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Abstract: Obstructive sleep apnea (OSA) is a chronic condition characterized by recurrent pauses in
breathing caused by the collapse of the upper airways, which results in intermittent hypoxia and
arousals during the night. The disorder is associated with a vast number of comorbidities affecting
different systems, including cardiovascular, metabolic, psychiatric, and neurological complications.
Due to abnormal sleep architecture, OSA patients are at high risk of circadian clock disruption, as has
been reported in several recent studies. The circadian clock affects almost all daily behavioral patterns,
as well as a plethora of physiological processes, and might be one of the key factors contributing to
OSA complications. An intricate interaction between the circadian clock and hypoxia may further
affect these processes, which has a strong foundation on the molecular level. Recent studies revealed
an interaction between hypoxia-inducible factor 1 (HIF-1), a key regulator of oxygen metabolism, and
elements of circadian clocks. This relationship has a strong base in the structure of involved elements,
as HIF-1 as well as PER, CLOCK, and BMAL, belong to the same Per-Arnt-Sim domain family.
Therefore, this review summarizes the available knowledge on the molecular mechanism of circadian
clock disruption and its influence on the development and progression of OSA comorbidities.

Keywords: obstructive sleep apnea (OSA); circadian clock; chronobiology; sleep disruption; hypoxia;
polysomnography (PSG)

1. Master Circadian Clock and Influence of Light–Night Cycle

The circadian clock is a complex, hierarchical timing system whose molecular elements
are located in nearly every body cell. They are under the control of the master circadian
pacemaker located in the suprachiasmatic nucleus (SCN) of the hypothalamus [1], which
features a very similar molecular machinery to the peripheral circadian clock in the body
cells. The most important function of SCN is collecting external cues from the retina, which
enables the synchronization of the circadian clock with the light/dark cycle, and determines
its duration over 24 h rhythm. The master clock generates a pronounced circadian rhythm of
neuronal firing frequency, which, through a variety of direct and indirect output pathways,
synchronizes other cells throughout the body [2]. Signals from the retina are transmitted
by neurons from the retinohypothalamic tract, which axons project to the SCN, where
they stimulate neurons by releasing glutamate and pituitary adenylate cyclase-activating
polypeptide (PACAP) [3,4], which is a modulating protein [5]. Glutamate acts on N-
methyl-D-aspartate receptors (NMDAR), which leads to signal transmission by increasing
intracellular calcium and cyclic adenosine monophosphate (cAMP) synthesis in SCN
cells [2], which in turn activates kinases, such as calcium/calmodulin-dependent protein
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kinases (CamK), mitogen-activated protein kinases (MAPK) or protein kinase A (PKA) [6]
and phosphorylates cAMP-responsive element-binding protein (CREB) [7]. Phosphorylated
CREB is an active transcription factor, which binds to calcium/cAMP regulatory elements
(CREs) in promotors of repressors genes, including Per1 and Per2 [8], and stimulates their
transcription.

Futhermore, the major circadian clock is autonomous to some extent, generating
circadian rhythms by neuronal firing non-dependent from external stimuli [9]. SCN neurons
are heterogenic and they differ in their pacemaking ability, neuropeptide expression, and
response to environmental timing cues, as well as the rhythms they control [6].

2. Molecular Mechanism of the Circadian Clock

The mammalian circadian clock is based on a transcriptional negative feedback loop
between activators and repressors [10], whose function is regulated by kinases and phos-
phatases [11]. The description of the respective genes is in Table 1. Furthermore, Aryl hydro-
carbon receptor nuclear translocator-like (BMAL1) and clock circadian regulator (CLOCK)
genes encode subunits of the heterodimeric basic helix-loop-helix PER-ARNT-SIM (bHLH-
PAS) transcription factor [12]. BMAL1:CLOCK recognizes E-box motifs (5′CACGTC-3′) in
promotors of targeted genes including repressors, and lead to their transcription [13,14].
Among repressors, there are families of Period (Per1, Per2, Per3) and Cryptochrome (Cry1,
Cry2) genes [13]. Their protein products heterodimerize in the cytoplasm. PER:CRY under-
goes phosphorylation by casein kinases (CKIδ and CKIε) and translocation to the nucleus,
where the complex can act as an inhibitor of BMAL1:CLOCK-dependent transcription [1,2]
(see Figure 1). The cytoplasm and nucleus level of circadian clock repressors is regulated
by the E3 ubiquitin ligase complex (SCF-Fbxl3 complex) and proteasome-dependent path-
ways of protein degradation [15]. The oscillation of repressors levels conditions the cyclic
transcription of circadian clock-controlled output genes and the regulation of behavior [16],
lipid, glucose, and redox metabolism [17], sleep [18], body temperature [19], and blood
pressure [20], endocrine [16], immune [21] or cardiovascular [22] function.

