardation and
hypotonia. She could speak “ba” and “ma” at the age of 2 years
and was able to walk with an unsteady gait at age 3 years.

She was readmitted to hospital due to growth and
development retardation, and short stature on May 20,
2020 when she was 3.8 years old. Physical examination: weight
13.4 kg, length 94.7 cm (3rd−10th centile), normal stature,
micrognathia, normal limbs and spine, left coherent palm,
bipedal varus, unlimited joint movements, no edema in both
lower limbs, decreased muscle strength and muscle tension
of the limbs, normal bilateral patellar tendon reflexs and
bilateral Babinski signs (–) (Figure 2; Table 1). Laboratory
tests: neutrophil count 1.16 × 109/L (Reference value: 1.7–
7.7 × 109/L), urine occult blood (±), urine leukocyte (±),
cortisol 213.35 nmol/L (Reference value: 118.6–618 nmol/L),
adrenocorticotropic hormone (ACTH) 18.00 pg/mL (Reference
value: 0–46 pg/mL), free triiodothyronine (FT3) 5.36 pmol/L
(Reference value: 3.5–6.5 pmol/L uIU/mL), free thyroxine (FT4)
13.92 pmol/L (Reference value: 11.5–22.7 pmol/L), thyroid
stimulating hormone (TSH) 1.722 µIU/mL (Reference value:
0.64–6.27 uIU/mL), insulin-like growth factor 1 (IGF1) 116
µg/L (Reference value: 49–289 µg/L), 25-hydroxyvitamin D
14.31 ng/mL (Reference value: 20–100 µg/L), estradiol 26.66
pmol/L (Reference value: 22–99.1 pmol/L), luteinizing hormone
<0.10 mIU/mL (Reference value: 0.2–1.4 mIU/mL), follicle-
stimulating hormone 0.52 mIU/mL (Reference value: 0.2–3.8
mIU/mL). The measured growth hormone (GH) values were
0.16, 6.9, 3.0, and 0.16ng/mL, 2.4, 1.9, respectively, at 0, 60,
and 90min on the GH provocation test by oral clonidine and
insulin injection with GH peak <10 ng/mL. Blood glucose levels
were 5.6 mmol/L, 5.4 mmol/L, 5.5 mmol/L at 0, 60, and 90min.
Plain magnetic resonance imaging (MRI) scan of the pituitary
showed no obvious abnormality. Orthotopic radiograph of the
left hand revealed that the bone age was equivalent to about
3.5 years of age. No abnormalities were found in hepatobiliary,
pancreatic and splenic ultrasound. Abdominal gynecologic
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FIGURE 2 | Clinical features of the proband. (A) The proband presented with micrognathia, wave-shaped eyes, short philtrum, thick eyelashes and thick hair. (B) Left

coherent palm with hyperlinearity. (C) Hyperlinear right palm.

ultrasound revealed uterus 15∗4 cm, left ovary 11∗5 cm, and right
ovary 14∗4cm.

The patient had a normal 46, XX chromosome karyotype and
a normal arr (1–22, X)×2 chromosomal microarray. She suffered
from intermittent neutropenia with data in different periods
shown inTable 2. Furthermore, she exhibitedmental retardation,
wave-shaped eyes, short philtrum, thick hair, thick eyelashes, high
myopia (OD−2.10DS−1.19DC∗84, OS−3.18DS−2.90DC∗74),
hyperlinear palms (Figure 2; Table 1). Genetic testing on this
proband was performed for further diagnosis.

