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DNA barcoding and metabarcoding methods have been invaluable in the

study of interactions between host organisms and their symbiotic commu-

nities. Barcodes can help identify individual symbionts that are difficult

to distinguish using morphological characters, and provide a way to classify

undescribed species. Entire symbiont communities can be characterized

rapidly using barcoding and especially metabarcoding methods, which is

often crucial for isolating ecological signal from the substantial variation

among individual hosts. Furthermore, barcodes allow the evolutionary his-

tories of symbionts and their hosts to be assessed simultaneously and in

reference to one another. Here, we describe three projects illustrating the utility

of barcodes for studying symbiotic interactions: first, we consider communities

of arthropods found in the ant-occupied domatia of the East African ant-plant

Vachellia (Acacia) drepanolobium; second, we examine communities of arthro-

pod and protozoan inquilines in three species of Nepenthes pitcher plant in

South East Asia; third, we investigate communities of gut bacteria of South

American ants in the genus Cephalotes. Advances in sequencing and compu-

tation, and greater database connectivity, will continue to expand the utility

of barcoding methods for the study of species interactions, especially if barcod-

ing can be approached flexibly by making use of alternative genetic loci,

metagenomes and whole-genome data.

This article is part of the themed issue ‘From DNA barcodes to biomes’.
1. Introduction
In many species interactions, a host organism associates with a community of sym-

bionts. Bacteria and protozoa in guts of lower termites, for example, help their hosts

obtain nutrition from digestion-resistant foods [1]. Some 300 species of insects and

mites have been found accompanying colonies of Eciton burchellii army ants and are

known to depend at least in part on the ants [2]. Lichens, themselves symbioses of

fungi and algae or cyanobacteria, host distinctive communities of bacteria on their

surfaces, including lineages known almost exclusively from lichens [3]. These kinds

of interactions are distinguished from simpler host–symbiont relationships by the

potential for interactions among symbionts, and from studies of communities in

abiotic contexts by the role of selection and phylogeny in shaping host interactions

with symbionts. While species associations such as these have long been studied

with a variety of approaches, DNA barcoding methods have in recent times

become a useful addition to researchers’ toolkits.

Barcoding can help classify symbiont taxa that would otherwise be difficult to

identify. For many symbionts, morphological characters are inconspicuous or

insufficient for identification, and for these organisms DNA identification may

be helpful. Insect juveniles, such as those associated with ant colonies, often have

few good identifying characters; bacteria and fungi likewise can be hard to identify.

In these cases, DNA identification may help reduce the time and effort for

identification, or may help identify cryptic species (e.g. [4–6]). Even where species

are undescribed or are not included in sequence databases, similarity-based

http://crossmark.crossref.org/dialog/?doi=10.1098/rstb.2015.0328&domain=pdf&date_stamp=2016-08-01
http://dx.doi.org/10.1098/rstb/371/1702
mailto:npierce@oeb.harvard.edu
http://orcid.org/
http://orcid.org/0000-0002-2675-1078
http://orcid.org/0000-0003-4007-5405
http://orcid.org/0000-0001-6077-4014
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

371:20150328

2
clustering of DNA barcodes allows organisms to be placed into

groups that may be treated like species; such groups are often

referred to as ‘operational taxonomic units’ or OTUs [7]. Since

only small quantities of DNA are required, barcoding methods

in general have broad application for species identification—

they do not necessarily require intact specimens and can

therefore be used with samples ranging from soil for biodiver-

sity assessment [8], to fecal samples for diet analysis [9,10], and

even previously parasitized leaf samples for the identification of

emerged leaf miners and their parasitoids [11].

Using DNA barcodes can also provide insight into organiz-

ation at the level of the whole community, by facilitating the

rapid profiling of entire symbiont communities. Symbiont

taxa often vary considerably among individual hosts, as well

as between different host taxa or habitats, and parsing this vari-

ation requires analysis of the symbiont communities associated

with many individual hosts. Of course this is not specific to

mutualistic symbionts, and indeed barcoding has been used

to good effect across a wide range of species interactions,

such as assessing variation in parasitoid communities [12].

Furthermore, some patterns, such as interactions among the

symbiont taxa themselves, may only be visible if the whole

symbiont community is considered [13]. Community-level

analysis has been especially pertinent to microbial symbioses,

such as gut bacterial communities. In these cases, the combi-

nation of DNA barcoding with high-throughput sequencing

technologies has facilitated the taxonomic profiling of complex

communities through the simultaneous sequencing of many

thousands of DNA barcodes from each sample, often termed

‘metabarcoding’.