Table 1. Basic information about main circadian clock proteins [22].

Protein Name Gene Location on
Chromosome Size (Da) Size (Amino

Acids)
Circadian Clock

Function

PER1 17p13.1 136,212 1290 repressor

PER2 2q37.3 136,579 1255 repressor

PER3 1p36.23 131,888 1201 repressor

Cry1 12q23.3 66,395 586 repressor

Cry2 11p11.2 66,947 593 repressor

BMAL1
(ARNTL) 11p15.3 68,762 626 activator

CLOCK 4q12 95,304 846 activator

RORα 15q22.2 58,975 523 regulator

REV-ERBα 17q21.1 66,805 614 regulator

Nuclear retinoid-related orphan receptors ROR (α, β, γ) are transcription factors from
the orphan nuclear receptor family, which bind to ROR response elements (RORE) in the
promotors of various genes [23]. The role of RORα in the circadian clock is to regulate
the transcription of mainly the BMAL1 gene [24], but also CLOCK, NPAS2 (neuronal PAS
domain protein 2, a paralogue of CLOCK; creates a complex with BMAL1; BMAL1:NPAS2
has the same function as BMAL1:CLOCK) [25], and CRY1 (see Figure 1). The BMAL:CLOCK
complex, as a transcription factor, increases the expression of RORα, as well as its inhibitors,
such as the Orphan nuclear receptor REV-ERBα. REV-ERBs are a group of two DNA binding
protein isoforms, α and β. They bind to RORE in a promotor of BMAL1 and prevent RORα
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activity [24]. Both factors are part of the second feedback loop in the molecular mechanism
of the circadian clock (see Figure 1). This feedback loop drives rhythmic changes in BMAL1
transcription and introduces a delay in CRY1 mRNA expression that offsets it from genes
regulated strictly by BMAL1:CLOCK. While rhythmic changes in BMAL1 abundance are
not required to drive the activators–repressors loop, the ROR/REV loop-induced delay in
CRY1 expression is critical for proper circadian timing [1]. The connection of both feedback
loops ensures robustness against noise and environmental perturbations and keeps proper
circadian timing [26]. Interestingly, PER2 can enhance BMAL1 expression by RORα even
though it binds to REV-ERBα [27].
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and CK2. Seven distinct genes are encoding CK1 isoforms, but only δ and ε influence cir-
cadian clock proteins. CK1 acts on PERs, CRYs, and BMAL1. Various isoforms phosphor-
ylate these proteins in different locations, which exerts an impact on the generated effect. 
The phosphorylation of circadian clock proteins by CK1δ leads to their stabilization. By 
contrast, CK1ε phosphorylation conduces to proteasome degradation. CK2 acts on PER2, 

Figure 1. Circadian clock mechanism. BMAL1 and CLOCK are basic helix-loop-helix (bHLH)-PAS
transcription factors, whose heterodimer transcripts a large number of genes, such as Per, Cry, Rora,
Rev-Erb. PER and CRY are circadian clock repressors. They bind to each other and the PER:CRY
complex undergoes phosphorylation, which enables translocation into the nucleus, where it can act
as a repressor of BMAL1:CLOCK-dependent transcription. The second feedback loop of the circadian
clock consists of two proteins, ROR and REV-ERB. ROR belongs to the same bHLH transcriptor factor
family. ROR binds to RORE promotor sequence and transcripts circadian activators. The expression
of ROR inhibitor (REV-ERB) occurs at the same time as ROR.

3. Impact of Kinases and Phosphatases on the Circadian Clock

The most important kinases regulating the circadian clock are the casein kinases, CK1
and CK2. Seven distinct genes are encoding CK1 isoforms, but only δ and ε influence circa-
dian clock proteins. CK1 acts on PERs, CRYs, and BMAL1. Various isoforms phosphorylate
these proteins in different locations, which exerts an impact on the generated effect. The
phosphorylation of circadian clock proteins by CK1δ leads to their stabilization. By con-
trast, CK1ε phosphorylation conduces to proteasome degradation. CK2 acts on PER2, but
there is inconsistent information about its effect. The phosphorylation of BMAL1 by CK2
promotes transport to the cell nucleus [10]. Hirota et al. also found that CK1α-dependent
phosphorylation can promote the proteasome degradation of PERs [28].