Genetic Analysis
WES analysis revealed a novel homozygous splice-site VPS13B
mutation (c.6940+1G>T, rs202046738) (NM_017890.5) in this
proband (III1, Figures 1, 3A), which resulted in the first base of
intron 38 changed from G to T. Several bioinformatics analysis
tools were used to predict the deleteriousness of this splice donor
site mutation. MaxEntScan (http://hollywood.mit.edu/burgelab/
maxent/Xmaxentscan_scoreseq.html) showed Maximum
Entropy Model (MAXENT) 2.14, Maximum Dependence
Decomposition Model (MDD) 7.37, First-order Markov Model
(MM) 1.73, Weight Matrix Model (WMM) 2.53, with scores
of 10.65, 15.88, 10.24, and 11.04, respectively, in wild type.
Spliceman (http://fairbrother.biomed.brown.edu/spliceman/
index.cgi) revealed a ranking of 59% and Alternative Splice
Site Predictor (ASSP) (http://wangcomputing.com/assp/index.
html) revealed a score of 5.600 (Donor site cutoff: 4.5). The
pathogenicity of the splicing variant was classified as “likely
pathogenic” (PVS+PM) according to the American College
of Medical Genetics and Genomics (ACMG) guidelines (26)
and the frequencies of this mutation were 0.019968% in 1,000
g2015aug_all, 0.01% in gnomAD_exome_EAS, 0.0008% in
gnomAD_exome_ALL. Molecular analysis indicated that the
homozygous variant was inherited from the unaffected parents
(Figure 3B). Her maternal grandfather (I1, Figure 1) and
paternal grandfather (I3, Figure 1) were heterozygotes for this
variant (Figure 3B). However, the maternal grandmother (I2,

Figure 1) and paternal grandmother (I4, Figure 1) did not carry
the mutation (Figure 3C). In addition, the mutation site was not
found in 100 unrelated healthy controls in Shandong, China,
either (Figure 3C). Therefore, the homozygous genotype was
co-segregated with the CS phenotypes in this family.

mRNA Analysis for the VPS13B Splicing
Variant
cDNA sequence analysis confirmed that the c.6940+1G>T
variant could result in aberrant splicing which caused the
skipping of entire exon 38 and abnormal direct joining of exon
37 and exon 39 (Figure 4). The skipping of exon 38 led to loss
of 208 nucleotides and further gave rise to the generation of a
premature in-frame stop codon at code 2247. Presumably, the
c.6940+1G>T variant in VPS13B is responsible for functional
defect of the truncated protein.

DISCUSSION

In this study, we identified a novel homozygous splicing VPS13B
variant c.6940+1G>T in this proband by high-throughput
sequencing analysis, which was inherited from both parents who
were non-consanguineous. Furthermore, the mutation frequency
was extremely low in different databases, we therefore speculated
that the homozygous VPS13B variant in this proband may
be explained by the founder effect. Although this mutation
locus in heterozygous status has been described (27), we
reported here a homozygous c.6940+1G>T mutation for the
first time to our knowledge. In 2020, Lou et al. also described
two CS sisters with heterozygous c.6940+1G>T variant and
demonstrated that the splice donor site mutation could result
in the entire skipping of exon 38, the clinical features slightly
differed from those of our patient (2). The proband in our
study also presented with coherent palm with hyperlinearity,
which has only been reported in Chinese population to date.
The c.6940+1G>T variant was evaluated as “likely pathogenic”
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TABLE 2 | Neutrophil counts in different periods.

2017-11-8 2017-12-17 2019-1-19 2019-7-3 2020-5-20 2020-5-21 2020-6-18

Neutrophil count

(Reference value: 1.7–7.7 × 109/L)

1.36 × 109/L 1.01 × 109/L 1.91 × 109/L 1.9 × 109/L 1.16 × 109/L 0.87 × 109/L 1.52 × 109/L

FIGURE 3 | Partial sequence chromatograms of VPS13B. The red arrows represent the mutation site. (A) Homozygous c.6940+1G>T splice-site mutation. (B)

Heterozygous c.6940+1G>T splice-site mutation. (C) Normal DNA sequence.

FIGURE 4 | Partial cDNA sequence chromatograms of VPS13B. The aberrant splicing resulted in the skipping of entire exon 38 and abnormal direct joining of exon

37 and exon 39, which further gave rise to the generation of a premature in-frame stop codon at code 2,247.

according to the ACMG guideline classification. Genetic analysis
showed that her maternal grandfather and paternal grandfather
were heterozygous carriers for this mutation, while it was absent
in the maternal grandmother and paternal grandmother as
well as 100 unrelated, healthy individuals of Chinese origin.

Co-segregation analysis suggested that this splice-site mutation
was likely responsible for the CS phenotypes in this family.
To determine the effect of this VPS13B splicing variant, total
RNA isolated from venous blood sample was reverse transcribed
for the construction of expression vector. Sanger sequencing
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analysis of the cDNA covering exons 36–42 of VPS13B showed
that the homozygous c.6940+1G>T variant could cause the
skipping of entire exon 38, which resulted in a premature stop
codon producing a truncated VPS13B protein. The homozygous
c.6940+1G>T variant in VPS13B was identified to be the
cause of CS after comprehensive consideration of the clinical
manifestations, genetic analysis and cDNA sequencing result.