DNA barcodes also permit the analysis of species inter-

actions on evolutionary timescales. DNA barcodes are not

just arbitrary species labels but, like any other part of the

genome, contain the signature of their evolutionary past:

recently diverged taxa tend to have more similar sequences

than distantly related taxa. Using barcode data to compare

evolutionary relationships among host taxa with those

among symbiont taxa potentially provides a way to detect

relevant patterns in those evolutionary histories, such as

codiversification between hosts and symbionts.

In this paper, we review three DNA barcode-based studies

we have performed that demonstrate the broad scope for

using DNA barcodes to study species interactions. First, we out-

line our study of arthropods residing in the hollow, swollen

thorns of the African ant-plant Vachellia (Acacia) drepanolobium
based on cytochrome c oxidase I (COI) barcodes. Second, we

describe our use of 18S metabarcoding to identify arthropods

and arthropod-associated protozoa in Nepenthes pitcher plants.

Third, we detail our use of 16S metabarcoding to explore codi-

versification of gut bacterial communities with their Cephalotes
ant hosts. Our studies serve to illustrate the scope and flexibility

of barcodes as analytical tools in the study of species interactions.
2. Myrmecophile communities in Vachellia
drepanolobium ant plants

DNA barcoding has proven valuable for examining commu-

nities of arthropods residing in domatia of the ant-plant

Vachellia (Acacia) drepanolobium.

Vachellia drepanolobium is widespread throughout the

East African tropics, often forming large mono-dominant

stands in savannahs with hardpan grey soil or poorly drained
black cotton soil (figure 1a) [16]. Vachellia drepanolobium is cov-

ered with hollow swollen-thorn domatia (figure 1b) that, at

least on larger trees, are usually occupied by ants [16]. Three

ant species nest obligately in these domatia: Crematogaster
mimosae, C. nigriceps and Tetraponera penzigi [17]. A fourth

species, C. sjostedti, also associates with V. drepanolobium trees

but more commonly nests in trunk cavities created by ceramby-

cid beetles or in the ground around the tree bases [18]. Each

tree is normally occupied by a single ant species, but different

trees, even within metres of one another, may be occupied by

different species [18].

The obligate domatium-dwelling ants engage in a classic

protection mutualism [19] with their hosts. In exchange for

housing, as well as food in the form of extrafloral nectar, the

ants protect their host plant from mammalian herbivores

such as elephants, giraffe and antelope [20–22]. The ants

vary, however, in the quality of their defence [17,23]. Among

the three domatium-dwelling ants, the aggressive C. mimosae
provides better defence than C. nigriceps, while T. penzigi
does little to deter browsers [24]. And the ants impose other

costs on their hosts: C. nigriceps prunes the plant’s axillary

buds, shaping growth and temporarily preventing flowering,

while T. penzigi prunes the extrafloral nectaries, perhaps to

reduce the risk of invasion by another ant colony [25,26].

The ants’ effects are also evident in the diverse assemblage

of other organisms found on the host plant. A 2012 study

of insects in the tree canopy, using a morphospecies

approach, found that canopy communities on trees occupied

by C. mimosae and C. nigriceps were distinct from those on

trees occupied by C. sjostedti and T. penzigi [15]. Other studies

of specific tree inhabitants also describe preferential associ-

ations with ant species (e.g. [17,27]). Scale insects, for

example, are found with C. mimosae and C. sjostedti [16],

while neither C. nigriceps nor T. penzigi is typically found

with scales. The lycaenid Anthene usamba specializes on trees

occupied by C. mimosae [28]. The braconid wasp Trigastrotheca
laikipiensis is a brood parasite of claustral colonies of C. mimosae
and C. nigriceps, but is rarely found with T. penzigi [29], and

Acacidiplosis gall midge parasites are found more frequently

with C. mimosae ants than with C. nigriceps ants [30].

A wide range of myrmecophiles (ant lovers) is also found

living in the domatia alongside the ants. The ant-occupied

domatia constitute a highly unique habitat—heavily defended

by the ants against intruders, environmentally stable and long-

lived [31]. In response to this unique environment, we might

expect domatium inhabitants in turn to be highly specialized.