Glycogen synthase kinase 3β (GSK3β) is another kinase, which phosphorylates REV-
ERBα in the mammalian circadian clock. It leads to the stabilization and acceleration
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of the inhibiting function of REV-ERBα on BMAL1 expression. Other targets of GSK3
are BMAL1, CLOCK, and CRY2. Their phosphorylation by GSK3β destabilizes them,
promoting proteasome degradation. Adenosine monophosphate-activated protein kinase
(AMPK) also acts as a destabilizer of CRY1 [11].

Little is known about the role of phosphatases in the circadian clock. In mammalians,
the effects of PP1 and PP5 seem to be significant. PP1 acts on PER2 and stabilizes it, while
PP5 activates CKIε by dephosphorylation [11].

4. Possible Molecular Mechanisms in OSA

Obstructive sleep apnea (OSA) is a common chronic sleep-related breathing disorder
characterized by recurrent pauses in breathing, which are caused by the collapse of the
upper respiratory tract [29]. The prevalence of moderate-to-severe OSA in the general
population reaches up to 50% in men and 23% in women, and the risk of OSA develop-
ment increases with advancing age, male sex, and higher body mass index (BMI) [30]. As
a consequence, hypopneas and apneas lead to intermittent hypoxia (IH) [31], which is
mediated, among others, by key factors in oxygen metabolism, such as hypoxia-inducible
factors (HIFs). HIFs are heterodimeric complexes, which consist of two subunits: α (HIF
α) and β (HIF β) [32]. Both subunits belong to the basic helix-loop-helix PER-ARNT-SIM
(bHLH-PAS) factor family (the same as BMAL1 and CLOCK), which are constitutively
produced in cells [32]. Subunit α is oxygen-sensitive [33]. During normoxia, HIF α under-
goes hydroxylation and ubiquitin-dependent degradation, but in hypoxic conditions, it
is stabilized and heterodimerizes with subunit β and p300 [34]. The formed complex is
transported to the nucleus, where it functions as an active transcription factor [35].

Hypoxia is closely related to circadian clock disruption. Addamovich et al. studied
daily rhythms in oxygen and carbon dioxide in mice. They found changes in the levels
of both gases in Per1−/− mice during the dark phase compared with their wild-type
counterparts [36]. Moreover, clock gene expression was altered and the clock was phase-
shifted. Another study connected HIF-1α with synchronizing cellular clocks and circadian
gene expression. Short time-spans of decreased oxygenation caused the acceleration of the
adaption to jet-lag [37]. Manella et al. noted that the response to hypoxia is time-dependent:
different mechanisms may play the main role at different times during the day [38]. They
also found complete abrogation to hypoxia in Per1,2−/− mice and a lower expression of
circadian clock components.

The relationship between hypoxia and the circadian clock is not clear, but it is most
likely to be bidirectional. As outlined above, hypoxia disrupts the expression of circadian
rhythm genes [39]. The main interaction mechanism is probably mutual transcriptional
regulation between HIF-1 and BMAL1:CLOCK. The Per1, Cry1, and CLOCK genes feature
E-box-like hypoxia response elements (HRE) in their promotors, so they can be targets
for HIF-1 [40] (see Figure 2a). Chilov et al. found increased levels of PER1 and CLOCK
proteins in mouse brain cells with hypoxia [41]. Additionally, the HIF-1α gene promotor
has an E-box sequence, the target of circadian clock activators complex [42] (see Figure 2b).
Kobayashi et al. found that PER2 mediates activation of HIF-1α by increasing its affinity to
HRE in the study on cell cultures [43] (see Figure 2c). Moreover, HIF-1α accelerates Per2
expression [42].
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Figure 2. The possible molecular regulation mechanism between HIF-1 and circadian clock proteins.
(a) HIF-1 can bind to HRE in promotors of circadian clock genes such as Per1, Cry1, and CLOCK.
(b) Transcriptional activity of BMAL1:CLOCK leads to increased HIF-1 expression. (c) CRY1 and
PER1 increase HIF-1 affinity to HRE, enhancing HIF-1 activity. (d) Influence of hypoxia-dependent
acidification on circadian clock genes expression.