As a rare autosomal recessive developmental disorder
with a broad phenotypic spectrum, CS has been reported
in different populations (28). It is characterized by stunted
growth, intellectual disability, short philtrum, hypotonia, truncal
obesity, overly sociable behavior, early onset and severe myopia,
microcephaly, intermittent neutropenia (neutrophil count <1.5
× 109/L in children and <1.8 × 109/L in adults) (29, 30). The
clinical features of the proband in our study were consistent with
typical characteristics of CS. The early clinical diagnosis of CS
remains challenging and the diagnostic criteria are controversial
due to the overlapping features with other disorders and the
clinical heterogeneity of CS. The incidence rate of CS may be
higher than 1:105,000 because certain clinical symptoms are
insignificant during early childhood, which results in CS patients
not being diagnosed in a timely manner (31).

CS has been attributed to loss-of-function biallelic
mutations in the VPS13B gene. Since the founder mutation
c.3348_3349delCT was found in Finnish patients, more than 200
causative mutations have been reported so far in ∼1,000 CS-
affected individuals worldwide including non-sense, duplication,
missense, splicing, insertion/deletion mutations (7, 15, 17).
VPS13B maps to chromosome 8q22.2 and encodes six protein
isoforms generated by alternative splicing (https://www.uniprot.
org/). VPS13B is a transmembrane protein that is associated
with vesicle-Mediated sorting, intracellular protein transport,
Golgi glycosylation and morphology, and lysosomal–endosomal
pathway maintenance (15, 32). VPS13B is widely expressed in
brain, blood, small intestine, muscles, placenta, heart, retina,
kidney and lung (13, 30).

Rejeb et al. described two cases affected by CS from a
non-consanguineous family for the first time in the Tunisian
population in 2017 with the clinical features of neutropenia,
mental retardation, tapering fingers, thick hair eyebrows and
lashes (13). Novel compound heterozygous VPS13B mutations
c.3582delT/p.A1149fs and c.6295_6296delAT/p.M2124fs were
found in the two siblings, which were inherited from the father
and the mother, respectively. In 2007, Katzaki et al. identified
a deletion variant c.11125delC/p.T3708 fsX61 and a non-sense
variant c.11314C>T/p.Q3772X in a male Italian patient with
CS who presented with truncal obesity with BMI of 32.2,
severe intellectual disability, typical facial gestalt, retinopathy,
myopia, joints hyper extensibility, neutropenia and tapering
fingers (33). In 2006, six CS cases carrying the same homozygous
c.4471G>T/p.Glu1491X in VPS13B were reported by Murphy
and her colleagues. The patients manifested microcephaly, short
philtrum, truncal obesity, developmental delay and prominent
central incisors, which were consistent with typical phenotypes
of CS (34).

CS is less frequent among Chinese population with only
several cases reported to date. In 2019, two CS siblings from
Chinese healthy, non-consanguineous parents exhibited mental
retardation, speech delay, microcephaly, generalized joint hyper
extensibility, hypotonia, thick hair, thick eyebrows, prominent
upper central incisors, and hyperlinear palms (14). Hyperlinear
palms is an additional phenotypic characteristic of CS only
described in Chinese population and the clinical features of our
patient have confirmed this. In addition, novel splicing maternal
mutation c.3666+1G>T and novel non-sense paternal mutation
c.9844A>T/p.K3282X in VPS13B were identified in the two
siblings by performing WES.

In summary, we identified a novel homozygous splice-
site mutation c.6940+1G>T in VPS13B by performing WES
in a proband with CS. The effect of this splicing variant
was confirmed by Sanger sequencing of the cDNA combined
with in silico analysis that the aberrant splicing led to the
skipping of entire exon 38. Family study has revealed that
the VPS13B variant was co-segregated with the CS phenotypes
in this family. Our research demonstrated the pathogenicity
of this c.6940+1G>T mutation and made great contributions
to the establishment of the genotype–phenotype correlations
of CS.
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