First, each of the domatium-dwelling ant species is highly

aggressive, not only towards intruders that it detects, but also

towards each other [18]. Myrmecophiles need to be able to

avoid the ants’ defences via mimicry, physical defences and/

or engaging in mutualistic or manipulative interactions with

the ants. We might therefore expect at least some myrmecophiles

to specialize in their ant associations because of the degree of fine

tuning required to interact successfully with their hosts. Second,

we might expect some myrmecophiles to preferentially associate

with one or more of the ant species if the ants differ in the benefits

that they provide to the myrmecophiles, such as defence from

predators. And third, we should see selection for lifestyles that

capitalize on the stable and long-lived environment—for

example, ant parasites with low costs and ant mutualists with

low benefits [31]—and we thus expect domatium myrmeco-

phile communities to be distinct from communities residing or

transiently present in the canopies of the trees.
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Figure 1. (Overleaf.) (a) Vachellia drepanolobium is typically the dominant tree species in East African black cotton savannahs—virtually all trees visible in the
image are V. drepanolobium. (b) Vachellia drepanolobium is covered with stipular thorns to defend against large mammalian herbivores. Many of the thorns are
swollen and hollow, and serve as domatia inhabited by mutualistic ants. (c) Many of the myrmecophiles in domatia of V. drepanolobium are immature forms that are
difficult to identify using morphological characteristics. Molecular barcodes can be used to identify these myrmecophiles and link them to adult forms that are often
better known or better described. Photo credit: Julianne Pelaez. (d ) Domatium myrmecophile communities (red bars, from [14]) are dominated by Hemiptera and
Lepidoptera, but these taxa are less common in canopy insect communities (blue bars, from [15]). Domatium myrmecophiles also include spiders and snails, but
these are omitted here for consistency with [15]. Data from [15] are derived from table 1 of that paper under the Creative Commons BY 4.0 licence. (e) Trees of V.
drepanolobium occupied by colonies of C. mimosae (CM) are more likely to host domatium myrmecophiles than trees occupied by colonies of C. nigriceps (CN), which
in turn are more likely than trees occupied by colonies of T. penzigi (TP). From [14]. ( f ) Canonical correspondence analysis of myrmecophile communities showing
that C. mimosae (CM), C. nigriceps (CN) and T. penzigi (TP) ants associate with distinctive communities of domatium-dwelling myrmecophiles. Plot shows the two
canonical correspondence analysis axes (CCA1 and CCA2). Points represent individual trees and clearly separate according to the ant occupant, as denoted by colours
of points. (g) The tortricid moth Hystrichophora griseana is found on trees occupied by C. mimosae and C. nigriceps ants, but not on those occupied by T. penzigi. (h)
This gelechiid moth, Dichomeris sp., was found with all three ants. (i) This salticid spider, Myrmarachne sp. (left) is a convincing visual mimic of C. mimosae ants
(right), yet surprisingly was found on trees occupied by all three ant species.
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To explore the make-up of the domatium myrmecophile

communities, we collected myrmecophiles exhaustively from

480 trees over 2 years at two sites in Kenya, for a total of 2361

individual myrmecophiles (see [14] for collection details). But

deriving quantitative data from collections of domatium myr-

mecophiles is challenging. Many species are undescribed, and

many of the myrmecophiles are immature forms that are often

poorly known and difficult to identify (figure 1c). For example,

out of the almost 600 individual Lepidoptera in our collection,

72.6% were larvae, 26.0% were pupae and just 1.4% were

adults. DNA barcoding methods were therefore invaluable in

examining these domatium myrmecophile communities, by

serving in place of detailed morphological identifications [32].

We therefore sequenced COI barcodes for 1091 of our 2361

specimens in order to identify them. Since species-level taxo-

nomic identifications were not always possible, we defined

OTUs for these specimens using the uclust clustering algorithm

[33]. We classified a further 28 specimens based on visual

inspection where we failed to obtain good sequence. We also

classified 1270 specimens that we did not sequence. These

specimens belonged to six morphotypes, found with high

abundance on a relatively small number of trees, for which stan-

dard COI barcode primers did not amplify (873 scale insects;

see [34], but also see [35] for alternative primers) or for which

the cost of sequencing all specimens did not appear to be

justified (149 snails, 53 thrips and 132 ants belonging to three

taxa). The OTU-based classification of most specimens was

not sensitive to the type of clustering algorithm or choice of

similarity threshold. Nonetheless, for a small number of speci-

mens, clustering choices did affect whether those specimens

were grouped with others or classified as separate taxa, and

we regard those specimens as good candidates for future

investigation using molecular or morphological methods.

Our myrmecophile collections revealed that domatium

communities were indeed taxonomically distinct from

canopy communities (figure 1d and [14]). Domatium commu-

nities were dominated by Hemiptera and Lepidoptera, but

these were less common in canopy insect communities,

which were dominated by Coleoptera. (Domatium myrmeco-

philes also included many spiders and snails, but these were

not reported for canopy communities in [15]).

As with the canopy insect communities [15], the abundance

of domatium myrmecophiles differed among the ant species.

Among the three domatium-dwelling ants, C. mimosae was

more likely to host myrmecophiles than C. nigriceps, which in

turn was more likely than T. penzigi (figure 1e and [14]; see

also [36]). Since most of the domatium myrmecophiles—
particularly the Lepidoptera—are herbivorous [14], this pattern

stands in contrast to the ants’ defence against mammalian

herbivores: C. mimosae is usually considered the best defender

against large mammals, and T. penzigi the least effective.