HIF-1 and circadian clock proteins present a relationship in Obstructive Sleep Apnea
patients and their pathways are connected [42,44,45]. In a multivariate general linear model
featuring a concentration of all the circadian clock proteins as dependent variables, evening
HIF-1α protein level was the only significant covariant (p = 0.025). Positive correlations
between evening PER1, CRY1, CLOCK, and evening HIF-1α protein levels in patients with
OSA have been reported [45]. All the protein levels were measured using ELISA assay.
Similar outcomes were obtained among diabetes mellitus type 2 patients [46], patients with
hepatocellular carcinoma [34], or varicose lesions [47]. However, early reports suggest that
one-night effective continuous positive airway pressure (CPAP) treatment does not affect
the level of HIF-1α in OSA patients [48,49].

It emerged that CLOCK and HIF-1α cooperate to induce vasopressin expression
in the suprachiasmatic nucleus [50] or reprogram glucose metabolism in hepatocellular
carcinoma cells [51]. Both of them bind with MOP3 to enhance transcriptional activity, as
does HIF-2α [52]. Peek et al. found that BMAL1 expression disruption leads to an increased
level of HIF-1α and the overexpression of its metabolic targets: prolyl hydroxylase 3
(PHD3), vascular endothelial growth factor (VEGF), and lactate dehydrogenase A (LDHA).
Moreover, the genetic stabilization of HIF-1α promotes changes in circadian transcription
through the heterodimerization of both proteins [53]. The HIF-1α:BMAL1 complex can also
increase the expression of PER2 the same way as HIF-1α:ARNT (aryl hydrocarbon receptor
nuclear translocator) and CLOCK:BMAL1 complexes [54]. Another study has shown that
BMAL1 gene silencing leads to the decreased expression of HIF-1α [55].
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The circadian clock features many output genes, including albumin D-element binding
protein (DBP) and E4 binding protein 4 (E4BP4). DBP and E4BP4 are, respectively, positive
and negative regulators of the HIF-1β promotor. The disruption of this mechanism and
ARNT inhibition are conducive to the destruction of pancreatic islet β-cell, decreased
insulin output, and diabetes mellitus development in mice [56].

Walton et al. proposed another mechanism of this complicated relationship based on
the hypoxic alteration of metabolic activity mediated by HIF-1α, which leads to acidification
and the spatial redistribution of lysosomes (see Figure 2d). Acid prevents mechanistic
target of rapamycin kinase (mTOR) localization to the lysosomal surface and its activation,
which decreases circadian clock expression [57].

Based on the results of our study [45] and the above information, it seems that hypoxia
mediated by HIF-1 is the most likely mechanism of circadian clock disruption in OSA
patients. The first free molecular pathways can interfere with each other. HIF-1 increased
the expression of circadian clock genes in the presence of HRE in their promotors and can
also intensify the transcription of HIF-1. Moreover, circadian clock repressors aggravate
HIF-1 activity. All these create an ordered structure resembling a positive feedback loop
(see Figure 3).
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5. Clinical Implications of Circadian Rhythm Gene Disruption in OSA Patients

Difficulty in waking up, problems with falling asleep, and daytime sleepiness are the
main symptoms of circadian disruption, which is defined as a misalignment between the
central circadian clock, located in SCN, and the behavioral cycle. The diagnosis is based on
a sleep diary, detailed patient history, and actigraphy [18]. The circadian misalignments
are mainly caused by sleep disturbance, jet lag, night shifts, irregular shift work patterns,
and dietary alterations [58,59]. Patients with OSA are in a high-risk group of developing
disruption of the circadian rhythm. As described earlier, this phenomenon might be ex-
plained by the increased level of subunits α of HIF-1 in OSA patients, which is associated
with the overexpression of circadian clock proteins, such as PER1 [45,60,61]. This is of
great importance in the context of various complications, including the development of
metabolic, cardiovascular, psychiatric, and neurodegenerative diseases [49,62,63]. The
pathophysiological pathways involved in the development of the aforementioned compli-
cations in the group of patients suffering from OSA and/or circadian disruption are not
well understood. Moreover, due to the interaction between HIF-1α and the circadian clock,
it is difficult to determine whether the complications are caused by the influence of HIF-1
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α or independently by the proteins determining circadian rhythms. Another association
between OSA and circadian rhythms might be related to arousals interrupting sleep, which
can also lead to circadian clock disruption [64] (see Figure 4).
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can be both an HIF-1 dependent and an arousal-dependent risk factor for sleep deprivation. HIF-1
overexpression associated with OSA may lead to circadian clock disruption via CLOCK, BMAL,
and PER interaction. Disruption of sleep architecture in patients suffering from OSA might be
a HIF-1 independent cause of sleep deprivation. This condition can result in an increased risk
of a variety of diseases, including metabolic disruption, CVD, cancer, psychiatric diseases, and
neurodegeneration. Moreover, both OSA and HIF-1 overexpression may be a risk factor of CVD
unrelated to sleep deprivation.