Domatium myrmecophile communities also differed in

composition among the ants. C. mimosae, C. nigriceps and

T. penzigi ants tended to associate with distinctive communities

of domatium-dwelling myrmecophiles (figure 1f ), though

communities varied widely within each ant species. Some

myrmecophiles showed strong specialization, as expected.

Scale insects, for example, were almost always associated

with C. mimosae ants. The tortricid moth Hystrichophora griseana
(figure 1g) was very common with C. mimosae and C. nigriceps,
but almost never found with T. penzigi. But for the most part,

we found limited evidence for strong specialization on ant

species. In many cases, this was because the number of individ-

uals from an OTU was too small to clearly establish ant

specialization. But there were also many cases where abundant

taxa appeared to show no particular ant association. For

example, notwithstanding strong specialization of H. griseana,

many Lepidoptera (e.g. Dichomeris sp. in figure 1h) were associ-

ated with all three ants, and the use of DNA barcodes helps

rule out the possibility that these are really cryptic species.

Perhaps the most surprising finding of generalist ant

association was in the case of the abundant Myrmarachne sp.

salticid spiders (figure 1i). Despite extremely strong visual

mimicry of C. mimosae (C. nigriceps and T. penzigi ants differ

in coloration, and T. penzigi also differs in body shape), these

spiders were not found any more commonly with C. mimosae
than with the other domatium-dwelling ants. The visual mimi-

cry probably plays no role in disguising spiders from the tree’s

ant residents, since most ants rely primarily on pheromones

rather than visual cues to detect intruders. Instead, it probably

serves to avoid predation by birds or parasitism by wasps. The

close mimicry of C. mimosae combined with the fact that the spi-

ders were found with ants other than C. mimosae suggest that

selection favours mimicry of C. mimosae over other species of

resident ant, presumably because they are the most bellicose

species, and that predators are deceived by the spiders’ appear-

ance as a worker of C. mimosae, but do not attend to the

mismatch between the spiders and the tree’s resident ants.

Our ongoing study of domatium myrmecophile commu-

nities has benefited greatly from DNA barcoding. The use of

barcodes allows myrmecophiles to be collected and preserved

rapidly in the field; identification of specimens across a broad

taxonomic range can then easily be performed later by non-

specialists. Although species-level taxonomic identifications
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are not always possible, especially in taxa that are not yet well

represented in sequence databases, community-level patterns

can still be analysed by making use of similarity-based cluster-

ing into OTUs. Flexible, efficient and cost-effective molecular

protocols allow good throughput and thus increase feasibility

for medium- to large-sized barcoding projects, in turn facilitat-

ing the detection of community-level patterns (e.g.

automation-friendly DNA extractions [37]; we have also had

good results with phenol-chloroform extractions on an Auto-

Genprep 965 robot, and with basic Chelex bead extractions

[38]). While data management can be challenging for larger pro-

jects, we have found well-designed sequence processing

pipelines (e.g. the Barcode of Life Data System [39]) and open-

source relational database applications (e.g. VoSeq [40]) to be

useful for managing sequences and other associated data.
Soc.B
371:20150328
3. Inquiline communities in Nepenthes pitchers
The aquatic pools enclosed by leaves of carnivorous pitcher

plants contain communities of arthropods and microbes, and

have been used for decades to study community dynamics

[41–43]. Like the poorly known inhabitants of ant domatia,

the protists and small organisms living in these pitchers can

be difficult to identify by morphological methods alone.

Metabarcoding, also known as next-generation amplicon

sequencing [8,44], is distinguished from conventional barcod-

ing by operating on the collective DNA of the environment

rather than the isolated DNA of individual organisms. Thus,

metabarcoding can provide a broader and less biased view of

the organisms living within pitcher communities.

Pitchers of plants in the genus Nepenthes in Southeast Asia

attract prey with extrafloral nectar, and have slippery edges

and inner walls that cause insect visitors to fall in and

drown [45]. The fluid inside the pitchers contains a mixture

of rainwater and plant secretions. Pitchers catch and digest

insect prey, but they also host thriving communities of

aquatic arthropods, protozoa, bacteria and fungi, called

‘inquilines’ [41]. Some inquilines have only been found

living in Nepenthes pitchers and appear to be endemic to

these habitats [42]. To fully characterize and understand the

communities within pitcher systems, we need a relatively

unbiased view of the organisms present. Most previous

studies of Nepenthes inquilines have been morphological

[41–43], but in our recent study, we used metabarcoding to

examine the eukaryotic communities within three Nepenthes
(figure 2a) species in Singapore [46].

An important question with metabarcoding is how relative

abundances of sequences compare to actual organism counts,

and whether community structure can be recovered [48].

Since Nepenthes pitchers are relatively self-contained, whole

organism counts of insects can be compared to metabarcoding

OTU counts. In our study, we therefore compared counts of

inquiline insect larvae with metabarcoded 18S rDNA

sequences from the same samples, to see how well the metabar-

coding captured abundances of these organisms [46]. Positive

correlations were found between the counts and sequences

(figure 2b), suggesting that metabarcoding can be useful for

understanding the community structure of these organisms.

Our metabarcoding of Nepenthes pitchers also uncovered

the presence of abundant gregarines (apicomplexan protozoa),

which are obligate parasites of invertebrates [46,49]. The sub-

class Gregarinasina was the fourth most abundant eukaryotic
group in Nepenthes pitchers, after insects, arachnids and

algae. Mosquito larvae have been shown to ingest gregarine

oocytes while feeding [50]. The gregarines then complete

their lifecycle in the mosquito midgut, and new oocysts are

released into the environment during defecation, emergence

into the adult form, or upon ovoposition [50]. Morphological

identification of gregarines in Nepenthes pitchers would be

difficult, as they are small and can be hidden within the

intestines of their hosts.

In our 18S metabarcoding study, insect OTUs largely

mapped to dipteran inquilines living within the pitchers [46].

A bipartite network of insect and mite OTUs from the three

Nepenthes plant species showed that these inquilines were sig-

nificantly specialized. Certain OTUs tended to be found only

within one plant species, while others were generalists found

equally in all three hosts [46]. Insects adapted to the Nepenthes
pitcher habitat might be able to distinguish between plant

species, and adults might preferentially lay their eggs in certain

species. Alternatively, conditions within the pitchers of differ-

ent species may allow certain inquilines to thrive while

inhibiting the growth of others.

Because gregarines are obligate parasites, and both insect

and gregarine OTUs were in high abundances in pitcher habi-

tats, we hypothesized that insect and gregarine diversity

would follow similar patterns. To investigate this hypothesis,

we performed a new analysis on the data from our previous

publication [46] by separating the eukaryotic OTU table 1 (in

paper [46]) into insect and gregarine tables, and rarefying

those tables to 1922 and 200 sequences, respectively. Twenty-

one samples had fewer than 200 gregarine sequences and

these samples were removed from both the insect and gregarine

tables. We used distance-based redundancy analysis (dbRDA,

function capscale in R) with Bray–Curtis distances to determine

the effects of plant species, collection site and collection year on

insect and gregarine communities. On the dbRDA results, we

used an ANOVA-like permutation test (function anova in the

vegan package in R) with separate significance tests for each

marginal term (plant species, collecting site or collecting year)

in a model with all other terms. Contrary to our expectations,

insect and gregarine communities exhibited different drivers

of diversity (figure 2c and table 1). For both taxa, the majority

of the variation was unexplained; however, a larger portion of

the variation in insect community structure was explained by

plant species ( p , 0.001), while a larger portion of the varia-

tion in gregarine communities was explained by collecting

site ( p , 0.001). For both insects and gregarines, collection

year did not significantly influence community structure.

Adult inquiline insects most likely can determine which

plant host they are visiting when laying eggs, and we see

that certain inquilines prefer certain plant species. The plant

species-associated variation in insect communities seen in

our new analysis primarily reflects a distinctive community

in N. ampullaria relative to N. gracilis and N. rafflesiana
(figure 2c). Nepenthes ampullaria is hypothesized to be less reli-

ant on carnivory and more of a detritivore than other Nepenthes
species [47]. The different ecology of N. ampullaria is potentially

reflected in altered pitcher conditions, in turn selecting for

different inquiline inhabitants.

Gregarine distributions, on the other hand, were better

predicted by collection site than by host plant species. In

our new analysis, the Kent Ridge Park (KRP) samples had gre-

garine communities that were more different than those from

the other two sites, and geographically KRP is also further
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plotted on a log10 – log10 scale. Regression lines and p-values from the permutational linear models overlie the scatter plot. Solid lines are significant at a ¼ 0.05.
Reproduced from figure 3a of Bittleston et al. [46], copyright & 2015 by John Wiley Sons, Inc. Reprinted by permission of John Wiley & Sons, Inc. (c) Non-metric
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plant species ((i),(ii)) and by collecting site ((iii),(iv)). Ellipsoids are standard deviations of the points around the centres. Variation among insect communities is
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detritivorous than the other two species, which are predominantly carnivorous [47]. Variation among gregarine communities is dominated by variation among
collecting sites. BTNP, Bukit Timah Nature Preserve; KRP, Kent Ridge Park; UPR, Upper Peirce Reservoir Park.
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away. Gregarine parasites could have been introduced into