5.1. Metabolic Diseases

The circadian clock coordinates and regulates various physiological processes, includ-
ing metabolism [65], via the central and peripheral clock. The signals between them are
transmitted through hormonal, neuronal, and body temperature pathways and their coordi-
nation is crucial for circadian alignment [66]. The circadian clock is involved in a temporal
separation of opposing processes of catabolism and anabolism. Moreover, it maintains the
proper intensity of metabolic cycles during the sleep/wake cycle. In an evolutionary sense,
it increases energetic efficiency [59]. The disruption of its function may lead to diabetes
mellitus type 2 (T2DM), dyslipidemia, obesity, and metabolic syndrome [46,67–69].

Populations with circadian disruption have a twofold increased risk of T2DM develop-
ment [70]. Clock misalignment is associated with decreased or increased insulin secretion,
impaired glucose tolerance, and an alteration of the pancreatic B-cell function [71]. In
a study by Scheer et al., 10 healthy adults were exposed to a 10 day protocol. All the
subjects were eating and sleeping at all phases of the circadian cycle. This was achieved
by scheduling a recurring day that lasted not 24, but 28 h. The test performed during the
study revealed decreased leptin levels, increased glucose levels despite increased insulin
levels, completely reversed daily cortisol rhythm, and increased mean arterial pressure.
Moreover, circadian misalignment caused a postprandial glucose response characteristic
of a prediabetic state in 3 out of 8 patients [72]. The risk of metabolic syndrome is also
doubled in people suffering from circadian disruption [70]. This phenomenon might be
explained by the fac, that between 10 and 30% of genes (depending on the tissue) are
characterized by rhythmic expression guided by circadian clock genes. Furthermore, this
phenomenon occurs in the case of genes coding various transport systems and metabolic
enzymes. Fatty acid transporter sirtuin-1 and albumin D-site binding protein are examples
of such transporters. While in the case of enzymes, the enzymes responsible for glucose and
lipid metabolism, such as 3-hydroxy-3-methylglutaryl-coenzymeA (HMG-CoA) synthase,
acetyl-coenzyme A oxidase, and lipoprotein lipase were affected [73,74].

The risk of developing T2DM and metabolic syndrome in OSA patients is also in-
creased [75]. Mahmood et al. found that the prevalence of T2DM in OSA patients was
30.1%, while in the healthy control group it was only 18.6% [76]. Additionally, not only the
prevalence but also the pathophysiology of metabolic complications is similar between OSA
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patients and patients with disrupted circadian rhythms. In both cases, it might be mediated
by HIF-1α and based on impaired glucose tolerance, increased insulin secretion, alter-
ation in B-cell function, and the influence of metabolic enzymes such as acetyl-coenzyme
A [49,77]. OSA subjects are also characterized by increased leptin levels [78] and impaired
cortisol rhythmicity [79]. Furthermore, the effect of hypoxia may be aggravated by the
interaction of circadian components with HIF-1α [43].

Circadian clock disruption is also a potential mechanism of diabetes complications,
such as diabetic retinopathy development. The excessive CLOCK-dependent expression
of DEC2 and VEGF [80] leads to incorrect neovascularization and in consequence diabetic
retinopathy. Moreover, VEGF translation is powered by HIF-1α [81] (see Figure 5).

5.2. Cardiovascular Diseases

OSA is associated with increased cardiovascular disease (CVD) morbidity and mor-
tality, commonly associated with obesity. The American Academy of Sleep Medicine
recommends dietary-induced weight loss and exercise as lifestyle treatment options for
OSA. Low-fat diets are recommended for improving OSA severity and weight loss im-
proves OSA severity and the CVD substrate [82]. The best example proving the importance
of circadian rhythms in cardiovascular diseases is the fact that myocardial infarction, my-
ocardial ischemia, and sudden cardiac death occur more frequently in the morning than in
the evening [22]. This is in contrast to OSA patients, whose peak of cardiovascular risk is in
the middle of the night [83–85]. Moreover, patients suffering from circadian disruption are
at a higher risk of cardiac ischemic events [86]. Other cardiac diseases, such as heart arrhyth-
mias, are also affected by circadian rhythms. The electrical properties of the heart show
24 h variation. Life-threatening arrhythmias, such as ventricular fibrillation, tend to occur
in the morning after waking up [87]. The peak of premature ventricular beats detected by
continuous Holter monitoring was determined between 6 a.m. and 12 noon [88]. Circadian
rhythms also exert an influence on blood pressure. Physiologically, blood pressure dips
during the night while resting by 10–20%; in the morning a significant increase in blood
pressure occurs, known as the “morning surge”. Blood pressure reaches a peak in the
afternoon [20]. Furthermore, there are different circadian patterns among patients with
arterial hypertension: dippers, whose blood pressure dips at night; non-dippers, for whom
there is no dip of blood pressure at night; and reverse-dippers, who present increased
blood pressure during the night [89]. A study by Kitamura et al. revealed that individuals’
blood pressure pattern on the first days of night shift work changed from a dipper to a
non-dipper pattern. Furthermore, this phenomenon was reversed after 4 days of night
shift work and the dipper pattern was restored [90]. Many mechanisms regulate blood
pressure during the 24 h cycle. It is well known that changes in sympathetic nervous system
tone are responsible for the “morning surge”. There have been several studies linking the
circadian rhythms of blood pressure with kidney and renal sodium homeostasis: higher
daytime sodium excretion with urine was associated with the presence of nocturnal dip in
the blood pressure [91], aldosteronism was shown to provoke the non-dipping type of hy-
pertension [92], and unilateral nephrectomy was linked with the occurrence of non-dipping
blood pressure patterns in patients [93]. In a study by Marques et al., the kidney tissues
from hypertensive and normotensive humans were compared. The results showed the
upregulation of PER1 in hypertensive humans [94]. Dashti et al. showed the link between
single-nucleotide polymorphism in PER1, CRY1, CLOCK, and PER3 genes and systolic
blood pressure. A study by Morris et al. revealed that circadian misalignment lasting
only 8 days leads to increased systolic and diastolic pressure by 3.0 mmHg and 1.5 mmHg,
respectively [95]. Sudden morning increases in blood pressure, heart rate, sympathetic
nervous system activity, prothrombic tendency, and vasoconstrictive hormones are thought
to be an explanation of myocardial infarction and ischemia peak during the morning [22].
Ischemia leads to hypoxia, which is responsible for HIF-1α protein stabilization in the
myocardium and its expression. One of the genes activated by HIF-1α is VEGF, which
plays an important role in post-myocardial infarction cardiac angiogenesis [96,97]. A study
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by Koyonagi et al. found that protein Per2 expression reduced the hypoxic induction of
HIF-1α-dependent VEGF expression [98,99]. Since the expression of Per2 varies during
the 24 h cycle, its fluctuation may alternate the cardiac response to ischemia depending
on the time of the ischemic episode. However, it is worth mentioning that angiogenesis
is a long-term process; therefore, circadian clock disruption must be longer than a day to
influence it significantly.

The treatment of cardiovascular diseases in patients with circadian rhythm disruptions
is complicated due to the influence of the circadian clock on the pharmacokinetics and
pharmacodynamics of drugs [22]. Therefore, chronotherapy based on the understanding
of circadian rhythms may help inappropriate drug selection and dosing, and improve the
treatment efficiency [100].

In OSA patients, HIF-1 α is also an important regulator of response to hypoxia. There
is a vast number of genes regulating the cardiovascular system that are controlled by
stabilized HIF1-α, e.g., genes regulating endothelin-1, erythropoietin, and leptin synthe-
sis [101,102]. Therefore, moderate and severe OSA is associated with a significant increase
in cardiovascular morbidity [103]. It is also worth mentioning that OSA individuals with
comorbid CVD present with higher HIF-1α compared to groups without cardiovascular
complications [104]. Due to the cross-talk between clock genes and HIF-1α in OSA patients,
the understanding of the pathophysiology of certain cardiovascular complications in OSA
and circadian disruption patients is challenging (See Figure 5).