the pitchers via adult inquilines, via prey species, or perhaps

via abiotic vehicles such as raindrops. Considering the differ-

ences in diversity patterns of gregarines versus insects, we

hypothesize that introduction via adult inquiline insects

during oviposition is unlikely, as we would then have

expected their distributions to be correlated. It is possible

that gregarines could be encysted in a dormant stage within

the pitcher fluid where they could use the assembly of

many insects in one location to opportunistically infect new
hosts. Alternatively, the gregarines may have complex infec-

tion and/or epidemiological dynamics with their host

insects that we have yet to understand.

In general, insect inquilines appear to colonize Nepenthes
pitchers more deterministically than gregarines, with certain

organisms selecting specific host plant species, regardless of

the location. Conversely, gregarines appear to colonize pitch-

ers more stochastically, exhibiting a stronger correlation with

collection site, an effect that could potentially be caused by

some kind of dispersal limitation.



Table 1. Results from distance-based redundancy analysis of Nepenthes insect communities (left) and gregarine communities (right) using Bray – Curtis
distances, with host plant species, collection site and collection year as predictors. Insect and gregarine communities had different correlates of diversity: plant
species was a significant predictor for insect communities, while collection site was a significant predictor for gregarine communities.

term

insects gregarines

variance F p-value variance F p-value

plant species 1.2055 3.3118 ,0.001 0.8344 1.3719 0.108

collection site 0.585 1.6071 0.069 2.8718 4.7217 ,0.001

collection year 0.1438 0.7899 0.587 0.4874 1.6026 0.086

residual 10.3738 17.3341
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Metabarcoding provides a window into the complex inter-

actions and patterns of biodiversity exhibited by pitcher plant

systems. Barcode differences also help to discriminate between

organisms (such as aquatic mites) that are often difficult to dis-

tinguish morphologically. Moreover, metabarcoding in this

case has enabled us to identify microscopic gregarine parasites

across multiple plant species and collection sites, and to

uncover surprisingly different patterns of diversity between

gregarines and insect inquilines. Barcodes are a valuable tool

for generating and testing new hypothesis of community

assembly, and can extend our investigations to organisms

that are small and otherwise difficult to study.
4. Coevolutionary histories of animals and gut
bacteria

The metabarcoding of host-associated microbial communities

also has the potential to teach us something about the co-

evolutionary history of species relationships—interactions

understood to be of major importance to a growing number

of aspects of animal biology [51]. As with conventional barcod-

ing of macrofauna, 16S rRNA gene-based barcoding of

bacterial communities originated with the intent of identifying

which taxa are present in a given environment. Since microbial

taxonomy is still very incomplete [52], this typically involves

the similarity-based clustering of 16S barcodes into OTUs, to

uncover patterns revealed by the distribution of these ‘taxa’

across hosts.

Host animals, unlike abiotic environments, themselves have

an evolutionary history. It is widely appreciated that

the distribution of microbial OTUs among hosts is a reflection

of (and, possibly, an influence on) that evolutionary history

[53,54]: closely related animals frequently also host more similar

microbial communities than do distant relatives [53,55–57].

But these patterns of correlation between host phylogeny and

microbial community similarity could result from a range of pro-

cesses. Microbes could be inherited across host generations,

resulting in codiversification of microbial lineages as a conse-

quence of diversification in their hosts. Alternatively, related

hosts could simply provide similar habitats, filtering similar

microbes from the environment. These different processes also

imply differences in the strength and nature of the effects host

and microbe can have on each others’ evolution. Partly owing

to this ambiguous mapping from community pattern to evol-

utionary process, the question of how to interpret phylogenetic

correlation in animal microbiota remains controversial [58].
Some additional insight into the origins of these corre-

lations can be gleaned from consideration of metabarcode

sequences not simply as taxonomic markers, but explicitly in

light of their own evolutionary relationships. Metabarcode

sequences reflect a phylogenetic history that must be consistent

with any proposed hypothesis for the origin of phylogenetic

correlation, allowing us to place constraints on some of those

hypotheses. For example, microbial diversification produced

as a consequence of host diversification is constrained by the

age of the host: consequently, the evolutionary distance

between microbial barcodes in different hosts should have a

recent upper bound if correlation between community

similarity and host phylogeny arose via codiversification.

We can observe such a pattern in the gut microbial commu-

nities of South American turtle ants, in the genus Cephalotes
(figure 3a). The diverse species of ants in this genus build

their nests in empty cavities in trees and bushes, and host a

dense gut microbiome that is thought to complement nutrient

deficiencies in a largely herbivorous diet [59].