5.3. Psychiatric and Neurodegenerative Diseases

Circadian disruption has been found to be related to both psychiatric and neurode-
generative diseases. Some examples include major depressive disorder, bipolar disease,
schizophrenia, Alzheimer’s, and Parkinson’s disease [105,106]. Major depressive disorder
is characterized by anhedonia, mood alterations, fatigue, changes in appetite and body
mass, irritability, and sleep disturbances, including both insomnia and excessive daytime
sleepiness [107]. The relationship between major depressive disorder and circadian disrup-
tion is bidirectional. On the one hand, depression leads to altered sleep architecture; on the
other hand, people suffering from circadian misalignment are more prone to developing a
major depressive disorder. In a metanalysis, which included 11 studies, it was determined
that night shift workers were at 40% higher risk of developing depression compared with
a daytime worker control group [108]. The loss of circadian rhythm generated by the
circadian clock is one of the postulated factors leading to depression development. Thus,
chronotherapy, which includes sleep deprivation, dark therapy, bright light therapy [109],
and others, is a possible treatment option for depression [87]. Interestingly, the expres-
sion of HIF-1 α increases three-fold increase in patients suffering from major depressive
disorder and 2.5 fold in patients suffering from bipolar disease. Moreover, patients in a
remissive state are characterized by significantly lower HIF-1 α compared with patients in
a depressive state [86]. The cause of HIF-1 α overexpression in patients suffering from the
aforementioned diseases is not clear. One of the postulated factors is oxidative stress caused
by an imbalance between the increased production of reactive oxygen species and a relative
shortage of antioxidant defense and increased HIF-1 α expression in the protective response
to oxidative stress [110–113], which is similar to the cellular senescence process in OSA
patients [114]. Furthermore, increased HIF-1 levels in the brain may improve creatinine
metabolism and correlate with a better treatment response to antidepressants [115]. On the
other hand, HIF-1 α overexpression may interfere with the genes responsible for circadian
clock regulation and modify circadian clockwork. Patients with OSA experience a higher
prevalence of depression than healthy controls, even though HIF-1 α offers a protective
function against oxidative stress. Therefore, some patients suffering from depression may
also improve after CPAP therapy. One of the explanations as to why depression is more
frequent in OSA patients might be the circadian disruption caused by arousals and HIF-1 α
overexpression [111,116,117].
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Bipolar affective disease is a chronic and complex disorder characterized by a combi-
nation of different mood episodes including mania, hypomania, and depression. Circadian
disruption is a prevalent condition in patients with bipolar disease; however, a recent
meta-analysis, which included 42 clinical studies, did not establish an association between
circadian disruption and bipolar disease incidence [118]. Despite this, it was reported that
bipolar disease can be induced by jet lag in the case of susceptible individuals [105]. Addi-
tionally, OSA has been found to be a significant risk factor for bipolar disease. In a study of
Kelly et al., 21% of patients with bipolar disease were also suffering from OSA [119]. One
of the postulated mechanisms behind this phenomenon was the neurostructural changes
seen in decreased gray matter concentration of the amygdala, dorsal lateral prefrontal
cortex, hippocampus, cerebellum temporal lobe, caudate lobe, and other areas in the brain
of OSA patients [119,120]. However, it is important to remember that many psychiatric
disorders, including bipolar disorder, cause an increase in body mass, which in itself may
directly contribute to the development of OSA, since an increased body-mass index is a
major risk factor for OSA. Moreover, intermittent hypoxemia and circadian cycle disorders
with sleep fragmentation in pediatric subjects have shown an association with behavioral
and neurocognitive disorders, with reduced school performance. The treatment of OSA
problems in children, mainly caused by tonsillar hypertrophy, led to the regression of
associated symptoms [121]. This suggests the high probability of a mutual relationship
between OSA and psychiatric diseases. The focus in future studies should be on a new
generation of drugs, such as aripiprazole, that are not likely to affect the body mass of an
individual, increases in which can aggravate OSA problems.

Schizophrenia is another severely disabling mental disorder, characterized by positive
and negative symptoms. One of the most prevalent manifestations of this disease is
circadian rhythm disruption. It occurs in around 80% of patients [122]. Similarly to the other
diseases discussed above, circadian disruption may not only be a sign of disease, but it can
also be a cause. Skin fibroblasts, which were isolated from patients suffering from chronic
schizophrenia, presented decreased expression of PER2 and CRY1 compared with healthy
controls [123]. Moreover, in a study by Sun et al., schizophrenia patients demonstrated
altered mRNA levels of PER1/2/3 and NPAS2 in white blood cells compared with a healthy
control group [124]. Ying-Ying et al. reported that the prevalence of OSA was increased two-
fold in schizophrenia patients compared with a healthy group [125]. Furthermore, in the
same study, the hazard ratio adjusted by gender, age, baseline comorbidities, and duration
of antipsychotics use was lower for such comorbidities as hypertension, hyperlipidemia,
or even diabetes compared with the presence of schizophrenia (HR = 1.61, HR = 1.55,
HR = 1.53, and HR = 1.97, respectively) [125]. The interaction between HIF-1 α and CLOCK
genes and CLOCK gene alterations in schizophrenia patients seem to be among the possible
causes of this prevalence.