As has been reported in other systems, the gut microbiota

of Cephalotes are correlated to host phylogeny (figure 3b).

Using 454 metabarcoding of the bacterial 16S rRNA gene in

guts from 25 Cephalotes species, we showed in a recent study

that closely related ants also host more similar microbial com-

munities [60]. But in the case of these ants, we were able to use

the temporally structured evolutionary information within the

barcodes themselves to give us some insight into how that simi-

larity was likely to have arisen. Narrowing the similarity

threshold used to define OTUs from the more typical 97% iden-

tity to 99% reveals the influence of more recent evolutionary

history, splitting recently diverged microbial lineages that

would have been collapsed into single OTUs at the wider

threshold. Doing so increases the separation apparent between

clades of related hosts in a network visualization of these

communities (figure 3c). Wider OTU definitions also obscure

correlations between clustering dendrograms of community

similarity metrics and host phylogeny (figure 3d) that

are apparent at narrower definitions (figure 3e). That such

phylogenetic correlation is only apparent when considering

information about relatively recent bacterial evolution is

consistent with it being generated through processes like

codiversification or phylogenetically restricted host shifts [61].

If codiversification does explain the similarity of commu-

nities from related host species, we should also be able to see

a signal of host phylogeny in metabarcode sequences from

individual microbial lineages. At least to some extent, we

do (figure 3f ). Taking advantage of the structure of diversity

in the Cephalotes gut, we performed an additional analysis of
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our metabarcode data from [60] to examine a lineage of Ver-

rucomicrobia that is both universally present and abundant

in these communities, and for which there is usually only

one dominant strain per host community. We took the represen-

tative 16S metabarcode sequence for the 99% OTU assigned

to the Verrucomicrobia lineage that was most abundant in

each Cephalotes colony, aligned all extracted sequences using

MUSCLE and then built a pseudo-maximum-likelihood

phylogeny of these barcodes using FastTree. A tanglegram

analysis of this bacterial tree shows substantial but imperfect

correlation with host phylogeny, suggesting that this lineage

may indeed be codiversifying with the host. That this corre-

lation is weaker than the aggregate signal for the entire

community (figure 3e) further suggests that other lineages in

the community are undergoing similar processes.

In principle, such lineage-by-lineage analyses offer the poten-

tial to sift through whole communities to identify the specific

microbes shaping phylogenetic correlation in microbiomes—

giving us a potentially powerful tool for understanding these

complex systems. Separating lineages by their evolutionary fide-

lity to hosts could help to identify microbes especially likely to be

of functional import, whether owing to explicit reciprocal coevo-

lution with the host or simply as a by-product of having been a

constant element of the host’s internal environment.

In practice, limitations in typical metabarcoding approaches

prevent drawing such conclusions with high sensitivity or speci-

ficity. The 16S rRNA gene evolves slowly. With the relatively

short read lengths of current Illumina and Ion Torrent plat-

forms, even tens of millions of years of divergence may only

be supported by a handful of phylogenetically informative

characters, resulting in poor phylogenetic reconstructions.

Sequencing error further obscures this pattern.

Still, interrogation of the evolutionary history represented

in metabarcode sequences has yielded a number of interest-

ing cases, especially when combined with other techniques

to increase the amount of useful information available for

analysis. In bumblebees [62] and pyrrhocorid seed bugs

[63], low-throughput follow-up sequencing of target lineages

using specific primers permitted deeper exploration of trends

observed in untargeted metabarcoding efforts. In vertebrates,

techniques to reduce the impact of sequencing noise per-

mitted the detection of patterns of host specificity from

metabarcoding data, even though the underlying sequences

were quite similar [55].

As new sequencing approaches are developed, analysis

of evolutionary history directly from metabarcode data will

become possible with more confidence. Long-read technology

will allow the use of full-length gene sequences, provided cur-

rent problems of read accuracy can be overcome. Even given

current sequencing technology, changing the bacterial meta-

barcoding target to faster-evolving protein-coding genes will

yield more phylogenetically informative information than the

16S gene. Recent work has already made this approach poss-

ible, either by the initial amplification of these genes [64] or

by what is effectively post-hoc barcoding of microbial com-

munities by sifting through shotgun metagenomic sequence

data [65,66].
5. Conclusion
Our studies illustrate the value of DNA barcoding and meta-

barcoding for identifying taxa in host–symbiont community
interactions. For organisms like myrmecophiles (often juven-

ile invertebrates) on V. drepanolobium, barcoding has provided

us with a way to identify specimens that would otherwise be

difficult to classify. Metabarcoding methods likewise have

allowed us to detect and identify inquiline taxa in Nepenthes
pitcher plants, and gut bacterial symbionts in Cephalotes ants.