Neurodegeneration is any pathological condition in which the nervous system loses
its structure or function, or both. Due to increased global life expectancy, the prevalence of
neurodegenerative diseases is growing gradually. The disruption of sleep/wake cycles is
among the earliest manifestations of these diseases. Moreover, circadian rhythm disruption
may be a cause of the neurodegeneration process. For example, the beta-amyloid peptide,
which is linked with Alzheimer’s disease, is regulated by the rhythmically expressed
presenilin-2 gene in SCN [106]. Additionally, the presenilin-2 gene is regulated in peripheral
tissues via CLOCK and BMAL1 [126]. No experimental studies have yet determined that
any alteration to clock genes affects presenilin-2 brain expression. Furthermore, a study
by Gu et al. found that certain single-nucleotide polymorphisms of PER1 and BMAL1 are
associated with an increased risk of Parkinson’s disease. Breen et al., similarly to Cai et al.,
found that the expression of BMAL1 was decreased in patients suffering from Parkinson’s
disease [127,128]. In a study by Ping-Song et al. on 11,664 patients, it was discovered
that patients with sleep apnea demonstrated a 1.85-fold higher risk of Parkinson’s disease
development compared with the control group [129]. In another study, patients suffering
from OSA demonstrated a 2.17-fold higher risk of developing Alzheimer’s disease than no-
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OSA patients [130]. Such a significant incidence of OSA in patients with neurodegenerative
diseases suggests that the association of HIF-1 α and proteins regulating circadian genes
may play a substantial role [131]. Surprisingly, HIF-1 α is considered a neuroprotective
factor and its activation might play a role in the future treatment of neurodegenerative
disorders. In addition, a trial on patients suffering from Alzheimer’s disease with OSA
revealed improved cognition in the CPAP-treated group [132,133]. This suggests the
possible advantageous effects of the treatment not only on baseline OSA but also on its
psychiatric and neurogenerative comorbidities (see Figure 5).
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Abbreviations

AMPK adenosine monophosphate-activated protein kinase
bHLH-PAS basic helix-loop-helix PER-ARNT-SIM

BMAL1/ARNTL
brain and muscle ARNT-like 1/aryl hydrocarbon receptor nuclear
translocator like

CamK calcium/calmodulin-dependent protein kinases
cAMP cyclic adenosine monophosphate;
CKI casein kinases

CLOCK
clock circadian regulator/circadian locomotor output cycles protein
kaput

CPAP continuous positive airway pressure treatment
CREB phosphorylate cAMP-responsive element-binding protein
Cry2 cryptochrome 2
CVD cardio-vascular disease
DBP albumin D-element binding protein
E4BP4 E4 binding protein 4
E-box enhancer box; GSK3β—Glycogen synthase kinase 3β
HIF hypoxia inducible factor
HMG-CoA 3-hydroxy-3-methylglutaryl-coenzyme A synthase
HRE hypoxia response element
IH intermittent hypoxia
LDHA lactate dehydrogenase A
MAPK mitogen-activated protein kinases
mTOR mechanistic target of rapamycin kinase
NMDAR N-methyl-D-aspartate receptors
NPAS2 neuronal PAS domain protein 2
OSA obstructive sleep apnea
PACAP pituitary adenylate cyclase—activating polypeptide
PER1 period protein 1
PER2 period protein 2
PER3 period protein 3
PHD3 prolyl hydroxylase 3
PKA protein kinase A
PP1 protein phosphatase 1
PP5 protein phosphatase 5
REV-ERBα nuclear receptor subfamily 1 group D member 1
ROR RAR-related orphan receptor
RORE ROR response elements
RORα Nuclear retinoid-related orphan receptors α
SCF-Fbxl3 E3 ubiquitin ligase complex
E3 ubiquitin ligase complex
SCN suprachiasmatic nucleus
T2DM diabetes mellitus type 2
VEGF vascular endothelial growth factor
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