But our studies also show how the utility of DNA barcodes

can extend beyond the simple identification of individual sym-

bionts, to the examination of ecological patterns [67]. This in

part reflects the relatively high sample throughput permitted

by barcoding methods, which facilitates the accurate profiling

of entire communities, and offers the opportunity to assess

interactions among symbionts and to identify patterns such

as ecological convergence that may emerge only at the commu-

nity level [68]. In our V. drepanolobium and Nepenthes studies,

this high throughput was primarily realized through effi-

ciencies in sample collection, sample processing and data

analysis. As technology improves, an additional efficiency

will become increasingly relevant: the availability of rapid in-

the-field sequencing, using portable devices such as the

Oxford Nanopore MinION [69], will permit almost real-time

feedback on specimens and environmental samples. This will

allow researchers to refine sample and data collection strategies

on the fly (e.g. what are appropriate sample sizes and spatial

scales for sampling?), and to generate new hypotheses that

can be tested immediately instead of having to wait until the

next field trip.

Although the value of DNA barcodes for species discovery

and delineation has been challenged (e.g. [70]), we have found

OTU clustering of arthropods and protozoa to be reasonably

robust to choices of algorithm or parameters in both our

V. drepanolobium and Nepenthes studies. Where results are sen-

sitive to clustering choices, however, we are happy to adopt a

relaxed approach to barcoding, and flag those specimens for

further investigation using other markers or morphology,

rather than rely solely on our barcoding data. Our analyses of

differences in symbiont community composition between

different host species largely sidestep uncertainty in the taxo-

nomic placement or phylogenetic relationships of our OTUs:

our analyses demonstrate community differences based on

OTU abundances for each host, but not on the taxonomic

labels attached to those OTUs, or on their phylogenetic

placements (cf. [71]).

DNA barcodes can also provide a window on the evol-

utionary history of a host–symbiont association—a dynamic

relationship shaped by selection and phylogenetic constraint

that is absent in abiotic contexts. This reflects the fact that bar-

codes are not just taxonomic labels, but evolving DNA

sequences that can be analysed for evidence of host–symbiont

codiversification. In contrast to our V. drepanolobium and

Nepenthes studies, the clustering of Cephalotes gut bacteria is

sensitive to our choice of clustering threshold. But rather than

being problematic, we are in fact able to use hierarchical clus-

tering at different thresholds to our advantage, interpreting

this sensitivity to parameters in light of expectations about

the timescales of coevolutionary change.

As technology and methods improve, barcoding and

metabarcoding approaches will become increasingly useful

for ecological and evolutionary studies. Longer sequence

reads and lower error rates, for example, will increase our

capacity to draw inferences especially regarding recent

phylogenetic history. The development of a wider range of

sequencing targets will also help make barcoding approaches
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useful for a wider range of organisms and research questions.

Indeed, as sequencing becomes cheaper, metagenomic data-

sets will allow appropriate barcode markers to be chosen

ex post [65,66], or even for diversity assessments based on

genome assemblies [72]. These approaches need not replace

the simplicity of a single, standardized barcode region [32],

but should nonetheless be embraced as a valuable expansion

of the barcoding approach [73].

DNA barcodes will also become increasingly useful for eco-

logical and evolutionary studies as sequence and other data

accumulate in public databases. As these databases expand,

we need to ensure that the widest possible selection of data

can be accessed in an automated fashion, by encouraging

researchers to annotate published data with as much machine-

readable metadata as possible. Location, habitat or timestamp

data on DNA barcodes, for example, may help generate more

accurate pictures of species distributions over space and

time, and the ecological correlates of those distributions.

Conservation and barcode data can be combined in order to

generate phylogenetically informed conservation assessments

[74]. But barcodes and barcode-based taxon assignments also

represent a natural and convenient way to connect a wide

range of data from different datasets: images and information

from museum and library digitization projects, location and

other metadata from collections, morphological information,

natural history observations, stable isotope data or even data

on metabolic rates [75]. Combining datasets potentially allows

researchers to uncover patterns across larger temporal, spatial

or phylogenetic scales than would normally be feasible [67].

Combining multiple data types—e.g. on symbiont community
composition, on genomic functional capacities and on the

nature of trophic or other interactions among organisms—

potentially allows us to, for example, identify emergent

properties of communities or rules governing the assembly of

symbiont communities [68], or to assess changes in community

structure that might act as signals of ecological distress [76].

Connecting many disparate datasets so they are inter-referential

is not a trivial challenge, but one that holds great potential for

furthering our understanding of species interactions.
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